Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Indole alkaloids are a class of secondary metabolites with a wide range of biological activities. The chemical structure of indole alkaloids is relatively complex, but all of them have a remarkable structural feature, which is a five-membered pyrrole cyclocyclobenzene ring. Because of the unique structural characteristics of indole alkaloids, they have also a wide range of pharmacological activities, such as antibacterial, anti-inflammatory, anti-tumor, anti-viral, anti-hepatitis, anti-diabetes, neuroprotective, lipid-lowering and so on. For example, indole alkaloids have been shown to show anticancer activity through various anti-proliferation mechanisms and play an important role in the research of novel cancer treatment advances. In this article, we reviewed the recent progress of indole alkaloids isolated from microorganisms and their chemical and biosynthesis, which laid a foundation for further utilization and development of indole alkaloids.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298310340240514060824
2024-05-27
2025-04-06
Loading full text...

Full text loading...

References

  1. GunatilakaA.A.L. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence.J. Nat. Prod.200669350952610.1021/np058128n 16562864
    [Google Scholar]
  2. LiG. LouH.X. Strategies to diversify natural products for drug discovery.Med. Res. Rev.20183841255129410.1002/med.21474 29064108
    [Google Scholar]
  3. Twumasi-BoatengK. PettigrewJ.L. KwokY.Y.E. BellJ.C. NelsonB.H. Oncolytic viruses as engineering platforms for combination immunotherapy.Nat. Rev. Cancer201818741943210.1038/s41568‑018‑0009‑4 29695749
    [Google Scholar]
  4. LinS. HeY. LiF. YangB. LiuM. ZhangS. LiuJ. LiH. QiC. WangJ. HuZ. ZhangY. Structurally diverse and bioactive alkaloids from an insect-derived fungus Neosartorya fischeri.Phytochemistry202017511237410.1016/j.phytochem.2020.112374 32315839
    [Google Scholar]
  5. YuY.Y. ShaoJ. WeiJ.X. LiY.X. LiX. LiL.Z. GuJ. Research progress on alkaloid components and their pharmacological effects in Beidou root.Chin. Herb. Med.2019421024532461
    [Google Scholar]
  6. MemelinkJ. VerpoorteR. KijneJ.W. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism.Trends Plant Sci.20016521221910.1016/S1360‑1385(01)01924‑0 11335174
    [Google Scholar]
  7. LiuY. LiY. ChenM. LiuY. LiangJ. ZhangY. QianZ.J. Mechanism of two alkaloids isolated from coral endophytic fungus for suppressing angiogenesis in atherosclerotic plaque in HUVEC.Int. Immunopharmacol.202210910893110.1016/j.intimp.2022.108931 35704971
    [Google Scholar]
  8. ZhangD.H. HuangR.Z. ZuoL. GengZ.H. Research progress on extraction methods of alkaloids.Zhongguo Yesheng Zhiwu Ziyuan201029051520[J]
    [Google Scholar]
  9. ZhangJ.D. XuZ. CaoY.B. ChenH.S. YanL. AnM.M. GaoP.H. WangY. JiaX.M. JiangY.Y. Antifungal activities and action mechanisms of compounds from Tribulus terrestris L.J. Ethnopharmacol.20061031768410.1016/j.jep.2005.07.006 16169173
    [Google Scholar]
  10. LiangY. Design, synthesis and antibacterial activity of a series of novel indole alkaloid derivatives.Lanzhou University2022
    [Google Scholar]
  11. TangX. Novel synthesis strategies of indole and isoquinoline alkaloid derivatives.Chengdu University of Traditional Chinese Medicine2019
    [Google Scholar]
  12. ZhangJ. Method for detecting indole alkaloids in changchun flowers and its separation and purification.Nanjing Agricultural University2010
    [Google Scholar]
  13. HuC.L. Study on the mechanism of action of targeting p53 anti-tumor indole alkaloid small molecule compoundsGuizhou University2019
    [Google Scholar]
  14. NetzN. OpatzT. Marine indole alkaloids.Mar. Drugs20151384814491410.3390/md13084814 26287214
    [Google Scholar]
  15. YuX. ZhuL.L. LiuJ. HuaY.T. GuoS.B. ZhouM.N. JiangY.Y. LiuB. ZhangW. Research progress on monoterpenoid indole alkaloids and their pharmacological activities in gouteng.Chin. Herb. Med.2021521960526065
    [Google Scholar]
  16. WuH. SongJ.F. FanK. QinM.L. HuW.Y. GuoR.R. GaoW. ZhangR.P. LiY.P. YuH.F. DingC.F. Indole alkaloids and their antibacterial activities in the roots of yunnan Rauwolfia ulmoides.Chin. Herb. Med.2023540410331042
    [Google Scholar]
  17. YangJ. FuJ. LiuX. JiangZ.H. ZhuG.Y. Monoterpenoid indole alkaloids from the leaves of Alstonia scholaris and their NF-κB inhibitory activity.Fitoterapia2018124737910.1016/j.fitote.2017.10.018 29074226
    [Google Scholar]
  18. CaoP. LiangY. GaoX. LiX.M. SongZ.Q. LiangG. Monoterpenoid indole alkaloids from Alstonia yunnanensis and their cytotoxic and anti-inflammatory activities.Molecules20121711136311364110.3390/molecules171113631 23159924
    [Google Scholar]
  19. WangW. ChengM.H. WangX.H. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, anti-inflammatory and antifungal activities.Molecules20131867309732210.3390/molecules18067309 23792896
    [Google Scholar]
  20. DuK. XueG.M. ZhiY.L. ZhaoZ.Z. SiY.Y. ChenH. MaJ.L. A new indole alkaloid from dodder seed.Res. Devel. Nat. Prod.2022341017131717
    [Google Scholar]
  21. LiuQ.L. ChenA.H. JiangZ.H. MaY.L. TangJ.Y. XuW. LiuY.P. FuY.H. A new indole alkaloid compound from the branches and leaves of danmu.Organic Chemistry.2018380718331836
    [Google Scholar]
  22. YanT.L. HanD.X. HuJ. HuangX.Y. WangH.K. Monoterpenoid indole alkaloids from Alstonia mairei and their cytotoxicity.J. Asian Nat. Prod. Res.201719655055610.1080/10286020.2017.1313242 28393571
    [Google Scholar]
  23. LiC.J. ChenS. SunC. ZhangL. ShiX. WuS.J. Cytotoxic monoterpenoid indole alkaloids from Alstonia yunnanensis Diels.Fitoterapia2017117798310.1016/j.fitote.2016.12.011 28040532
    [Google Scholar]
  24. YangG.Y. DaiJ.M. MiQ.L. LiZ.J. LiX.M. ZhangJ.D. WangJ. LiY.K. WangW.G. ZhouM. HuQ.F. Cyclopiazonic acid type indole alkaloids from Nicotiana tabacum-derived fungus Aspergillus versicolor and their anti-tobacco mosaic virus activities.Phytochemistry202219811313710.1016/j.phytochem.2022.113137 35240133
    [Google Scholar]
  25. GaoS. TanH. LiD. Oridonin suppresses gastric cancer SGC ‐7901 cell proliferation by targeting the TNF ‐alpha/androgen receptor/TGF ‐beta signalling pathway axis.J. Cell. Mol. Med.202327182661267410.1111/jcmm.17841 37431884
    [Google Scholar]
  26. GaoS. GangJ. YuM. XinG. TanH. Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer.BMC Cancer202121179110.1186/s12885‑021‑08520‑1 34238253
    [Google Scholar]
  27. GuoY.W. LiuX.J. YuanJ. LiH.J. MahmudT. HongM.J. YuJ.C. LanW.J. L -tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the Zika virus.J. Nat. Prod.202083113372338010.1021/acs.jnatprod.0c00717 33180497
    [Google Scholar]
  28. LiuY.P. LiuQ.L. ZhangX.L. NiuH.Y. GuanC.Y. SunF.K. XuW. FuY.H. Bioactive monoterpene indole alkaloids from Nauclea officinalis.Bioorg. Chem.2019831510.1016/j.bioorg.2018.10.013 30339860
    [Google Scholar]
  29. HendrikxT. SchnablB. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation.J. Intern. Med.20192861324010.1111/joim.12892 30873652
    [Google Scholar]
  30. AraiH. HirasawaY. RahmanA. KusumawatiI. ZainiN.C. SatoS. AoyamaC. TakeoJ. MoritaH. Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter.Bioorg. Med. Chem.20101862152215810.1016/j.bmc.2010.01.077 20189404
    [Google Scholar]
  31. ZhangY.H. ZhangD.J. ZhangB.Y. Alkaloids with hypoglycemic activity and their mechanisms of action.Chin. Herb. Med.2018491536923702
    [Google Scholar]
  32. YuX. ZhuL.L. XuC. SuC.Y. LiangY. LiuB. ZhangW. Two new monoterpenoid indole alkaloids from Uncaria gracilis.Chinese J. Trad. Chinese Med.2022471746504657
    [Google Scholar]
  33. NaazH. SinghS. PandeyV.P. SinghP. DwivediU.N. Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach.Indian J. Biochem. Biophys.2013502120125 23720886
    [Google Scholar]
  34. ZhaoL.P. ChengY.Y. FanT.Y. ZengQ.X. KongW.J. SongD.Q. WangY.X. Study on the synthesis and triglyceride lowering activity of a novel structure of indole alkaloids.Acta Pharmacol. Sin.20225702433440
    [Google Scholar]
  35. MitraS. ProvaS.R. SultanaS.A. DasR. NainuF. EmranT.B. TareqA.M. UddinM.S. AlqahtaniA.M. DhamaK. Simal-GandaraJ. Therapeutic potential of indole alkaloids in respiratory diseases: A comprehensive review.Phytomedicine20219015364910.1016/j.phymed.2021.153649 34325978
    [Google Scholar]
  36. TengS.F. LiF.R. CuiQ.M. KhanA. HeT. LuoX.D. LiuY.P. ChengG.G. A review on the genus Melodinus: Traditional uses, phytochemical diversity and pharmacological activities of indole alkaloids.Phytochem. Rev.202315410.1007/s11101‑023‑09871‑2
    [Google Scholar]
  37. LuoM.L. HuangW. ZhuH.P. PengC. ZhaoQ. HanB. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy.Biomed. Pharmacother.202214911282710.1016/j.biopha.2022.112827 35316753
    [Google Scholar]
  38. JiangJ.H. Advances in the synthesis of indole alkaloids.Guangzhou Chemistry.201136024550
    [Google Scholar]
  39. LiY. Asymmetric Total Synthesis of Indole Alkaloids (+) - Aspidopermin (+) - Cylindrocarpidine (-) - N-Acetylpyridinol Catalyzed by Pd.Yunnan University2015
    [Google Scholar]
  40. WangL. ChenS. GaoX. LiangX. LvW. ZhangD. JinX. Recent progress in chemistry and bioactivity of monoterpenoid indole alkaloids from the genus gelsemium: A comprehensive review.J. Enzyme Inhib. Med. Chem.2023381215563910.1080/14756366.2022.2155639 36629436
    [Google Scholar]
  41. WangN.Z. Complete synthesis of hydrogenated indole alkaloids with asymmetric diversity.East China Normal University2018
    [Google Scholar]
  42. DingY. WetJ.R. CavalcoliJ. LiS. GreshockT.J. MillerK.A. FinefieldJ.M. SunderhausJ.D. McAfoosT.J. TsukamotoS. WilliamsR.M. ShermanD.H. Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp.J. Am. Chem. Soc.201013236127331274010.1021/ja1049302 20722388
    [Google Scholar]
  43. HaynesS.W. GaoX. TangY. WalshC.T. Complexity generation in fungal peptidyl alkaloid biosynthesis: A two-enzyme pathway to the hexacyclic MDR export pump inhibitor ardeemin.ACS Chem. Biol.20138474174810.1021/cb3006787 23330675
    [Google Scholar]
  44. ZhangP. LiX.M. WangJ.N. LiX. WangB.G. Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii.Chin. Chem. Lett.201526331331610.1016/j.cclet.2014.11.020
    [Google Scholar]
  45. FinefieldJ.M. KatoH. GreshockT.J. ShermanD.H. TsukamotoS. WilliamsR.M. Biosynthetic studies of the notoamides: Isotopic synthesis of stephacidin A and incorporation into notoamide B and sclerotiamide.Org. Lett.201113153802380510.1021/ol201284y 21714564
    [Google Scholar]
  46. WibowoJ.T. AhmadiP. RahmawatiS.I. BayuA. PutraM.Y. KijjoaA. Marine-derived indole alkaloids and their biological and pharmacological activities.Mar. Drugs2021201310.3390/md20010003 35049859
    [Google Scholar]
  47. DuF.Y. LiX.M. LiC.S. ShangZ. WangB.G. Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220.Bioorg. Med. Chem. Lett.201222144650465310.1016/j.bmcl.2012.05.088 22727636
    [Google Scholar]
  48. FanK. DingC.F. DengS.Y. GaoW. TanB.Y. WuH. GuoY. SongJ.F. ZhangL.C. ZhangR.P. YuH.F. Monoterpene indole N-oxide alkaloids from Tabernaemontana corymbosa and their antimicrobial activity.Fitoterapia202215810517810.1016/j.fitote.2022.105178 35302006
    [Google Scholar]
  49. WangZ. JiangY. XinX. AnF. Bioactive indole alkaloids from insect derived endophytic Aspergillus lentulus.Fitoterapia202115310497310.1016/j.fitote.2021.104973 34157376
    [Google Scholar]
  50. MengQ. GuoX. WuJ. LiuD. GuY. HuangJ. FanA. LinW. Prenylated notoamide-type alkaloids isolated from the fungus Aspergillus sclerotiorum and their inhibition of NLRP3 inflammasome activation and antibacterial activities.Phytochemistry202220311342410.1016/j.phytochem.2022.113424 36063866
    [Google Scholar]
  51. JiaB. MaY. LiuB. ChenP. HuY. ZhangR. Synthesis, antimicrobial activity, structure-activity relationship, and molecular docking studies of indole diketopiperazine alkaloids.Front Chem.2019783710.3389/fchem.2019.00837 31850323
    [Google Scholar]
  52. HeD. MaQ.Y. YangL. XieQ.Y. ZhuH.J. DaiH.F. WuY.G. YangD.M. ZhaoY.X. Two new indole alkaloids isolated from a mangrove-derived fungus Colletotrichum sp. HD-1.Phytochem. Lett.202354818510.1016/j.phytol.2023.01.015
    [Google Scholar]
  53. YuX. MüllerW.E.G. GuoZ. LinW. ZouK. LiuZ. ProkschP. Indole alkaloids from the coprophilous fungus Aphanoascus fulvescens.Fitoterapia201913610416810.1016/j.fitote.2019.05.007 31075487
    [Google Scholar]
  54. GaoN. ShangZ.C. YuP. LuoJ. JianK.L. KongL.Y. YangM.H. Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities.Chin. Chem. Lett.20172861194119910.1016/j.cclet.2017.02.022
    [Google Scholar]
  55. WangF.Z. HuangZ. ShiX.F. ChenY.C. ZhangW.M. TianX.P. LiJ. ZhangS. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457.Bioorg. Med. Chem. Lett.201222237265726710.1016/j.bmcl.2012.08.115 23079524
    [Google Scholar]
  56. GubianiJ.R. OliveiraM.C.S. NeponucenoR.A.R. CamargoM.J. GarcezW.S. BizA.R. SoaresM.A. AraujoA.R. BolzaniV.S. LisboaH.C.F. de SousaP.T.Jr de VasconcelosL.G. RibeiroT.A.N. de OliveiraJ.M. BanzatoT.P. LimaC.A. LongatoG.B. BatistaJ.M.Jr BerlinckR.G.S. TelesH.L. Cytotoxic prenylated indole alkaloid produced by the endophytic fungus Aspergillus terreus P63.Phytochem. Lett.20193216216710.1016/j.phytol.2019.06.003
    [Google Scholar]
  57. MadyM.S. MohyeldinM.M. EbrahimH.Y. ElsayedH.E. HoussenW.E. HaggagE.G. SolimanR.F. El SayedK.A. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion.Bioorg. Med. Chem.201624211312210.1016/j.bmc.2015.11.038 26692349
    [Google Scholar]
  58. QinY. ZhouR.R. JinJ. ChengF. ShenB.B. ZengH.L. WanD. ZhongC. XieJ. ShuJ. ShiS.Y. ZhangS.H. Indole-based alkaloids from Ophiocordyceps xuefengensis.Phytochemistry202118111253610.1016/j.phytochem.2020.112536 33160226
    [Google Scholar]
  59. DaiX.M. PanH.L. LanW.J. ChenL.P. FengG.K. DengR. ZhuX.F. LiH.J. Indole alkaloids fusarindoles A–E from marine-derived fungus Fusarium equiseti LJ-1.Phytochemistry202220411345610.1016/j.phytochem.2022.113456 36179822
    [Google Scholar]
  60. LiL. ChangQ.H. ZhangS.S. YangK. ChenF.L. ZhuH.J. CaoF. LiuY.F. (±)-Brevianamides Z and Z1, New Diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor.J. Mol. Struct.2022126113290410.1016/j.molstruc.2022.132904
    [Google Scholar]
  61. DaiJ.M. MiQ.L. LiX.M. GangD. YangG.Y. ZhangJ.D. WangJ. LiY.K. YangH.Y. MiaoD. LiZ.J. HuQ.F. The anti-TMV potency of the tobacco-derived fungus Aspergillus versicolor and its active alkaloids, as anti-TMV activity inhibitors.Phytochemistry202320511348510.1016/j.phytochem.2022.113485 36334789
    [Google Scholar]
  62. LiangY. LiaoH. ChenX. WangQ. LiQ. ShenY. ZhengY. LiX.N. ZhuH. LiD. SunW. ChenC. ZhangY. Pegriseofamines A−E: Five cyclopiazonic acid related indole alkaloids from the fungus Penicillium griseofulvum.Bioorg. Chem.202313610655310.1016/j.bioorg.2023.106553 37119783
    [Google Scholar]
  63. ZhaoD.L. HuoX.Y. LiP.P. YuanX.L. LiS.Y. DuL. HuangL.J. ZhangP. Asperinamide A, an anti-inflammatory prenylated indole alkaloid possessing an unprecedented bicyclo[2.2.2]diazaoctane fused with substituted piperidine scaffold from Aspergillus sp. TE-65L.Tetrahedron202314913374410.1016/j.tet.2023.133744
    [Google Scholar]
  64. QianX.Q. XuG.B. LiuL.Y. YangT. ZhangG.L. LiG.Y. Chaetonigrisins A–L, a group of 3-Indole-1,2-Propanediol derived alkaloids from Chaetomium nigricolor YT-2.Bioorg. Chem.202313010620110.1016/j.bioorg.2022.106201 36327683
    [Google Scholar]
  65. HuangQ. HaoM.J. WangL.Y. WuF. LiH.J. YuanJ. XuJ. MahmudT. LanW.J. Isolation and stereospecific synthesis of indole alkaloids with lipid-lowering effects from the marine-derived fungus Colletotrichum gloeosporioides BB4.Phytochemistry202320911361210.1016/j.phytochem.2023.113612 36813220
    [Google Scholar]
  66. AtakaY. KitajimaM. IshikawaH. Enantioselective total syntheses of (−)-Silicine and (−)-20-Episilicine.Org. Lett.202325427601760510.1021/acs.orglett.3c02590 37696799
    [Google Scholar]
  67. MietkeT. CruchterT. LarionovV.A. FaberT. HarmsK. MeggersE. Asymmetric nazarov cyclizations catalyzed by chiral-at-metal complexes.Adv. Synth. Catal.2018360112093210010.1002/adsc.201701546
    [Google Scholar]
  68. KuriharaM. HakamataW. Convenient preparation of cyclic acetals, using diols, TMS-source, and a catalytic amount of TMSOTf.J. Org. Chem.20036893413341510.1021/jo020471z 12713339
    [Google Scholar]
  69. TsunodaT. SuzukiM. NoyoriR. A facile procedure for acetalization under aprotic conditions.Tetrahedron Lett.198021141357135810.1016/S0040‑4039(00)74575‑8
    [Google Scholar]
  70. BogerD.L. FinkB.E. HedrickM.P. Total synthesis of distamycin A and 2640 analogues: A solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA bindin.J. Am. Chem. Soc.2000122276382639410.1021/ja994192d
    [Google Scholar]
  71. YangZ. TanQ. JiangY. YangJ. SuX. QiaoZ. ZhouW. HeL. QiuH. ZhangM. Asymmetric total synthesis of sarpagine and koumine alkaloids.Angew. Chem. Int. Ed.20216023131051311110.1002/anie.202102416 33783073
    [Google Scholar]
  72. WangS.J. WangX. XinX. ZhangS. YangH. WongM.W. LuS. Organocatalytic diastereo- and atroposelective construction of N–N axially chiral pyrroles and indoles.Nat. Commun.202415151810.1038/s41467‑024‑44743‑z 38225235
    [Google Scholar]
  73. CaoW. DouY. KouklovskyC. VincentG. Total synthesis of ophiorrhine A, G and ophiorrhiside E featuring a bioinspired intramolecular Diels–Alder cycloaddition.Angewandte Chemie202213438e202209135.1
    [Google Scholar]
  74. LachkarD. DenizotN. BernadatG. AhamadaK. BeniddirM.A. DumontetV. GallardJ.F. GuillotR. LeblancK. N’nangE.O. TurpinV. KouklovskyC. PouponE. EvannoL. VincentG. Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings.Nat. Chem.20179879379810.1038/nchem.2735 28754932
    [Google Scholar]
  75. DouY. KouklovskyC. GandonV. VincentG. Enantioselective total synthesis of cymoside through a bioinspired oxidative cyclization of a strictosidine derivative.Angew. Chem. Int. Ed.20205941527153110.1002/anie.201912812 31799799
    [Google Scholar]
  76. GodfreyR.C. GreenN.J. NicholG.S. LawrenceA.L. Total synthesis of brevianamide A.Nat. Chem.202012761561910.1038/s41557‑020‑0442‑3 32284576
    [Google Scholar]
  77. MinamiA. OikawaH. Recent advances of Diels–Alderases involved in natural product biosynthesis.J. Antibiot.201669750050610.1038/ja.2016.67 27301662
    [Google Scholar]
  78. TolkunovV.S. VysotskyY.B. Gorban’O.A. ShishkinaS.V. ShishkinO.V. DulenkoV.I. Reaction of 3-arylaminobenzofuro-, 3-arylaminobenzothieno-, and 3-arylaminoindolo [2, 3-c] pyrylium salts with nucleophilic reagents.Chem. Heterocycl. Compd.200541451552510.1007/s10593‑005‑0181‑9
    [Google Scholar]
  79. HetzlerB.E. TraunerD. LawrenceA.L. Natural product anticipation through synthesis.Nat. Rev. Chem.20226317018110.1038/s41570‑021‑00345‑7 36747591
    [Google Scholar]
  80. WangX. ZhangM. LiuX. LouM. LiG. QiX. Total synthesis of tetracyclic spirooxindole alkaloids via a double oxidative rearrangement/cyclization cascade.Org. Lett.202426482482810.1021/acs.orglett.3c03938 38237069
    [Google Scholar]
  81. LamY.T.H. HoppeJ. DangQ.N. PorzelA. SobolevaA. BrandtW. RennertR. HussainH. DavariM.D. WessjohannL. ArnoldN. Purpurascenines A-C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor.J. Nat. Prod.20238661373138410.1021/acs.jnatprod.2c00716 37306303
    [Google Scholar]
  82. LinH.C. ChiouG. ChooiY.H. McMahonT.C. XuW. GargN.K. TangY. Elucidation of the concise biosynthetic pathway of the communesin indole alkaloids.Angew. Chem. Int. Ed.201554103004300710.1002/anie.201411297 25571861
    [Google Scholar]
  83. WigleyL.J. MantleP.G. PerryD.A. Natural and directed biosynthesis of communesin alkaloids.Phytochemistry200667656156910.1016/j.phytochem.2005.10.011 16324729
    [Google Scholar]
  84. WigleyL.J. PerryD.A. MantleP.G. An experimental strategy towards optimising directed biosynthesis of communesin analogues by Penicillium marinum in submerged fermentation.Mycol. Res.2008112213113710.1016/j.mycres.2007.09.003 18280722
    [Google Scholar]
  85. XuW. GaviaD.J. TangY. Biosynthesis of fungal indole alkaloids.Nat. Prod. Rep.201431101474148710.1039/C4NP00073K 25180619
    [Google Scholar]
  86. YamazakiY. KitajimaM. AritaM. TakayamaH. SudoH. YamazakiM. AimiN. SaitoK. Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose.Plant Physiol.2004134116117010.1104/pp.103.029389 14657405
    [Google Scholar]
  87. StöckigtJ. AntonchickA.P. WuF. WaldmannH. The Pictet-Spengler reaction in nature and in organic chemistry.Angew. Chem. Int. Ed.201150378538856410.1002/anie.201008071 21830283
    [Google Scholar]
  88. NaoiM. MaruyamaW. AkaoY. YiH. Dopamine-derived endogenous N-methyl-(R)-salsolinol.Neurotoxicol. Teratol.200224557959110.1016/S0892‑0362(02)00211‑8 12200189
    [Google Scholar]
  89. HongB. GrzechD. CaputiL. SonawaneP. LópezC.E.R. KamileenM.O. Hernández LozadaN.J. GrabeV. O’ConnorS.E. Biosynthesis of strychnine.Nature2022607791961762210.1038/s41586‑022‑04950‑4 35794473
    [Google Scholar]
  90. BradleyS.A. LehkaB.J. HanssonF.G. AdhikariK.B. RagoD. RubaszkaP. HaidarA.K. ChenL. HansenL.G. GudichO. GiannakouK. LenggerB. GillR.T. NakamuraY. de BernonvilleT.D. KoudounasK. Romero-SuarezD. DingL. QiaoY. FrimurerT.M. PetersenA.A. BesseauS. KumarS. GautronN. MelinC. MarcJ. JeanneauR. O’ConnorS.E. CourdavaultV. KeaslingJ.D. ZhangJ. JensenM.K. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast.Nat. Chem. Biol.202319121551156010.1038/s41589‑023‑01430‑2 37932529
    [Google Scholar]
  91. ZhangJ. HansenL.G. GudichO. ViehrigK. LassenL.M.M. SchrübbersL. AdhikariK.B. RubaszkaP. Carrasquer-AlvarezE. ChenL. D’AmbrosioV. LehkaB. HaidarA.K. NallapareddyS. GiannakouK. LalouxM. ArsovskaD. JørgensenM.A.K. ChanL.J.G. KristensenM. ChristensenH.B. SudarsanS. StanderE.A. BaidooE. PetzoldC.J. WulffT. O’ConnorS.E. CourdavaultV. JensenM.K. KeaslingJ.D. A microbial supply chain for production of the anti-cancer drug vinblastine.Nature2022609792634134710.1038/s41586‑022‑05157‑3 36045295
    [Google Scholar]
  92. GerasimenkoI. SheludkoY. MaX. StöckigtJ. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.Eur. J. Biochem.200226982204221310.1046/j.1432‑1033.2002.02878.x 11985599
    [Google Scholar]
  93. StavrinidesA. TatsisE.C. FoureauE. CaputiL. KellnerF. CourdavaultV. O’ConnorS.E. Unlocking the diversity of alkaloids in Catharanthus roseus: Nuclear localization suggests metabolic channeling in secondary metabolism.Chem. Biol.201522333634110.1016/j.chembiol.2015.02.006 25772467
    [Google Scholar]
  94. StavrinidesA. TatsisE.C. CaputiL. FoureauE. StevensonC.E.M. LawsonD.M. CourdavaultV. O’ConnorS.E. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.Nat. Commun.2016711211610.1038/ncomms12116 27418042
    [Google Scholar]
  95. DangT.T.T. FrankeJ. CarqueijeiroI.S.T. LangleyC. CourdavaultV. O’ConnorS.E. Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes.Nat. Chem. Biol.201814876076310.1038/s41589‑018‑0078‑4 29942076
    [Google Scholar]
  96. YamamotoK. GrzechD. KoudounasK. StanderE.A. CaputiL. MimuraT. CourdavaultV. O’ConnorS.E. Improved virus-induced gene silencing allows discovery of a serpentine synthase gene in Catharanthus roseus.Plant Physiol.2021187284685710.1093/plphys/kiab285 34608956
    [Google Scholar]
  97. LiuT. GouY. ZhangB. GaoR. DongC. QiM. JiangL. DingX. LiC. LianJ. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast.Biotechnol. Bioeng.202211951314132610.1002/bit.28040 35060115
    [Google Scholar]
  98. WestfallP.J. PiteraD.J. LenihanJ.R. EngD. WoolardF.X. RegentinR. HorningT. TsurutaH. MelisD.J. OwensA. FickesS. DiolaD. BenjaminK.R. KeaslingJ.D. LeavellM.D. McPheeD.J. RenningerN.S. NewmanJ.D. PaddonC.J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.Proc. Natl. Acad. Sci. USA20121093E111E11810.1073/pnas.1110740109 22247290
    [Google Scholar]
  99. LaVallieE.R. DiBlasioE.A. KovacicS. GrantK.L. SchendelP.F. McCoyJ.M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm.Biotechnology1993112187193 7763371
    [Google Scholar]
  100. GuoJ. GaoD. LianJ. QuY. De novo biosynthesis of antiarrhythmic alkaloid ajmaline.Nat. Commun.202415145710.1038/s41467‑024‑44797‑z 38212296
    [Google Scholar]
  101. MaX. PanjikarS. KoepkeJ. LorisE. StöckigtJ. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins.Plant Cell200618490792010.1105/tpc.105.038018 16531499
    [Google Scholar]
  102. QuY. ThammA.M.K. CzerwinskiM. MasadaS. KimK.H. JonesG. LiangP. De LucaV. Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.Planta2018247362563410.1007/s00425‑017‑2812‑7 29147812
    [Google Scholar]
  103. O’ConnorS.E. MareshJ.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis.Nat. Prod. Rep.200623453254710.1039/b512615k 16874388
    [Google Scholar]
  104. SzabóL. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine.Molecules20081381875189610.3390/molecules13081875 18794791
    [Google Scholar]
  105. DangT.T.T. FrankeJ. TatsisE. O’ConnorS.E. Dual catalytic activity of a cytochrome p450 controls bifurcation at a metabolic branch point of alkaloid biosynthesis in Rauwolfia serpentina.Angew. Chem. Int. Ed.201756329440944410.1002/anie.201705010 28654178
    [Google Scholar]
  106. Cázares-FloresP. LevacD. De LucaV. Rauvolfia serpentina N‐ methyltransferases involved in ajmaline and Nβ ‐methylajmaline biosynthesis belong to a gene family derived from γ‐tocopherol C ‐methyltransferase.Plant J.201687433534210.1111/tpj.13186 27122470
    [Google Scholar]
  107. GaoD. LiuT. GaoJ. XuJ. GouY. PanY. LiD. YeC. PanR. HuangL. XuZ. LianJ. De novo biosynthesis of vindoline and catharanthine in Saccharomyces cerevisiae.Biodesign Res.202220222
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298310340240514060824
Loading
/content/journals/mroc/10.2174/0118756298310340240514060824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test