Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The synthesis of organic molecules has been a tremendous and rapid advance in the recent decade to obtain high biological and pharmacological activities. In this review, the organic synthesis of pyrimido[4,5-]quinoline derivatives is considered an alternative method to traditional procedures for treating many diseases that affect humans. Also, by transferring electrons, stereoselective syntheses occur organic reactions in various unnatural and natural conditions at room temperature and normal pressure. We found that the structure of pyrimido[4,5-]quinoline derivatives was formed by substrates, bases, electrophiles, and low-level and highly stable reagents that can be broadly applied to synthesize more heterocycles. These reagents include: 2-nitrobenzaldehyde; 3-(benzyloxy)-4-methoxy-2-nitrobenzaldehyde; 4,5-dimethoxy-2-nitrobenzal-dehyde; 2-aminobenzaldehyde; 2-aminoquinoline-3-carboxamide; 2-chloroquinoline-3-carbal-dehyde; 2-bromobenzaldehyde; 2-chloroquinoline-3-carbonitrile; 2-chloroquinoline-3-carboxylic acid; aniline; phenyl-methanamine; amino-quinoline-3-carboxylic acid /amino-quinoline-carbonitrile; amino-6,7-dimethoxy-quinoline-3-carbonitrile; amino-oxolo [4,5-]quinolin-carboxamide; 3-(aminomethyl) quinolin-2-amine; 4-aminobenzo[][1,3] dioxole-5-carbaldehyde; thiourea; ethyl 3-oxo-butanoate; 2-cyano-acetamide; 2-(bis (methylthio) methylene) malononitrile; ethyl 3,3-diamino-2-cyanoacrylate; naphthalene-1,4-dione; and -carbamoyl-2-cyanoacetamide derivatives. The prepared pyrimido[4,5-]quinoline derivatives were described through means of the following chemical reactivity: alkylation, bromination, chlorination, cyclocondensation, cyclization, acylation, oxidation-reduction, dehydration, addition reaction and Vilsmeier-Haack reaction (Vilsmeier reagent).

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298322382240902061348
2024-09-19
2025-06-23
Loading full text...

Full text loading...

References

  1. EirichL.D. VogelsG.D. WolfeR.S. Proposed structure for coenzyme F 420 from methanobacterium.Biochemistry197817224583459310.1021/bi00615a002 728375
    [Google Scholar]
  2. CheesemanP. Toms-WoodA. WolfeR.S. Isolation and properties of a fluorescent compound, factor 420, from Methanobacterium strain M.o.H. J. Bacteriol.1972112152753110.1128/jb.112.1.527‑531.1972 5079072
    [Google Scholar]
  3. GrinterR. GreeningC. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea.FEMS Microbiol. Rev.2021455fuab02110.1093/femsre/fuab021 33851978
    [Google Scholar]
  4. PurwantiniE. MukhopadhyayB. SpencerR.W. DanielsL. Effect of temperature on the spectral properties of coenzyme F420 and related compounds.Anal. Biochem.1992205234235010.1016/0003‑2697(92)90446‑E 1443583
    [Google Scholar]
  5. KirschningA. Coenzymes and their role in the evolution of life.Angew. Chem. Int. Ed.202160126242626910.1002/anie.201914786 31945250
    [Google Scholar]
  6. AverillB.A. SchonbrunnA. AbelesR.H. WeinstockL.T. ChengC.C. FisherJ. SpencerR. WalshC. Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue.J. Biol. Chem.197525041603160510.1016/S0021‑9258(19)41852‑8 234460
    [Google Scholar]
  7. WalshC. FisherJ. SpencerR. GrahamD.W. AshtonW.T. BrownJ.E. BrownR.D. RogersE.F. Chemical and enzymic properties of riboflavin analogs.Biochemistry197817101942195110.1021/bi00603a022 207304
    [Google Scholar]
  8. NielsenP. RauschenbachP. BacherA. Phosphates of riboflavin and riboflavin analogs: A reinvestigation by high-performance liquid chromatography.Anal. Biochem.1983130235936810.1016/0003‑2697(83)90600‑0 6869822
    [Google Scholar]
  9. EkerA.P.M. HesselsJ.K.C. MeerwaldtR. Characterization of an 8-hydroxy-5-deazaflavin: NADPH oxidoreductase from Streptomyces griseus.Biochim. Biophys. Acta, Gen. Subj.19899901808610.1016/S0304‑4165(89)80015‑7 2492438
    [Google Scholar]
  10. PollegioniL. GhislaS. PiloneM.S. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme.Biochem. J.1992286238939410.1042/bj2860389 1356333
    [Google Scholar]
  11. FukuzumiS. KurodaS. Photooxidation of benzyl alcohol derivatives by oxygen, catalyzed by protonated flavin analogs.Res. Chem. Intermed.199925878981110.1163/156856799X00680
    [Google Scholar]
  12. BlankenhornG. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: Thermodynamics, kinetics, and mechanism.Eur. J. Biochem.1976671678010.1111/j.1432‑1033.1976.tb10634.x 134889
    [Google Scholar]
  13. KimachiT. YonedaF. SasakiT. New synthesis of 5‐amino‐5‐deazaflavin derivatives by direct coupling of 5‐deazaflavins and amines.J. Heterocycl. Chem.199229476376510.1002/jhet.5570290414
    [Google Scholar]
  14. IkeuchiY. SumiyaM. KawamotoT. AkimotoN. MikataY. KishigamiM. YanoS. SasakiT. YonedaF. Synthesis and antitumor activities of novel 5-deazaflavin-sialic acid conjugate molecules.Bioorg. Med. Chem.200082027203510.1016/s0968‑0896(00)00124‑3
    [Google Scholar]
  15. GangjeeA. OhemengK.A. LinF.T. KatohA.A. Synthesis and antitumor evaluation of some 1,3‐disubstituted tetrahydropyrimido[4,5‐ c]isoquinolines.J. Heterocycl. Chem.198623252352810.1002/jhet.5570230243
    [Google Scholar]
  16. KanaokaY. IkeuchiY. KawamotoT. BesshoK. AkimotoN. MikataY. NishidaM. YanoS. SasakiT. YonedaF. Synthesis and evaluation of nitro 5-deazaflavin-pyrrolecarboxamide(s) hybrid molecules as novel DNA targeted bioreductive antitumor agents.Bioorg. Med. Chem.19986330131410.1016/S0968‑0896(97)10036‑0 9568284
    [Google Scholar]
  17. DługoszA. DuśD. Synthesis and anticancer properties of pyrimido[4,5-b]quinolines.Farmaco1996515367374 8767847
    [Google Scholar]
  18. ChibaK. KataokaM. YamamotoK. MiyamotoK. NakanoJ. MatsumotoJ. NakamuraS. JPN Kokai Tokkyo Koho JP0477, 488 [9277, 488]. JPN1992117151016v
    [Google Scholar]
  19. AhluwaliaV.K. SahayR. DasU. Synthesis and antimicrobial activity of 1,3,5-triaryl-l O-benzyl-l, 2,3,4,6,7,8,9-octahydro-8,8-di methy 1-4,6-dioxo-2-thioxo-5R, 10R-pyrimido[ 4,5-b]quinolines.Indian J. Chem. Sect. B: Org. Chem. Ind. Med. Chem199938B911361138
    [Google Scholar]
  20. El SayedO.A. El-BiehF.M. El-AqeelS.I. Al-BassamB.A. HusseinM.E. RoyR.U. DesaiK.R. Synthesis of 2,4-disubstituted pyrimido[4,5-b]quinolines as potential antimicrobial agents.Indian J. Heterocycl. Chem.2005144327330
    [Google Scholar]
  21. KumarN.R. SureshT. MohanP.S. A simple one-pot synthesis of 4-phenyl-3-oxo pyrimido[4,5-b] quinolines and their biocidal studies.Asian J. Chem.200214314051408
    [Google Scholar]
  22. SureshT. KumarR.N. MageshS. MohanP.S. Synthesis, characterization and antimicrobial activity of 4‐phenyl‐3‐thiopyrimido[4,5‐ b]quinolines (III).ChemInform20033452chin.20035216910.1002/chin.200352169
    [Google Scholar]
  23. SelviS.T. NadarajV. MohanS. SasiR. HemaM. Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-b]- and pyrazolo[3,4-b]quinolines.Bioorg. Med. Chem.200614113896390310.1016/j.bmc.2006.01.048 16464602
    [Google Scholar]
  24. KidwaiM. JindalS. KohliS. Microwave-induced synthesis and antifungal activity of 2-(arylmercurithio)-5-methylpyrimido [4,5-b] quinoline.Indian J. Chem. Sect. B.: Org. Chem. Ind. Med. Chem200039B6462463
    [Google Scholar]
  25. HuangB. LiC. ChenW. LiuT. YuM. FuL. SunY. LiuH. De ClercqE. PannecouqueC. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4] triazolo[1,5-a] pyrimidine core via structure-based and physicochemical property-driven approaches.Eur. J. Med. Chem.201592754765
    [Google Scholar]
  26. RawalR.K. TripathiR. KattiS.B. PannecouqueC. De ClercqE. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3- thiazolidin-4-one analogues as anti-HIV-1 agents.Bioorg. Med. Chem.2007153134314210.1016/j.bmc.2007.02.044
    [Google Scholar]
  27. DomínguezJ. BasanteW. CharrisJ. RiggioneF. Synthesis and activity of some quinolone derivatives against Plasmodium falciparum in vitro.Farmaco1996516407412 8766223
    [Google Scholar]
  28. CharrisJ.E. DomínguezJ.N. GamboaN. AngelJ. PiñaN. GuerraM. MichelenaE. LópezS.E. 1 H and 13 C NMR spectral characterization of some antimalarial in vitro 2,4‐diamino‐10‐methylpyrimido[4,5‐ b]‐5‐quinolone derivatives.Magn. Reson. Chem.200240747747910.1002/mrc.1024
    [Google Scholar]
  29. JoshiA.A. NarkhedeS.S. ViswanathanC.L. Design, synthesis and evaluation of 5-substituted amino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as novel antimalarials.Bioorg. Med. Chem. Lett.2005151737610.1016/j.bmcl.2004.10.037 15582413
    [Google Scholar]
  30. AlthuisT.H. KadinS.B. CzubaL.J. MooreP.F. HessH.J. Structure-activity relationships in a series of novel 3,4-dihydro-4-oxopyrimido[4,5-b]quinoline-2-carboxylic acid antiallergy agents.J. Med. Chem.198023326226910.1021/jm00177a010 6767846
    [Google Scholar]
  31. Li-PingG. Qing-HaoJ. Guan-RongT. Kyu-YunC. Zhe-ShanQ. Synthesis of some quinoline-2(1H)-one and 1, 2, 4-triazolo [4,3 -a] quinoline derivatives as potent anticonvulsants.J. Pharm. Pharm. Sci.2007103254262
    [Google Scholar]
  32. DowR.L. BechleB.M. ChouT.T. GoddardC. LarsonE.R. Selective inhibition of the tyrosine kinase pp60src by analogs of 5,10-dihydropyrimido[4,5-b]quinolin-4(1H)-one.Bioorg. Med. Chem. Lett.1995591007101010.1016/0960‑894X(95)00157‑O
    [Google Scholar]
  33. Di GionP. KanefendtF. LindauerA. SchefflerM. DoroshyenkoO. FuhrU. WolfJ. JaehdeU. Clinical pharmacokinetics of tyrosine kinase inhibitors, focus on pyrimidines, pyridines and pyrroles.Clin. Pharmacokinet.2011509551603
    [Google Scholar]
  34. BoschelliD.H. PowellD. GolasJ.M. BoschelliF. Inhibition of Src kinase activity by 4-anilino-5,10-dihydro-pyrimido[4,5-b]quinolines.Bioorg. Med. Chem. Lett.200313182977298010.1016/S0960‑894X(03)00628‑0 12941315
    [Google Scholar]
  35. ShookB.C. JacksonP.F. Adenosine A2A receptor antagonists and Parkinson’s disease.ACS Chem. Neurosci.2011255556710.1021/cn2000537
    [Google Scholar]
  36. JacobsonF. WalshC. Properties of 7,8-didemethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism.Biochemistry198423597998810.1021/bi00300a028
    [Google Scholar]
  37. LinkP.A.J. Van der PlasH.C. MuellerF. The half-wave potentials of 8-substituted 5-deazaflavins. Polarographic determination of the dissociation constants of some 8-substituted 5-deazaflavosemiquinones.J. Org. Chem.19865191602160410.1021/jo00359a043
    [Google Scholar]
  38. TanigawaA. OhdeH. YonedaF. KimachiT. ToyomotoM. InoueS. IkedaK. HayashiK. Stimulation of nerve growth factor synthesis/secretion by 5-deazaflavoquinone in mouse astrocytes.J. Biochem. Mol. Biol. Biophys.199933231237
    [Google Scholar]
  39. KernR. KellerP.J. SchmidtG. BacherA. Isolation and structural identification of a chromophoric coenzyme F420 fragment from culture fluid of Methanobacterium thermoautotrophicum.Arch. Microbiol.1983136319119310.1007/BF00409842
    [Google Scholar]
  40. LiL. ChenY. ChenW. TanY. ChenH. YinJ. Photodynamic therapy based on organic small molecular fluorescent dyes.Chin. Chem. Lett.201930101689170310.1016/j.cclet.2019.04.017
    [Google Scholar]
  41. SakakibaraY. OkutsuS. EnokidaT. TaniT. Red organic electroluminescence devices with a reduced porphyrin compound, tetraphenylchlorin.Appl. Phys. Lett.199974258710.1063/1.123906s
    [Google Scholar]
  42. KrasnaA.I. Proflavin catalyzed photoproduction of hydrogen from organic compounds.Photochem. Photobiol.197929226727610.1111/j.1751‑1097.1979.tb07048.x
    [Google Scholar]
  43. El-GazzarA.B.A. YoussefM.M. YoussefA.M.S. Abu-HashemA.A. BadriaF.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities.Eur. J. Med. Chem.200944260962410.1016/j.ejmech.2008.03.022 18462840
    [Google Scholar]
  44. El-GazzarA.B.A. HafezH.N. Abu-HashemA.A. AlyA.S. Synthesis and antioxidant, anti-inflammatory, and analgesic activity of novel polycyclic pyrimido [4, 5-b] quinolines.Phosphorus Sulfur Silicon Relat. Elem.2009184237940510.1080/10426500802167027
    [Google Scholar]
  45. El-GazzarA.B.A. GaafarA.M. YoussefM.M. Abu-HashemA.A. BadriaF.A. Synthesis and anti-oxidant activity of novel pyrimido[4,5- b]quinolin-4-one derivatives with a new ring system.Phosphorus Sulfur Silicon Relat. Elem.200718292009203710.1080/10426500701369864
    [Google Scholar]
  46. Abu-HashemA.A. AlyA.S. Synthesis of new pyrazole, triazole, and thiazolidine-pyrimido [4, 5-b] quinoline derivatives with potential antitumor activity.Arch. Pharm. Res.201235343744510.1007/s12272‑012‑0306‑5 22477190
    [Google Scholar]
  47. Abu-HashemA.A. GoudaM.A. BadriaF.A. Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20104551976198110.1016/j.ejmech.2010.01.042 20149490
    [Google Scholar]
  48. Abu-HashemA.A. Al-HussainS.A. Design, synthesis of new 1,2,4-triazole/1,3,4-thiadiazole with spiroindoline, imidazo[4,5-b]quinoxaline and thieno[2,3-d]pyrimidine from isatin derivatives as anticancer agents.Molecules202227383510.3390/molecules27030835 35164098
    [Google Scholar]
  49. El ShehryM.F. Abu-HashemA.A. El-TelbaniE.M. Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents.Eur. J. Med. Chem.20104551906191110.1016/j.ejmech.2010.01.030 20153090
    [Google Scholar]
  50. GoudaM.A. Abu-HashemA.A. AbdelgawadA.A.M. Recent progress on the chemistry of thieno[3,2‐ b]quinoline derivatives (part III).J. Heterocycl. Chem.202158490892710.1002/jhet.4205
    [Google Scholar]
  51. KhidreR.E. Abu-HashemA.A. El-ShazlyM. Synthesis and anti-microbial activity of some 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile derivatives.Eur. J. Med. Chem.201146105057506410.1016/j.ejmech.2011.08.018 21890245
    [Google Scholar]
  52. Abu-HashemA.A. AbdelgawadA.A.M. HusseinH.A.R. GoudaM.A. Synthetic and reactions routes to tetrahydrothieno[3,2-b]quinoline derivatives (Part IV).Mini Rev. Org. Chem.20221917491
    [Google Scholar]
  53. Abu-HashemA.A. Al-HussainS.A. ZakiM.E.A. Design, synthesis and anticancer activity of new polycyclic: imidazole, thiazine, oxathiine, pyrrolo-quinoxaline and thienotriazolopyrimidine derivatives.Molecules2021267203110.3390/molecules26072031 33918322
    [Google Scholar]
  54. Abu-HashemA.A. Abu-ZiedK.M. AbdelSalam ZakiM.E. El-ShehryM.F. AwadH.M. KhedrM.A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone, - thieno [2, 3-d] pyrimidinones.Lett. Drug Des. Discov.202017679981710.2174/1570180817666200117114716
    [Google Scholar]
  55. Abu-HashemA. El-ShehryM. BadriaF. Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents.Acta Pharm.201060331132310.2478/v10007‑010‑0027‑6 21134865
    [Google Scholar]
  56. Abu-HashemA.A. Synthesis and biological activity of pyrimidines, quinolines, thiazines and pyrazoles bearing a common thieno moiety. Acta Pol. Pharm. -.Drug Res. (Stuttg.)20187515970
    [Google Scholar]
  57. GoudaM.A. Abu-HashemA.A. HusseinH.A.R. AlyA.S. Recent progress on fused thiadiazines: A literature review.Polycycl. Aromat. Compd.20224252861289310.1080/10406638.2020.1825002
    [Google Scholar]
  58. Abu-HashemA.A. Synthesis and antimicrobial activity of new 1,2,4‐triazole, 1,3,4‐oxadiazole, 1,3,4‐thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives.J. Heterocycl. Chem.2021581749210.1002/jhet.4149
    [Google Scholar]
  59. Abu-HashemA.A. Synthesis of new pyrazoles, oxadiazoles, triazoles, pyrrolotriazines, and pyrrolotriazepines as potential cytotoxic agents.J. Heterocycl. Chem.202158380582110.1002/jhet.4216
    [Google Scholar]
  60. GoudaM.A. Abu-HashemA.A. SalemM.A. HelalM.H. Al-GhorbaniM. HamamaW.S. Recent progress on coumarin scaffold‐based anti‐microbial agents (Part III).J. Heterocycl. Chem.202057113784381710.1002/jhet.4100
    [Google Scholar]
  61. Abu-HashemA.A. FathyU. GoudaM.A. Synthesis of 1,2, 4‐triazolopyridazines, isoxazolofuropyridazines, and tetrazolopyridazines as antimicrobial agents.J. Heterocycl. Chem.20205793461347410.1002/jhet.4065
    [Google Scholar]
  62. GoudaM.A. Abu-HashemA.A. HusseinH.A.R. AlyA.S. Recent development in the chemistry of bicyclic 6+5 systems, Part II: Chemistry of triazolopyrimidine derivatives.Lett. Org. Chem.2020171289792510.2174/1570178617666200417121205
    [Google Scholar]
  63. Abu-HashemA.A. HusseinH.A.R. AlyA.S. Synthesis and antimicrobial activity of novel 1, 2, 4-triazolopyrimidofuroquinazolinones from natural furochromones (visnagenone and khellinone).Med. Chem.202117770772310.2174/18756638MTA1hNjcq3 32250227
    [Google Scholar]
  64. Abu-HashemA.A. ZakiM.E.A. Direct amination and synthesis of fused N‐substituted isothiochromene derivatives.J. Heterocycl. Chem.201956388689410.1002/jhet.3466
    [Google Scholar]
  65. Abu-HashemA.A. Synthesis of new furothiazolo pyrimido quinazolinones from visnagenone or khellinone and antimicrobial activity.Molecules20182311279310.3390/molecules23112793 30373270
    [Google Scholar]
  66. Abu-HashemA.A. FatyR.A.M. Synthesis, antimicrobial evaluation of some new 1, 3, 4-thiadiazoles and 1, 3, 4- thiadiazines.Curr. Org. Synth.20181581161117010.2174/1570179415666180720114547
    [Google Scholar]
  67. Abu-HashemA.A. GoudaM.A. BadriaF.A. Design, synthesis and identification of novel substituted isothiochromene analogs as potential antiviral and cytotoxic agents.Med. Chem. Res.201827102297231110.1007/s00044‑018‑2236‑3
    [Google Scholar]
  68. Abu-HashemA.A. GoudaM.A. Synthesis and antimicrobial activity of some novel quinoline, chromene, pyrazole derivatives bearing triazolopyrimidine moiety.J. Heterocycl. Chem.201754285085810.1002/jhet.2645
    [Google Scholar]
  69. Abu-HashemA.A. Abu-ZiedK.M. El-ShehryM.F. Synthetic utility of bifunctional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents.Monatsh. Chem.2011142553954510.1007/s00706‑011‑0456‑z
    [Google Scholar]
  70. Abu-HashemA.A. YoussefM.M. HusseinH.A.R. Synthesis, antioxidant, antituomer activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives.J. Chin. Chem. Soc. (Taipei)2011581414810.1002/jccs.201190056
    [Google Scholar]
  71. GoudaM.A. Abu-HashemA.A. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives.Arch. Pharm. (Weinheim)2011344317017710.1002/ardp.201000165 21384416
    [Google Scholar]
  72. Abu-HashemA.A. GoudaM.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones.Arch. Pharm. (Weinheim)2011344854355110.1002/ardp.201100020 21681809
    [Google Scholar]
  73. Abu-HashemA.A. El-ShazlyM. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidine-thiadiazole derivatives.Polycycl. Aromat. Compd.202141347849710.1080/10406638.2019.1598448
    [Google Scholar]
  74. Abu-HashemA.A. Al-HussainS.A. ZakiM.E.A. Synthesis of novel benzodifuranyl; 1,3,5-triazines; 1,3,5-oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-inflammatory and analgesic agents.Molecules202025122010.3390/molecules25010220 31948127
    [Google Scholar]
  75. Abu-HashemA.A. El-GazzarA.B.A. AbdelgawadA.A.M. GoudaM.A. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): A review.Phosphorus Sulfur Silicon Relat. Elem.2022197766568810.1080/10426507.2021.2012176
    [Google Scholar]
  76. SalemM.A. Abu-HashemA.A. AbdelgawadA.A.M. GoudaM.A. Synthesis and reactivity of thieno[2,3‐ b]quinoline derivatives (Part II).J. Heterocycl. Chem.20215891705174010.1002/jhet.4269
    [Google Scholar]
  77. GoudaM.A. Abu-HashemA.A. AbdelgawadA.A.M. Thieno[3,2-c] quinoline heterocyclic synthesis and reactivity part (VI).Mini Rev. Org. Chem.202219562965310.2174/1570193X18666211004102537
    [Google Scholar]
  78. KeshkE.M. Abu-HashemA.A. GirgesM.M. Abd EL-Rahman, A.H.; Badria, F.A. Synthesis of benzo [1, 2-b: 5, 4-b′]-difuranyl-triazoles,-oxadiazoles,-thiazolidinones,-thiadiazoles, and the use of DNA in evaluation of their biological activity.Phosphorus Sulfur Silicon Relat. Elem.20041791577159310.1080/10426500490464140
    [Google Scholar]
  79. GoudaM.A. Abu-HashemA.A. AmeenT.A. SalemM.A. Synthesis of pyrimido[4, 5-b]quinolones from 6-aminopyrimidin-4- (thi)one derivatives (Part I).Mini Rev. Org. Chem.202320662264110.2174/1570193X20666221104110606
    [Google Scholar]
  80. GoudaM.A. Abu-HashemA.A. AmeenT.A. SalemM.A. AljuhaniA. Recent progress in synthetic chemistry and biological activities of pyrimido[4,5-b] quinoline derivatives (part III).Mini Rev. Org. Chem.202421777979210.2174/1570193X20666230626101436
    [Google Scholar]
  81. DeviN. GuptaA. GujjarappaR. MalakarC.C. SinghV. Synthesis of pyrazolo[4,3-c] quinolines and the C-C bond cleavage during reductive cyclization.Heterocycles202110270572210.3987/COM‑20‑14403
    [Google Scholar]
  82. KishoreP.S. GujjarappaR. PuttaV.P.R.K. PolinaS. SinghV. MalakarC.C. PujarP.P. Potassium tert‐butoxide‐mediated synthesis of 2‐aminoquinolines from alkylnitriles and 2‐aminobenzaldehyde derivatives.ChemistrySelect2022746e20220423810.1002/slct.202204238
    [Google Scholar]
  83. KumarV. SinghD. GujjarappaR. MalakarC.C. SinghaV. Efficient approach towards the polysubstituted 4h-pyran hybrid quinolone derivatives and subsequent copper-catalyzed hydroxylation of haloarenes.Heterocycles2021102346547910.3987/COM‑20‑14383
    [Google Scholar]
  84. KumarV. ChaudharyS. MathurM. SwamiA.K. MalakarC.C. SinghV. A Tandem approach towards diastereoselective synthesis of quinoline C‐3 tethered γ‐lactones.ChemistrySelect20183239940410.1002/slct.201702923
    [Google Scholar]
  85. SinghD. KumarV. MalakarC.C. SinghV. Structural diversity attributed by Aza-Diels-Alder reaction in synthesis of diverse quinoline scaffolds.Curr. Org. Chem.201923892095810.2174/1385272823666190423140805
    [Google Scholar]
  86. Abu-HashemA.A. HakamiO. AmriN. Synthesis, anticancer activity and molecular docking of new quinolines, quinazolines and 1,2,4-triazoles with pyrido[2,3-d] pyrimidines.Heliyon2024105e2673510.1016/j.heliyon.2024.e26735 38468950
    [Google Scholar]
  87. AlthuisT.H. HessH.J. Synthesis and Identification of the Major Metabolites of Prazosin Formed in Dog and Rat.J. Med. Chem.197720114614910.1021/jm00211a031
    [Google Scholar]
  88. RanadeA.C. MaliR.S. DeshpandeH.R. Novel synthesis of 2,4-diphenylpyrimido [4,5-b] quinoline.Experientia197935557410.1007/BF01960325
    [Google Scholar]
  89. Sridhar ReddyM. ThirupathiN. BabuM.H. Synthesis of substituted coumarins and 2‐quinolinones by cycloisomerisation of (hydroxy/aminophenyl)propargyl alcohols.Eur. J. Org. Chem.20122012295803580910.1002/ejoc.201200782
    [Google Scholar]
  90. GilmanH. BeelJ.A. The metalation of 2-ethoxyquinoline.J. Am. Chem. Soc.1951731323210.1021/ja01145a012
    [Google Scholar]
  91. CampaigneE. RandauG. An unusual arylation of 4‐oxo‐3,4‐dihydropyrimido[4,5‐ b]quinoline.J. Heterocycl. Chem.19718111112010.1002/jhet.5570080120
    [Google Scholar]
  92. XuJ. ZhangL.H. LiuX.B. MaW. MaL. MaY. YangJ.N. WangD.L. Catalyst-free, one-pot, three-component synthesis of pyrimido[4,5-b] quinoline-4-amines under microwave irradiation.J. Chem. Res.2018421052552810.3184/174751918X15366615479040
    [Google Scholar]
  93. el-SayedO.A. el-BiehF.M. el-AqeelS.I. al-BassamB.A. HusseinM.E. Novel 4-aminopyrimido[4,5-b]quinoline derivatives as potential antimicrobial agents.Boll. Chim. Farm.20021416461465 12577518
    [Google Scholar]
  94. AlthuisT.H. MooreP.F. HessH.J. Development of ethyl 3,4-dihydro-4-oxopyrimido[4,5-b]quinoline-2-carboxylate, a new prototype with oral antiallergy activity.J. Med. Chem.1979221444810.1021/jm00187a011 106118
    [Google Scholar]
  95. SarhanA.E.W.A.O. HozienZ.A. El-SheriefH.A.H. Synthesis, characterization and reactions of 2-deoxo-5-deazaalloxazines.Bioorg. Med. Chem.20019112993299810.1016/S0968‑0896(01)00194‑8 11597481
    [Google Scholar]
  96. FaddaA.A. BondockS. RabieR. EtmanH.A. Cyanoacetamide derivatives as synthons in heterocyclic synthesis.Turk. J. Chem.200832259286
    [Google Scholar]
  97. AlthuisT.H. KadinS.B. CzubaL.J. MooreP.F. HessH.J. ACS Symposium Series19803768
    [Google Scholar]
  98. ChenW. JiangG. Syntheses of 3,4-Dihydro-4-Oxopyrimido[4,5-b] quinolines.Chem. J. Chin. Univ.1990115532533
    [Google Scholar]
  99. NakanishiS. MassettS.S. A facile base catalyzed condensation for the synthesis of fused pyrimidine-2-carboxylic acid esters.Org. Prep. Proced. Int.1980123-421922310.1080/00304948009458552
    [Google Scholar]
  100. ShelarD.P. RoteR.V. PatilS.R. JachakM.N. Effects of homogeneous media, binary mixtures and microheterogeneous media on the fluorescence and fluorescence probe properties of some benzo[b][1,8]naphthyridiens with HSA and BSA.Luminescence201227539841310.1002/bio.1364 22102403
    [Google Scholar]
  101. TaylorE.C.Jr KalendaN.W. The Synthesis of Pyrimido[4,5-b]quinolines 1-3.J. Am. Chem. Soc.195678195108511510.1021/ja01600a079
    [Google Scholar]
  102. TaylorE.C. KalendaN.W. The structures of some alleged dihydroindoles.J. Org. Chem.195318121755176110.1021/jo50018a021
    [Google Scholar]
  103. NadarajV. SelviS.T. MohanS. ThangaduraiT.D. Microwave-assisted synthesis and pharmacological studies of novel 5-deazaalloxazine derivatives.Med. Chem. Res.201221102911291910.1007/s00044‑011‑9811‑1
    [Google Scholar]
  104. CascioferroS. MaggioB. RaffaD. RaimondiM.V. CusimanoM.G. SchillaciD. ManachiniB. PlesciaF. DaidoneG. Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains.Eur. J. Med. Chem.2016123586810.1016/j.ejmech.2016.07.030 27474923
    [Google Scholar]
  105. UpadhyayS. ChandraA. SinghR.M. A one pot method of conversion of aldehydes into nitriles using iodine in ammonia water: Synthesis of 2-chloro-3-cyanoquinolines.Sect. B: Org. Chem. Incl. Med. Chem.2009481152154
    [Google Scholar]
  106. ShelarD.P. BirariD.R. RoteR.V. PatilS.R. TocheR.B. JachakM.N. Novel synthesis of 2‐aminoquinoline‐3‐carbaldehyde, benzo[ b][1,8]naphthyridines and study of their fluorescence behavior.J. Phys. Org. Chem.201124320321110.1002/poc.1727
    [Google Scholar]
  107. El-GamalK.M. Synthesis and anticancer screning of heterocyclic compounds bearing pyrimido [4, 5-B] quinoline moiety.Int. J. Pharm. Sci. Res.201782570581
    [Google Scholar]
  108. KaurN. Review of microwave-assisted synthesis of benzo-fused six-membered n,n -heterocycles.Synth. Commun.201545330033010.1080/00397911.2013.816736
    [Google Scholar]
  109. Prakash NaikH.R. Bhojya NaikH.S. Ravikumar NaikT.R. NaikH.R. LamaniD.S. AravindaT. Pyrimido[4,5-b]quinoline-2-thiol/ol: Microwave-induced one-pot synthesis, DNA binding and cleavage studies.J. Sulfur Chem.200829658359210.1080/17415990802382890
    [Google Scholar]
  110. ChandraA. UpadhyayS. SinghB. SharmaN. SinghR.M. Base-catalyzed cyclization reaction of 2-chloroquinoline-3-carbonitriles and guanidine hydrochloride: A rapid synthesis of 2-amino-3H-pyrimido[4,5-b]quinolin-4-ones.Tetrahedron201167479219922410.1016/j.tet.2011.09.032
    [Google Scholar]
  111. MikitenkoE.K. RomanovN.N. Condensed heterocycles with a thiazole ring. 4. Thiazolo [3′,4′:1,2] pyrimido[6,5-b] quinolines.Chem. Heterocycl. Compd.19831916616810.1007/BF00506427
    [Google Scholar]
  112. KumarR.N. SureshT. MohanP.S. Synthesis and antibacterial activity of pyrimido [ 4,5-b] quinolines.Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem.200342B3688689
    [Google Scholar]
  113. VartaleS.P. HalikarN.K. PawarY.D. Synthesis and antimicrobial activity of 3-cyano-4-imino-9-methoxy- 4H -pyrimido [2, 1-b] pyrimido [4, 5-b] quinoline and 2-substituted derivatives.J. Chem.201320131710.1155/2013/862651
    [Google Scholar]
  114. VartaleS. BhosaleV. KhansoleS. KatapalleR. A convenient one pot synthesis of 3-cyano-9-methyl-2-methylthio-4-oxo-4H-pyrimido[2,1-b] pyrimido [4,5-b] quinoline and its reactions with selected nucleophiles.Lett. Org. Chem.20096754454810.2174/157017809789869537
    [Google Scholar]
  115. SinghJ.B. MishraK. GuptaT. SinghR.M. Copper-catalyzed cascade reaction: Synthesis of pyrimido[4,5- b]quinolinones from 2-chloroquinoline-3-carbonitriles with (aryl)methanamines.New J. Chem.20184253310331410.1039/C7NJ04689H
    [Google Scholar]
  116. DhimanS. SainiH.K. NandwanaN.K. KumarD. KumarA. Copper-catalyzed synthesis of quinoline derivatives via tandem Knoevenagel condensation, amination and cyclization.RSC Advances2016629239872399410.1039/C6RA03798D
    [Google Scholar]
  117. ZhangX.Y. GuoX.J. FanX.S. Synthesis of 2‐Aminoquinoline‐3‐carboamides and Pyrimido[4,5‐ b]quinolin‐4‐ones through copper‐catalyzed one‐pot multicomponent reactions.Chem. Asian J.201510110611110.1002/asia.201402962 25318983
    [Google Scholar]
  118. El-KanziN.A.A. KhalafallahA.K. YounisM. Effect of iodine on the antimicrobial activity of new spiro and isolated β-lactam thiazolidinone derivatives.Phosphorus Sulfur Silicon Relat. Elem.200718251163118110.1080/10426500601149929
    [Google Scholar]
  119. AllamY.A. SwellemR.H. NawwarG.A.M. Cyanoacetylurea in heterocyclic synthesis: A simple synthesis of heterocyclic condensed uracils.J. Chem. Res.20012001834634810.3184/030823401103170034
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298322382240902061348
Loading
/content/journals/mroc/10.2174/0118756298322382240902061348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test