Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Background

Electrochemical sensors have attracted enormous interest in recent decades due to their relatively simple synthesis process, the possibility of modifications in their composition, and their wide application in detecting analytes.

Methods

To achieve excellent performance, materials used in its construction must facilitate the transfer of electrons and provide a large surface area and excellent electrocatalytic activity. Because they are functional nanomaterials, metal-organic frameworks (MOFs) meet the criteria for application as a sensing material and can be used to build high-performance sensors for numerous applications. They play a relevant role in the early diagnosis of various neoplasms and tumor processes, thus providing better prognoses. Considering this universe, the present study focused on evaluating the application of these nanomaterials in the recognition of tumor biomarkers.

Results

A systematic review of scientific publications was performed using the following descriptors “MOFs”, “Metal-organic frameworks”, “Biosensor”, “Electrochemistry”, and “Tumor Biomarker”.

Conclusion

Herein, we analyze recent innovations of MOF-based biosensors applied to the detection of tumor biomarkers, discussing how promising characteristics and properties of these materials were harnessed in the development of biosensors to provide a new contribution to future studies and the development of applied MOFs to electrochemical biosensing.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298276294231130111658
2024-01-31
2025-03-30
Loading full text...

Full text loading...

References

  1. DamosF.S. MendesR.K. KubotaL.T. Applications of QCM, EIS and SPR in the investigation of surfaces and interfaces for the development of (bio)sensors.Quim. Nova200427610.1590/S0100‑40422004000600023
    [Google Scholar]
  2. DamosF.S. SotomayorM.P.T. KubotaL.T. TanakaS.M.C.N. TanakaA.A. Iron(iii) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface: An amperometric sensor for phenolic compound determinations.Analyst2003128325525910.1039/b207894e 12705384
    [Google Scholar]
  3. FreireR.S. PessoaC.A. MelloL.D. KubotaL.T. BrazJ. Direct electron transfer: An approach for electrochemical biosensors with higher selectivity and sensitivity.J. Braz. Chem. Soc.200314223024310.1590/S0103‑50532003000200008
    [Google Scholar]
  4. RenM. DengB. WangJ.Y. KongX. LiuZ.R. ZhouK. HeL. LinW. A fast responsive two-photon fluorescent probe for imaging H2O2 in lysosomes with a large turn-on fluorescence signal.Biosens. Bioelectron.20167923724310.1016/j.bios.2015.12.046 26710341
    [Google Scholar]
  5. MaY. CenY. SohailM. XuG. WeiF. ShiM. XuX. SongY. MaY. HuQ. A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H 2 O 2 -generation reactions.ACS Appl. Mater. Interfaces2017938330113301910.1021/acsami.7b10548 28876887
    [Google Scholar]
  6. YuanJ. ShillerA.M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection.Anal. Chem.199971101975198010.1021/ac981357c
    [Google Scholar]
  7. AlmuaibedA.M. TownshendA. Flow spectrophotometric method for determination of hydrogen peroxide using a cation exchanger for preconcentration.Anal. Chim. Acta19942951-215916310.1016/0003‑2670(94)80346‑3
    [Google Scholar]
  8. EffkemannS. PinkernellU. KarstU. Peroxide analysis in laundry detergents using liquid chromatography.Anal. Chim. Acta199836319710310.1016/S0003‑2670(98)00040‑3
    [Google Scholar]
  9. SunY. LuoM. MengX. XiangJ. WangL. RenQ. GuoS. Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H 2 O 2 released from cells.Anal. Chem.20178963761376710.1021/acs.analchem.7b00248 28206749
    [Google Scholar]
  10. SouzaM.F.B. Chemically modified electrodes applyes to electroanalysis: A brief presentation.Quim. Nova19972019119510.1590/S0100‑40421997000200011
    [Google Scholar]
  11. StradiottoN.R. YamanakaH. ZanoniM.V.B. Electrochemical sensors: A powerful tool in analytical chemistry.J. Braz. Chem. Soc.200314215917310.1590/S0103‑50532003000200003
    [Google Scholar]
  12. Karimi-MalehH. KarimiF. AlizadehM. SanatiA.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems.Chem. Rec.202020768269210.1002/tcr.201900092 31845511
    [Google Scholar]
  13. RamachandranR. ChenT.W. ChenS.M. BaskarT. KannanR. ElumalaiP. RajaP. JeyapragasamT. DinakaranK. Gnana kumar, G. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules.Inorg. Chem. Front.20196123418343910.1039/C9QI00602H
    [Google Scholar]
  14. BakkerE. Chumbimuni-TorresK. Modern directions for potentiometric sensors.J. Braz. Chem. Soc.200819462162910.1590/S0103‑50532008000400003 19890473
    [Google Scholar]
  15. LowinsohnD. BertottiM. Electrochemical sensors: Fundamentals and applications in microenvironments.Quim. Nova2006
    [Google Scholar]
  16. CoataneaM. DarchenA. HauchardD. Electroanalysis at ultramicroelectrodes of oils and fats.Sens. Actuators B Chem.2001761-353954410.1016/S0925‑4005(01)00618‑9
    [Google Scholar]
  17. PereiraA.C. SantosA.S. KubotaL.T. Trends in amperometric electrodes modification for electroanalytical applications.Quim. Nova2002251012102110.1590/S0100‑40422002000600019
    [Google Scholar]
  18. CrespilhoF.N. RezendeM.O.O. Carbon paste electrodes modified with humic acids: Study and determination of metals in aqueous solution.Quim. Nova20042796410.1590/S0100‑40422004000600022
    [Google Scholar]
  19. SanchezC. JuliánB. BellevilleP. PopallM. Applications of hybrid organic–inorganic nanocomposites.J. Mater. Chem.20051535-363559359210.1039/b509097k
    [Google Scholar]
  20. ChenG. RoyI. YangC. PrasadP.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy.Chem. Rev.201611652826288510.1021/acs.chemrev.5b00148 26799741
    [Google Scholar]
  21. AlmeidaJ.R.C. PedrosaN.L. LeiteJ.B. FlemingT.R.P. CarvalhoV.H. CardosoA.A.A. Marcadores tumorais: Revisão de literatura.Rev. Bras. Cancerol.200753330531610.32635/2176‑9745.RBC.2007v53n3.1798
    [Google Scholar]
  22. Van PoznakC. SomerfieldM.R. BastR.C. CristofanilliM. GoetzM.P. Gonzalez-AnguloA.M. HicksD.G. HillE.G. LiuM.C. LucasW. MayerI.A. MennelR.G. SymmansW.F. HayesD.F. HarrisL.N. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American society of clinical oncology clinical practice guideline.J. Clin. Oncol.201533242695270410.1200/JCO.2015.61.1459 26195705
    [Google Scholar]
  23. HammerlD. SmidM. TimmermansA.M. SleijferS. MartensJ.W.M. DebetsR. Breast cancer genomics and immuno-oncological markers to guide immune therapies.Semin. Cancer Biol.201852Pt 217818810.1016/j.semcancer.2017.11.003 29104025
    [Google Scholar]
  24. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  25. WentzensenN. von Knebel DoeberitzM. Biomarkers in cervical cancer screening.Dis. Markers200723431533010.1155/2007/678793 17627065
    [Google Scholar]
  26. BeobideG. CastilloO. CepedaJ. LuqueA. Pérez-YáñezS. RománP. Thomas-GipsonJ. Metal–carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials.Coord. Chem. Rev.201325719-202716273610.1016/j.ccr.2013.03.011
    [Google Scholar]
  27. Ruiz-HitzkyE. DarderM. ArandaP. ArigaK. Advances in biomimetic and nanostructured biohybrid materials.Adv. Mater.201022332333610.1002/adma.200901134 20217713
    [Google Scholar]
  28. LevasonB. BradshawD. Chemistry and applications of metal organic frameworks.Coord. Chem. Rev.201630710542410.1016/j.ccr.2015.09.009
    [Google Scholar]
  29. BattenS.R. ChampnessN.R. ChenX.M. Garcia-MartinezJ. KitagawaS. ÖhrströmL. O’KeeffeM. SuhM.P. ReedijkJ. Coordination polymers, metal–organic frameworks and the need for terminology guidelines.CrystEngComm20121493001300410.1039/c2ce06488j
    [Google Scholar]
  30. StockN. BiswasS. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites.Chem. Rev.2012112293396910.1021/cr200304e 22098087
    [Google Scholar]
  31. YaghiO.M. O’KeeffeM. OckwigN.W. ChaeH.K. EddaoudiM. KimJ. Reticular synthesis and the design of new materials.Nature2003423694170571410.1038/nature01650 12802325
    [Google Scholar]
  32. HaldarR. MajiT.K. Metal–organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional materials.CrystEngComm201315459276929510.1039/c3ce41438h
    [Google Scholar]
  33. MurdockC.R. HughesB.C. LuZ. JenkinsD.M. Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity.Coord. Chem. Rev.2014258-25911913610.1016/j.ccr.2013.09.006
    [Google Scholar]
  34. FremR. ArroyosG. FlorJ. AlvesR. LucenaG. SilvaC. CouraM. MOFs (metal-organic frameworks): UMA fascinante classe de materiais inorgânicos porosos.Quim. Nova2018411178119110.21577/0100‑4042.20170285
    [Google Scholar]
  35. AshrafG. AhmadT. AhmedM.Z. MurtazaR.Y. RasmiY. Advances in Metal-organic framework (MOFs) based biosensors for diagnosis: An update.Curr. Top. Med. Chem.202222272222224010.2174/1568026622666220829125548 36043769
    [Google Scholar]
  36. IvnitskiD. Abdel-HamidI. AtanasovP. WilkinsE. Biosensors for detection of pathogenic bacteria.Biosens. Bioelectron.199914759962410.1016/S0956‑5663(99)00039‑1
    [Google Scholar]
  37. AroraP. SindhuA. DilbaghiN. ChaudhuryA. Biosensors as innovative tools for the detection of food borne pathogens.Biosens. Bioelectron.201128111210.1016/j.bios.2011.06.002 21763122
    [Google Scholar]
  38. WangY. YeZ. YingY. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria.Sensors (Basel)20121233449347110.3390/s120303449 22737018
    [Google Scholar]
  39. WhitingP. SavovićJ. HigginsJ.P.T. CaldwellD.M. ReevesB.C. SheaB. DaviesP. KleijnenJ. ChurchillR. ROBIS: A new tool to assess risk of bias in systematic reviews was developed.J. Clin. Epidemiol.20166922523410.1016/j.jclinepi.2015.06.005 26092286
    [Google Scholar]
  40. VaranoN. MendesM.B.S. OliveiraB.M. ReisT.G. CunhaC.M. MelladoB.H. Systematic literature review protocol: Data on cancer health.Res. Soc. Devel.2021101410.33448/rsd‑v10i14.21782
    [Google Scholar]
  41. FengX. CarreonM.A. Kinetics of transformation on ZIF-67 crystals.J. Cryst. Growth201541815816210.1016/j.jcrysgro.2015.02.064
    [Google Scholar]
  42. FengJ. ChuC. DangK. YaoT. MaZ. HanH. Responsive-released strategy based on lead ions-dependent DNAzyme functionalized UIO-66-NH2 for tumor marker.Anal. Chim. Acta2021118733917033917010.1016/j.aca.2021.339170 34753583
    [Google Scholar]
  43. LiS. YueS. YuC. ChenY. YuanD. YuQ. A label-free immunosensor for the detection of nuclear matrix protein-22 based on a chrysanthemum-like Co-MOFs/CuAu NWs nanocomposite.Analyst2019144264965510.1039/C8AN01590B 30480684
    [Google Scholar]
  44. HuM. ZhuL. LiZ. GuoC. WangM. WangC. DuM. CoNi bimetallic metal–organic framework as an efficient biosensing platform for miRNA 126 detection.Appl. Surf. Sci.202154214858610.1016/j.apsusc.2020.148586
    [Google Scholar]
  45. WangM. HuM. LiZ. HeL. SongY. JiaQ. ZhangZ. DuM. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells.Biosens. Bioelectron.201914211153611153610.1016/j.bios.2019.111536 31362204
    [Google Scholar]
  46. SchwarzenbachH. NishidaN. CalinG.A. PantelK. Clinical relevance of circulating cell-free microRNAs in cancer.Nat. Rev. Clin. Oncol.201411314515610.1038/nrclinonc.2014.5 24492836
    [Google Scholar]
  47. BaoT. FuR. JiangY. WenW. ZhangX. WangS. Metal-mediated polydopamine nanoparticles–DNA nanomachine coupling electrochemical conversion of metal–organic frameworks for ultrasensitive microRNA sensing.Anal. Chem.20219340134751348410.1021/acs.analchem.1c02125 34586792
    [Google Scholar]
  48. GuC. GuoC. LiZ. WangM. ZhouN. HeL. ZhangZ. DuM. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells.Biosens. Bioelectron.201913481510.1016/j.bios.2019.03.043 30952013
    [Google Scholar]
  49. SongY. XuM. LiZ. HeL. HuM. HeL. ZhangZ. DuM. A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances.Sens. Actuators B Chem.202031112792712792710.1016/j.snb.2020.127927
    [Google Scholar]
  50. TianK. MaY. LiuY. WangM. GuoC. HeL. SongY. ZhangZ. DuM. Hierarchically structured hollow bimetallic ZnNi MOF microspheres as a sensing platform for adenosine detection.Sens. Actuators B Chem.202030312719912719910.1016/j.snb.2019.127199
    [Google Scholar]
  51. WangG. HanR. LiQ. HanY. LuoX. Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multifunctional peptides.Anal. Chem.202092107186719310.1021/acs.analchem.0c00738 32289219
    [Google Scholar]
  52. ChangY. WuZ. SunQ. ZhuoY. ChaiY. YuanR. Simply constructed and highly efficient classified cargo-discharge DNA robot: A DNA walking nanomachine platform for ultrasensitive multiplexed sensing.Anal. Chem.201991138123812810.1021/acs.analchem.9b00363 31247717
    [Google Scholar]
  53. LiuX. GaoX. YangL. ZhaoY. LiF. Metal–organic framework-functionalized paper-based electrochemical biosensor for ultrasensitive exosome assay.Anal. Chem.20219334117921179910.1021/acs.analchem.1c02286 34407610
    [Google Scholar]
  54. SunZ. WangL. WuS. PanY. DongY. ZhuS. YangJ. YinY. LiG. An electrochemical biosensor designed by using Zr-based metal–organic frameworks for the detection of glioblastoma-derived exosomes with practical application.Anal. Chem.20209253819382610.1021/acs.analchem.9b05241 32024367
    [Google Scholar]
  55. GuC. PengU. LiJ. LiuC-S. PangH. Controllable synthesis of copper ion guided MIL-96 octadecahedron: highly sensitive aptasensor toward alpha-fetoprotein.Appl. Mater. Today20202010074510.1016/j.apmt.2020.100745
    [Google Scholar]
  56. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau6977 32029601
    [Google Scholar]
  57. AnY. JinT. ZhuY. ZhangF. HeP. An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry.Biosens. Bioelectron.201914211150311150310.1016/j.bios.2019.111503 31376716
    [Google Scholar]
  58. WangS. ZhangL. WanS. CansizS. CuiC. LiuY. CaiR. HongC. TengI.T. ShiM. WuY. DongY. TanW. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes.ACS Nano20171143943394910.1021/acsnano.7b00373 28287705
    [Google Scholar]
  59. VaidyanathanR. NaghibosadatM. RaufS. KorbieD. CarrascosaL.G. ShiddikyM.J.A. TrauM. Detecting exosomes specifically: A multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.Anal. Chem.20148622111251113210.1021/ac502082b 25324037
    [Google Scholar]
  60. XiaY. LiuM. WangL. YanA. HeW. ChenM. LanJ. XuJ. GuanL. ChenJ. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes.Biosens. Bioelectron.20179281510.1016/j.bios.2017.01.063 28167415
    [Google Scholar]
  61. WangL. YangY. LiuY. NingL. XiangY. LiG. Bridging exosome and liposome through zirconium–phosphate coordination chemistry: a new method for exosome detection.Chem. Commun.201955182708271110.1039/C9CC00220K 30758019
    [Google Scholar]
  62. HeF. WangJ. YinB.C. YeB.C. Quantification of exosome based on a copper-mediated signal amplification strategy.Anal. Chem.201890138072807910.1021/acs.analchem.8b01187 29890831
    [Google Scholar]
  63. BaoT. FuR. WenW. ZhangX. WangS. Target-driven cascade-amplified release of loads from dna-gated metal–organic frameworks for electrochemical detection of cancer biomarker.ACS Appl. Mater. Interfaces20201222087209410.1021/acsami.9b18805 31846289
    [Google Scholar]
  64. BiswasS. LanQ. LiC. XiaX.H. Morphologically flex Sm-MOF based electrochemical immunosensor for ultrasensitive detection of a colon cancer biomarker.Anal. Chem.20229463013301910.1021/acs.analchem.1c05538 35119821
    [Google Scholar]
  65. HashiguchiY. MuroK. SaitoY. ItoY. AjiokaY. HamaguchiT. HasegawaK. HottaK. IshidaH. IshiguroM. IshiharaS. KanemitsuY. KinugasaY. MurofushiK. NakajimaT.E. OkaS. TanakaT. TaniguchiH. TsujiA. UeharaK. UenoH. YamanakaT. YamazakiK. YoshidaM. YoshinoT. ItabashiM. SakamakiK. SanoK. ShimadaY. TanakaS. UetakeH. YamaguchiS. YamaguchiN. KobayashiH. MatsudaK. KotakeK. SugiharaK. Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer.Int. J. Clin. Oncol.202025114210.1007/s10147‑019‑01485‑z 31203527
    [Google Scholar]
  66. ZhouY. ChenS. LuoX. ChaiY. YuanR. Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers.Anal. Chem.20189016100241003010.1021/acs.analchem.8b02642 30047729
    [Google Scholar]
  67. QiuZ. ShuJ. TangD. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper.Anal. Chem.20178995152516010.1021/acs.analchem.7b00989 28376620
    [Google Scholar]
  68. HeM.Q. WangK. WangW.J. YuY.L. WangJ.H. Smart DNA machine for carcinoembryonic antigen detection by exonuclease III-assisted target recycling and DNA walker cascade amplification.Anal. Chem.201789179292929810.1021/acs.analchem.7b02073 28806060
    [Google Scholar]
  69. FengJ. YaoT. ChuC. MaZ. HanH. Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface.J. Colloid Interface Sci.2022608Pt 22050205710.1016/j.jcis.2021.10.139 34749152
    [Google Scholar]
  70. RenX. WuD. WangY. ZhangY. FanD. PangX. LiY. DuB. WeiQ. An ultrasensitive squamous cell carcinoma antigen biosensing platform utilizing double-antibody single-channel amplification strategy.Biosens. Bioelectron.20157215615910.1016/j.bios.2015.05.012 25982722
    [Google Scholar]
  71. ToratiS.R. KasturiK.C.S.B. LimB. KimC. Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125.Sens. Actuators B Chem.2017243647110.1016/j.snb.2016.11.127
    [Google Scholar]
  72. Johari-AharM. RashidiM.R. BararJ. AghaieM. MohammadnejadD. RamazaniA. KaramiP. CoukosG. OmidiY. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients.Nanoscale2015783768377910.1039/C4NR06687A 25644549
    [Google Scholar]
  73. WangH. JianY. KongQ. LiuH. LanF. LiangL. GeS. YuJ. Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks.Sens. Actuators B Chem.201825756156910.1016/j.snb.2017.10.188
    [Google Scholar]
  74. LiM. WangP. PeiF. YuH. DongY. LiY. LiuQ. ChenP. A novel signal amplification system fabricated immunosensor based on Au nanoparticles and mesoporous trimetallic PdPtCu nanospheres for sensitive detection of prostate specific antigen.Sens. Actuators B Chem.2018261223010.1016/j.snb.2018.01.136
    [Google Scholar]
  75. HasanzadehM. MohammadzadehA. JafariM. HabibiB. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB-chitosan) doped with silver nanoparticles.Int. J. Biol. Macromol.2018120Pt B2048206410.1016/j.ijbiomac.2018.09.20830287383
    [Google Scholar]
  76. TianR. LiY. BaiJ. Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs.Anal. Chim. Acta20191058899610.1016/j.aca.2019.01.036 30851857
    [Google Scholar]
  77. LiY. YuC. YangB. LiuZ. XiaP. WangQ. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.Biosens. Bioelectron.201810230731510.1016/j.bios.2017.11.047 29156406
    [Google Scholar]
  78. KongL. LvS. QiaoZ. YanY. ZhangJ. BiS. Metal-organic framework nanoreactor-based electrochemical biosensor coupled with three-dimensional DNA walker for label-free detection of microRNA.Biosens. Bioelectron.202220711418811418810.1016/j.bios.2022.114188 35339822
    [Google Scholar]
  79. YolaM.L. AtarN. Novel voltammetric tumor necrosis factor-alpha (TNF-α) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/Cu-MOFs.Anal. Bioanal. Chem.202141392481249210.1007/s00216‑021‑03203‑z 33544162
    [Google Scholar]
  80. GeS. LiuW. GeL. YanM. YanJ. HuangJ. YuJ. In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay.Biosens. Bioelectron.20134911111710.1016/j.bios.2013.05.010 23728196
    [Google Scholar]
  81. ChengY. LeiJ. ChenY. JuH. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters.Biosens. Bioelectron.20145143143610.1016/j.bios.2013.08.014 24011844
    [Google Scholar]
  82. ZhangP. ZhuoY. ChangY. YuanR. ChaiY. Electrochemiluminescent graphene quantum dots as a sensing platform: A Dual amplification for MicroRNA assay.Anal. Chem.20158720103851039110.1021/acs.analchem.5b02495 26411379
    [Google Scholar]
  83. ZengD. WangZ. MengZ. WangP. SanL. WangW. AldalbahiA. LiL. ShenJ. MiX. DNA tetrahedral nanostructure-based electrochemical mirna biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma.ACS Appl. Mater. Interfaces2017928241182412510.1021/acsami.7b05981 28660759
    [Google Scholar]
  84. ZhuW. SuX. GaoX. DaiZ. ZouX. A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes.Biosens. Bioelectron.20145341441910.1016/j.bios.2013.10.023 24201005
    [Google Scholar]
  85. WoolbrightB.L. AntoineD.J. JenkinsR.E. BajtM.L. ParkB.K. JaeschkeH. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice.Toxicol. Appl. Pharmacol.2013273352453110.1016/j.taap.2013.09.023 24096036
    [Google Scholar]
  86. DodgsonB.J. MazouchiA. WegmanD.W. GradinaruC.C. KrylovS.N. Detection of a thousand copies of miRNA without enrichment or modification.Anal. Chem.201284135470547410.1021/ac301546p 22697284
    [Google Scholar]
  87. MengT. ShangN. NsabimanaA. YeH. WangH. WangC. ZhangY. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21.Anal. Chim. Acta20201138596810.1016/j.aca.2020.09.022 33161985
    [Google Scholar]
  88. IlkhaniH. SarparastM. NooriA. Zahra BathaieS. MousaviM.F. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe.Biosens. Bioelectron.20157449149710.1016/j.bios.2015.06.063 26176209
    [Google Scholar]
  89. ShamsipurM. EmamiM. FarzinL. SaberR. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients.Biosens. Bioelectron.2018103546110.1016/j.bios.2017.12.022 29278813
    [Google Scholar]
  90. YangS. YouM. ZhangF. WangQ. HeP. A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2.Sens. Actuators B Chem.201825879680210.1016/j.snb.2017.11.119
    [Google Scholar]
  91. YolaM.L. Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite.Mikrochim. Acta202118837810.1007/s00604‑021‑04735‑y 33569679
    [Google Scholar]
  92. LiZ.Y. LiD.Y. HuangL. HuR. YangT. YangY.H. An electrochemical aptasensor based on intelligent walking DNA nanomachine with cascade signal amplification powered by nuclease for Mucin 1 assay.Anal. Chim. Acta2022121433996433996410.1016/j.aca.2022.339964 35649642
    [Google Scholar]
  93. HuangL.Y. HuX. ShanH.Y. YuL. GuY.X. WangA.J. ShanD. YuanP.X. FengJ.J. High-performance electrochemiluminescence emitter of metal organic framework linked with porphyrin and its application for ultrasensitive detection of biomarker mucin-1.Sens. Actuators B Chem.202134413030013030010.1016/j.snb.2021.130300
    [Google Scholar]
  94. HeL. DuanF. SongY. GuoC. ZhaoH. TianJ-Y. ZhangZ. LiuC-S. ZhangX. WangP. DuM. FangS-M.2D zirconium- based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods.2D Materials2017402509810.1088/2053‑1583/aa6fc6
    [Google Scholar]
  95. XieF.T. LiY.L. GuanY. LiuJ.W. YangT. MaoG.J. WuY. YangY.H. HuR. Ultrasensitive dual-signal electrochemical ratiometric aptasensor based on Co-MOFs with intrinsic self-calibration property for Mucin 1.Anal. Chim. Acta2022122534021934021910.1016/j.aca.2022.340219 36038234
    [Google Scholar]
  96. DengC. PiX. QianP. ChenX. WuW. XiangJ. High-performance ratiometric electrochemical method based on the combination of signal probe and inner reference probe in one hairpin-structured DNA.Anal. Chem.201789196697310.1021/acs.analchem.6b04209 27983797
    [Google Scholar]
  97. YangS. ZhangF. LiangQ. WangZ. A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection.Biosens. Bioelectron.2018120859210.1016/j.bios.2018.08.036 30170248
    [Google Scholar]
  98. ZhouC. CuiK. LiuY. HaoS. ZhangL. GeS. YuJ. Ultrasensitive microfluidic paper-based electrochemical/visual analytical device via signal amplification of Pd@Hollow Zn/Co core–shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection.Anal. Chem.202193135459546710.1021/acs.analchem.0c05134 33755444
    [Google Scholar]
  99. EhzariH. AmiriM. SafariM. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks.Talanta202021012064112064110.1016/j.talanta.2019.120641 31987217
    [Google Scholar]
  100. LiuX. WangD. ChuJ. XuY. WangW. Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity.J. Pharm. Biomed. Anal.201815836136910.1016/j.jpba.2018.06.021 29935325
    [Google Scholar]
  101. WangR. WangA.J. LiuW.D. YuanP.X. XueY. LuoX. FengJ.J. A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals.Biosens. Bioelectron.201810227628110.1016/j.bios.2017.11.041 29153949
    [Google Scholar]
  102. YangN. FengS. SheddenK. XieX. LiuY. RosserC.J. LubmanD.M. GoodisonS. Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification.Clin. Cancer Res.201117103349335910.1158/1078‑0432.CCR‑10‑3121 21459797
    [Google Scholar]
  103. HanT. LiX. LiY. CaoW. WuD. DuB. WeiQ. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of Nuclear Matrix Protein 22.Sens. Actuators B Chem.201420517618310.1016/j.snb.2014.08.070
    [Google Scholar]
  104. WangY. DongP. HuangJ. XuH. LeiJ. ZhangL. Direct electrochemistry of silver nanoparticles-decorated metal-organic frameworks for telomerase activity sensing via allosteric activation of an aptamer hairpin.Anal. Chim. Acta2021118433903610.1016/j.aca.2021.339036 34625244
    [Google Scholar]
  105. LingP. LeiJ. JiaL. JuH. Platinum nanoparticles encapsulated metal–organic frameworks for the electrochemical detection of telomerase activity.Chem. Commun.20165261226122910.1039/C5CC08418K 26612011
    [Google Scholar]
  106. LingP. LeiJ. JuH. Nanoscaled porphyrinic metal–organic frameworks for electrochemical detection of telomerase activity via telomerase triggered conformation switch.Anal. Chem.20168821106801068610.1021/acs.analchem.6b03131 27728765
    [Google Scholar]
  107. YangJ. DongP. WangY. LiuT. HuangY. LeiJ. A stepwise recognition strategy for the detection of telomerase activity via direct electrochemical analysis of metal–organic frameworks.Analyst202114661859186410.1039/D0AN02233K 33443249
    [Google Scholar]
  108. MaW. FuP. SunM. XuL. KuangH. XuC. Dual quantification of MicroRNAs and telomerase in living cells.J. Am. Chem. Soc.201713934117521175910.1021/jacs.7b03617 28762730
    [Google Scholar]
  109. ChenY. MengX.Z. GuH.W. YiH.C. SunW.Y. A dual-response biosensor for electrochemical and glucometer detection of DNA methyltransferase activity based on functionalized metal-organic framework amplification.Biosens. Bioelectron.201913411712210.1016/j.bios.2019.03.051 30981130
    [Google Scholar]
  110. ZhaoY. ChenJ. ZhongH. ZhangC. ZhouY. MaoW. YuC. Functionalized Ag/Fe-MOFs nanocomposite as a novel endogenous redox mediator for determination of α2,6-sialylated glycans in serum.Mikrochim. Acta20201871264910.1007/s00604‑020‑04608‑w 33165704
    [Google Scholar]
  111. GaoL. HeJ. XuW. ZhangJ. HuiJ. GuoY. LiW. YuC. Ultrasensitive electrochemical biosensor based on graphite oxide, Prussian blue, and PTC-NH2 for the detection of α2,6-sialylated glycans in human serum.Biosens. Bioelectron.201462798310.1016/j.bios.2014.06.031 24984287
    [Google Scholar]
  112. LiY. HeJ. NiuY. YuC. Ultrasensitive electrochemical biosensor based on reduced graphene oxide-tetraethylene pentamine-BMIMPF6 hybrids for the detection of α2,6-sialylated glycans in human serum.Biosens. Bioelectron.20157495395910.1016/j.bios.2015.07.073 26257188
    [Google Scholar]
  113. BarhoumiL. BaraketA. BellagambiF.G. KaranasiouG.S. AliM.B. FotiadisD.I. BausellsJ. ZineN. SigaudM. ErrachidA. A novel chronoamperometric immunosensor for rapid detection of TNF-α in human saliva.Sens. Actuators B Chem.201826647748410.1016/j.snb.2018.03.135
    [Google Scholar]
  114. GholamiM.D. SonarP. AyokoG.A. IzakeE.L. A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood.Sens. Actuators B Chem.202031012786712786710.1016/j.snb.2020.127867
    [Google Scholar]
  115. PohankaM. Piezoelectric biosensor for the determination of Tumor Necrosis Factor Alpha.Talanta201817897097310.1016/j.talanta.2017.10.031 29136925
    [Google Scholar]
  116. AnY. DongS. ChenH. GuanL. HuangT. Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemical immune platform for amplifying detection performance of CA125.Bioelectrochemistry202214710820110820110.1016/j.bioelechem.2022.108201 35809468
    [Google Scholar]
  117. Samadi PakchinP. GhanbariH. SaberR. OmidiY. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker.Biosens. Bioelectron.2018122687410.1016/j.bios.2018.09.016 30243046
    [Google Scholar]
  118. KumarN. SharmaS. NaraS. Dual gold nanostructure-based electrochemical immunosensor for CA125 detection.Appl. Nanosci.2018871843185310.1007/s13204‑018‑0857‑y
    [Google Scholar]
  119. XuY. WangF. ZhengY. FengJ. ZhangZe. HanH. MaZ. POM-mediated MOFs-based probes facilitate multistep cascade reaction for ultrasensitive detection of tumor marker.Sens. Actuators B Chem.2022372113262510.1016/j.snb.2022.132625
    [Google Scholar]
  120. WangH. GaoX. MaZ. Multifunctional substrate of label-free electrochemical immunosensor for ultrasensitive detection of cytokeratins antigen 21-1.Sci. Rep.201771102310.1038/s41598‑017‑01250‑0 28432339
    [Google Scholar]
  121. ZengY. BaoJ. ZhaoY. HuoD. ChenM. QiY. YangM. FaH. HouC. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1.Bioelectrochemistry201812018318910.1016/j.bioelechem.2017.11.003 29289826
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298276294231130111658
Loading
/content/journals/mroc/10.2174/0118756298276294231130111658
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published articles.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test