Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

-Chloroperbenzoic acid (CPBA) is a readily available peroxide that is a powerful oxidizing agent utilized in a range of oxidative reactions. Metal-free oxidations mediated by CPBA involving selective oxidation of aliphatic amines to oximes, selective oxidation of organosulphides/aldehydes, synthesis of heterocyclic -oxides, domino C[sp2] hydroxylation/annulation of enaminones (heterocyclic ring formation), acid to phenol conversion, oxidation of exocyclic C=C bond, oxidative ring contraction, have been comprehensively and critically examined in this review from 2015 to date.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298299464240402045438
2024-04-15
2025-04-13
Loading full text...

Full text loading...

References

  1. HudlickyM. Oxidations in Organic Chemistry, ACS Monograph Series 186.Washington, DCAmerican Chemical Society1990
    [Google Scholar]
  2. TrostB.M. FlemingI. Eds.; Comprehensive Organic Synthesis.1st edOxfordPergamon Press1991Vol. 7
    [Google Scholar]
  3. SheldonR.A. Catalytic Oxidation;Sheldon, R.A.; van Santen, R.A., Eds.; World Scientific: Singapore,199523910.1142/9789814503884_0011
    [Google Scholar]
  4. ClarkJ.H. MacquarrieD.J. Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals.Org. Process Res. Dev.19971214916210.1021/op960008m
    [Google Scholar]
  5. HoelderichW.F. KollmerF. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system.Pure Appl. Chem.20007271273128710.1351/pac200072071273
    [Google Scholar]
  6. MiyamotoK. SakaiY. GodaS. OchiaiM. A catalytic version of hypervalent aryl-λ 3 -iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant.Chem. Commun.201248798298410.1039/C2CC16360H 22159446
    [Google Scholar]
  7. ChaS. HwangJ. ChoiM.G. ChangS.K. Dual signaling of m-chloroperbenzoic acid by desulfurization of thiocoumarin.Tetrahedron Lett.201051506663666510.1016/j.tetlet.2010.10.066
    [Google Scholar]
  8. KamijoS. MatsumuraS. InoueM. CCl3CN: A crucial promoter of mCPBA-mediated direct ether oxidation.Org. Lett.201012184195419710.1021/ol1018079 20734980
    [Google Scholar]
  9. GipsteinE. NichikF. OffenbachJ.A. m-CPBAas a reagent for the determination of unsaturation in natural and cyclized rubber.Anal. Chim. Acta19684312913110.1016/S0003‑2670(00)89187‑4
    [Google Scholar]
  10. TankR. m-Chloroperoxybenzoic acid (MCPBA). Synlett2007200740664066510.1055/s‑2007‑967956
    [Google Scholar]
  11. McDonaldR.N. SteppelR.N. DorseyJ.E. Organic SynthesesJohn Wiley and Sons, Inc.: New York1988501518
    [Google Scholar]
  12. CaronS. DuggerR.W. RuggeriS.G. RaganJ.A. RipinD.H.B. Large-scale oxidations in the pharmaceutical industry.Chem. Rev.200610672943298910.1021/cr040679f 16836305
    [Google Scholar]
  13. RaoA. SomasekarH. MohanC. RamaA. m‐Chloroperbenzoic acid. In: Encyclopedia of Reagents for Organic Synthesis (EROS)Wiley200510.1002/047084289X.rc140
    [Google Scholar]
  14. MehtaG. MohalN. Baeyer–Villiger oxidation of norbornan-7-ones: long-range substituent effects on regioselectivity.J. Chem. Soc., Perkin Trans. 11998505-508350550810.1039/a706268k
    [Google Scholar]
  15. BroughamP. CooperM.S. CummersonD.A. HeaneyH. ThompsonN. Oxidation reactions using magnesium monoperphthalate: A comparison with m-chloroperoxybenzoic Acid.Synthesis19871987111015101710.1055/s‑1987‑28153
    [Google Scholar]
  16. SchwartzN.N. BlumbergsJ.H. Epoxidations with m-Chloroperbenzoic acid.J. Org. Chem.19642971976197910.1021/jo01030a078
    [Google Scholar]
  17. NakayamaJ. KamiyamaH. Oxidation of congested thiophene 1,1-dioxides with m-chloroperbenzoic acid. Formation of epoxides vs. ring-contracted thiete 1,1-dioxides.Tetrahedron Lett.199233497539754210.1016/S0040‑4039(00)60818‑3
    [Google Scholar]
  18. ZhangX. HuA. PanC. ZhaoQ. WangX. LuJ. Safer preparation of m-CPBA/DMF solution in pilot plant.Org. Process Res. Dev.201317121591159610.1021/op400208b
    [Google Scholar]
  19. YangJ. JiangJ. JiangJ. PanX. PanY. NiL. Thermal instability and kinetic analysis on m-chloroperbenzoic acid.J. Therm. Anal. Calorim.201913542309231610.1007/s10973‑018‑7470‑x
    [Google Scholar]
  20. YaremenkoI.A. Vil’V.A. DemchukD.V. Terent’evA.O. Rearrangements of organic peroxides and related processes.Beilstein J. Org. Chem.2016121647174810.3762/bjoc.12.162 27559418
    [Google Scholar]
  21. MengY. ChuJ. XueJ. LiuC. WangZ. ZhangL. Design and synthesis of non-crystallizable, low-T g polysiloxane elastomers with functional epoxy groups through anionic copolymerization and subsequent epoxidation.RSC Advances2014459312493126010.1039/C4RA02293A
    [Google Scholar]
  22. MerkushevA. meta-Chloroperoxybenzoic acid (m-CPBA).Synlett201526152187218810.1055/s‑0034‑1381134
    [Google Scholar]
  23. VaralaR. SeemaV. Recent applications of TEMPO in organic synthesis and catalysis.SynOpen20237340841310.1055/a‑2155‑2950
    [Google Scholar]
  24. VaralaR. AlamM.M. VittalS. SwamyD.N. Rama DeviV. Iodoxybenzoic acid (IBX) in organic synthesis: A septennial review.Curr. Org. Chem.202421560766410.2174/0115701794263252230924074035
    [Google Scholar]
  25. AlamM.M. HussienM. BollikollaH.B. SeemaV. DubasiN. AmanullahM. VaralaR. Applications of phenyliodine(III) diacetate in heterocyclic ring formations: An update from 2015 to date.J. Heterocycl. Chem.20236081326135510.1002/jhet.4627
    [Google Scholar]
  26. AlamM.M. SeemaV. DubasiN. KurraM. VaralaR. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-Covering up to march 2022.Mini Rev. Org. Chem.202320770873410.2174/1570193X20666221021104906
    [Google Scholar]
  27. VittalS. Mujahid AlamM. HussienM. AmanullahM. PisalP.M. RaviV. Applications of Phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update.ChemistrySelect202381e20220424010.1002/slct.202204240
    [Google Scholar]
  28. VaralaR. SeemaV. DubasiN. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis.Organics20234114010.3390/org4010001
    [Google Scholar]
  29. AlamM.M. BollikollaH.B. AmanullahM. HusseinM. VaralaR. Varala. R. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions.Curr. Org. Chem.20232729310710.2174/1385272827666230330105241
    [Google Scholar]
  30. VaralaR. DubasiN. SeemaV. KotraV. Sodium periodate (NaIO4) in organic synthesis.SynOpen20237454855410.1055/a‑2183‑3678
    [Google Scholar]
  31. VaralaR. SeemaV. AlamM.M. AmanullahM. DubasiN. Dess-Martin Periodinane (DMP) in organic synthesis-A septennial update (2015-till date).Curr. Org. Chem.202327171504153010.2174/0113852728262311231012060626
    [Google Scholar]
  32. ValangeS. VédrineJ. General and prospective views on oxidation reactions in heterogeneous catalysis.Catalysts201881048310.3390/catal8100483
    [Google Scholar]
  33. DongC. FangW. YiQ. ZhangJ. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs).Chemosphere2022308Pt 113620510.1016/j.chemosphere.2022.136205 36049639
    [Google Scholar]
  34. YadavG.D. MewadaR.K. WaghD.P. ManyarH.G. Advances and future trends in selective oxidation catalysis: a critical review.Catal. Sci. Technol.202212247245726910.1039/D2CY01322C
    [Google Scholar]
  35. SchilterD. Oxidation reactions: A chameleon catalyst.Nat Rev Chem20171005010.1038/s41570‑017‑0050
    [Google Scholar]
  36. SinghF.V. DohiT. KumarR. Editorial: Metal-free oxidative transformations in organic synthesis.Front Chem.20221095677910.3389/fchem.2022.956779 36003623
    [Google Scholar]
  37. GholipourB. ShojaeiS. RostamniaS. Naimi-JamalM.R. KimD. KavetskyyT. NouruziN. JangH.W. VarmaR.S. ShokouhimehrM. Metal-free nanostructured catalysts: Sustainable driving forces for organic transformations.Green Chem.202123176223627210.1039/D1GC01366A
    [Google Scholar]
  38. TamatamR. ShinD. Recent advances in the transition-metal-free synthesis of quinazolines.Molecules2023287322710.3390/molecules28073227 37049989
    [Google Scholar]
  39. ZhiY. LiZ. FengX. XiaH. ZhangY. ShiZ. MuY. LiuX. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations.J. Mater. Chem. A Mater. Energy Sustain.2017544229332293810.1039/C7TA07691F
    [Google Scholar]
  40. JiaZ. YuanY. ZongX. WuB. MaJ. Photo-promoted transition metal-free organic transformations in the absence of conventional photo-sensitizers.Chin. Chem. Lett.20193081488149410.1016/j.cclet.2019.04.073
    [Google Scholar]
  41. ChatterjeeT. MukherjeeN. Transition-metal-free synthetic strategies for the cross-coupling reactions in water: A green approach.Curr. Green Chem.202181709110.2174/2213346107999201006193653
    [Google Scholar]
  42. ZhiY. WangZ. ZhangH.L. ZhangQ. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts.Small20201624200107010.1002/smll.202001070 32419332
    [Google Scholar]
  43. XuF. HanW. Research progress in transition-metal-free carbonylation reactions.Youji Huaxue201838102519253310.6023/cjoc201804017
    [Google Scholar]
  44. ZhouJ. ZhaoZ. ShibataN. Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines.Nat. Commun.2023141184710.1038/s41467‑023‑37466‑0 37012229
    [Google Scholar]
  45. BugaenkoD.I. KarchavaA.V. YurovskayaM.A. Transition metal-free cross-coupling reactions to form carbon–heteroatom bonds.Russ. Chem. Rev.2022916RCR502210.1070/RCR5022
    [Google Scholar]
  46. YaoQ. LiuW. LiuP. RenL. FangX. LiC.J. Metal‐free photoinduced transformation of aryl halides and diketones into aryl ketones.Eur. J. Org. Chem.20192019162721272410.1002/ejoc.201801650
    [Google Scholar]
  47. DhuguruJ. ZviaginE. SkoutaR. FDA-approved oximes and their significance in medicinal chemistry.Pharmaceuticals20221516610.3390/ph15010066 35056123
    [Google Scholar]
  48. RykaczewskiK.A. WearingE.R. BlackmunD.E. SchindlerC.S. Reactivity of oximes for diverse methodologies and synthetic applications.Nat. Synth.202211243610.1038/s44160‑021‑00007‑y
    [Google Scholar]
  49. Puerto GalvisC.E. KouznetsovV.V. An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model.Org. Biomol. Chem.201311340741110.1039/C2OB26699G 23192531
    [Google Scholar]
  50. PatilV.V. GayakwadE.M. ShankarlingG.S. m-CPBA mediated metal free, rapid oxidation of aliphatic amines to oximes.J. Org. Chem.201681378178610.1021/acs.joc.5b01740 26762812
    [Google Scholar]
  51. XuF. ChenY. FanE. SunZ. Synthesis of 3-Substituted aryl[4,5]isothiazoles through an all-feteroatom Wittig-equivalent process.Org. Lett.201618112777277910.1021/acs.orglett.6b01338 27215807
    [Google Scholar]
  52. Barce FerroC.T. dos SantosB.F. da SilvaC.D.G. BrandG. da SilvaB.A.L. de Campos Domingues, N.L. Review of the synthesis and activities of some sulphur-containing drugs.Curr. Org. Synth.202017319221010.2174/1570179417666200212113412 32091342
    [Google Scholar]
  53. SimpkinsN.S. Sulfones in organic synthesis.OxfordPergamon Press1993
    [Google Scholar]
  54. PataiS. RappoprtZ. StirlingC.J.M. Eds.; The chemistry of sulfones and sulfoxides.New YorkWiley1988
    [Google Scholar]
  55. MangaonkarS.R. SinghF.V. Selective oxidation of organosulphides using m-CPBA as oxidant.Pharma Chem.2016818419423
    [Google Scholar]
  56. BaeyerA. VilligerV. Biocatalysis: applications and potentials for the chemical industry.Ber. Dtsch. Chem. Ges.1899323625363310.1016/S0167‑7799(02)01935‑2
    [Google Scholar]
  57. ten BrinkG.J. ArendsI.W.C.E. SheldonR.A. The Baeyer-Villiger reaction: New developments toward greener procedures.Chem. Rev.200410494105412410.1021/cr030011l 15352787
    [Google Scholar]
  58. StrukulG. Transition metal catalysis in the Baeyer-Villiger oxidation of ketones.Angew. Chem.19981101256126710.1002/(SICI)1521‑3773(19980518)37:9<1198:AID‑ANIE1198>3.0.CO;2‑Y 29711244
    [Google Scholar]
  59. HornA. KazmaierU. Purified m-CPBA, a useful reagent for the oxidation of aldehydes.Eur. J. Org. Chem.2018201820-212531253610.1002/ejoc.201701645
    [Google Scholar]
  60. WardmanP. PriyadarsiniK.I. DennisM.F. EverettS.A. NaylorM.A. PatelK.B. StratfordI.J. StratfordM.R. TracyM. Chemical properties which control selectivity and efficacy of aromatic N-oxide bioreductive drugs.Br. J. Cancer Suppl.199627S70S74 8763850
    [Google Scholar]
  61. BalzariniJ. StevensM. De ClercqE. ScholsD. PannecouqueC. Pyridine N-oxide derivatives: unusual anti-HIV compounds with multiple mechanisms of antiviral action.J. Antimicrob. Chemother.200555213513810.1093/jac/dkh530 15650002
    [Google Scholar]
  62. GhattassK. El-SittS. ZibaraK. RayesS. HaddadinM.J. El-SabbanM. Gali-MuhtasibH. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway.Mol. Cancer20141311210.1186/1476‑4598‑13‑12 24461075
    [Google Scholar]
  63. D, M.; C, M.; B, S.; R, T.; Db, K.; Ub, R.K.; v, K.; Sr, M.; S, M.; K, E.; K, K.; L, V.; A, N. Blonanserin N-oxide lowers glucose levels in animal models.J. Pharm. Drug Devel.2017411810.15744/2348‑9782.4.102
    [Google Scholar]
  64. GriersonD. Organic Reactions.Org. React.1990398529510.1002/0471264180.or039.02
    [Google Scholar]
  65. PalavA. MisalB. ErnollaA. ParabV. WaskeP. KhandekarD. ChaudharyV. ChaturbhujG. The m-CPBA-NH3 (g) system: A safe and scalable alternative for the manufacture of (substituted) pyridine and quinoline N-oxides.Org. Process Res. Dev.201923224425110.1021/acs.oprd.8b00358
    [Google Scholar]
  66. ReisJ. GasparA. MilhazesN. BorgesF. Chromone as a privileged scaffold in drug discovery: Recent advances.J. Med. Chem.201760197941795710.1021/acs.jmedchem.6b01720 28537720
    [Google Scholar]
  67. ZhaoQ. XiangH. XiaoJ.A. XiaP.J. WangJ.J. ChenX. YangH. Selectfluor-triggered tandem cyclization of o-hydroxyarylenaminones to access difluorinated 2-amino-substituted chromanones.J. Org. Chem.201782189837984310.1021/acs.joc.7b01339 28817276
    [Google Scholar]
  68. GudipatiR. KandulaV. RaghavuluK. BasavaiahK. YennamS. BeheraM. Peroxy-benzoic acid mediated domino C[sp2] hydroxylation/annulation of enaminones for the synthesis of 3-hydroxy chromones.ChemistrySelect20205237093709710.1002/slct.202001749
    [Google Scholar]
  69. QiuZ. ZengH. LiC.J. Coupling without coupling reactions: En route to developing phenols as sustainable coupling partners via dearomatization-rearomatization processes.Acc. Chem. Res.202053102395241310.1021/acs.accounts.0c00479 32941014
    [Google Scholar]
  70. QiuZ. LiC.J. Transformations of less-activated phenols and phenol derivatives via C−O cleavage.Chem. Rev.202012018104541051510.1021/acs.chemrev.0c00088 32856451
    [Google Scholar]
  71. LvL. ZhuD. TangJ. QiuZ. LiC.C. GaoJ. LiC.J. Cross-coupling of phenol derivatives with Umpolung aldehydes catalyzed by Nickel.ACS Catal.2018854622462710.1021/acscatal.8b01224
    [Google Scholar]
  72. ChenZ. ZengH. GirardS.A. WangF. ChenN. LiC.J. Formal direct cross-coupling of phenols with amines.Angew. Chem. Int. Ed.20155448144871449110.1002/anie.201506751 26531683
    [Google Scholar]
  73. HuangZ. LumbJ.P. Phenol-directed C–H functionalization.ACS Catal.20199152155510.1021/acscatal.8b04098
    [Google Scholar]
  74. XiongW. ShiQ. LiuW.H. Simple and practical conversion of benzoic acids to phenols at room temperature.J. Am. Chem. Soc.202214434158941590210.1021/jacs.2c07529 35997485
    [Google Scholar]
  75. MaS. GuJ. LinC. LuoZ. ZhuY. WangJ. Supertwistacene: A helical graphene nanoribbon.J. Am. Chem. Soc.202014239168871689310.1021/jacs.0c08555 32900184
    [Google Scholar]
  76. ZhuY. GuoX. LiY. WangJ. Fusing of seven HBCs toward a green nanographene propeller.J. Am. Chem. Soc.2019141135511551710.1021/jacs.9b01266 30860370
    [Google Scholar]
  77. ItoH. SegawaY. MurakamiK. ItamiK. Polycyclic arene synthesis by annulative π-extension.J. Am. Chem. Soc.2019141131010.1021/jacs.8b09232 30395456
    [Google Scholar]
  78. ZhuY. XiaZ. CaiZ. YuanZ. JiangN. LiT. WangY. GuoX. LiZ. MaS. ZhongD. LiY. WangJ. Synthesis and characterization of hexapole[7]helicene, a circularly twisted chiral nanographene.J. Am. Chem. Soc.2018140124222422610.1021/jacs.8b01447 29537262
    [Google Scholar]
  79. KiriazisA. VahakoskiR.L. SantioN.M. ArnaudovaR. EerolaS.K. RainioE.M. AumüllerI.B. Yli-KauhaluomaJ. KoskinenP.J. Tricyclic Benzo[cd]azulenes selectively inhibit activities of Pim kinases and restrict growth of Epstein-Barr virus-transformed cells.PLoS One201382e5540910.1371/journal.pone.0055409 23405147
    [Google Scholar]
  80. DonlinM.J. ZunicaA. LipnickyA. GarimallaprabhakaranA.K. BerkowitzA.J. GrigoryanA. MeyersM.J. TavisJ.E. MurelliR.P. Troponoids can inhibit growth of the human fungal pathogen cryptococcus neoformans.Antimicrob. Agents Chemother.2017614e025741610.1128/AAC.02574‑16 28167553
    [Google Scholar]
  81. NilssonS.M.E. HenschelH. ScottiG. HaapalaM. KiriazisA. Boije af GennäsG. KotiahoT. Yli-KauhaluomaJ. Mechanism of the oxidation of heptafulvenes to tropones studied by online mass spectrometry and density functional theory calculations.J. Org. Chem.20198421139751398210.1021/acs.joc.9b02078 31560537
    [Google Scholar]
  82. AumüllerI.B. Yli-KauhaluomaJ. Benzo[cd]azulene skeleton: Azulene, heptafulvene, and tropone derivatives.Org. Lett.200911235363536510.1021/ol902283q 19904921
    [Google Scholar]
  83. WangX.N. KrenskeE.H. JohnstonR.C. HoukK.N. HsungR.P. AlCl3-Catalyzed ring expansion cascades of bicyclic cyclobutenamides involving highly strained cis, trans-cycloheptadienone intermediates.J. Am. Chem. Soc.2015137165596560110.1021/jacs.5b02561 25895058
    [Google Scholar]
  84. FrébaultF. LupariaM. OliveiraM.T. GoddardR. MaulideN. A versatile and stereoselective synthesis of functionalized cyclobutenes.Angew. Chem. Int. Ed.201049335672567610.1002/anie.201000911 20629000
    [Google Scholar]
  85. BaumannA.N. SchüppelF. EisoldM. KreppelA. de Vivie-RiedleR. DidierD. Oxidative ring contraction of cyclobutenes: General approach to cyclopropylketones including mechanistic insights.J. Org. Chem.20188394905492110.1021/acs.joc.8b00297 29641195
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298299464240402045438
Loading
/content/journals/mroc/10.2174/0118756298299464240402045438
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): catalysis; mCPBA; metal-free; organic synthesis; oxidation; petrochemicals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test