Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

In chemistry, thiazoles and their derivatives constitute a significant class of biologically active molecules that are thought to be the fundamental building blocks of numerous other biologically active compounds. Many synthetic pharmaceuticals, including fungicides, dyes, antimicrobials, and anticonvulsants, are made using thiazoles and their derivatives as an intermediary. Thus, one of the main areas of organic synthesis research is the presentation of effective and environmentally acceptable catalytic methods for the synthesis of thiazole derivatives. Over the past ten years, organic synthesis in chemistry has been completely transformed by the use of magnetic nanocomposites as catalysts. Magnetic nanoparticles are very stable and easily manipulated on the surface, which can result in the creation of an efficient catalyst. The main feature of magnetic nanocatalysts is their ability to be easily separated from the reaction mixture using only an external magnet. In recent years, several magnetic nanocatalysts have been reported to produce various thiazole compounds. We will look at these methods and talk about the characteristics of these catalytic systems in this post. This review will be helpful for synthetic chemists who are interested in magnetic nanocatalysts and working in the field of thiazole synthesis.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298296678240402080951
2024-04-29
2025-04-07
Loading full text...

Full text loading...

References

  1. KazemiM. KarezaniN. Research on biological and bioactive molecules containing pyrrole scaffolds.Biol Mol Chem202311526[Available from: https://www.biolmolchem.com/ article_ 178602.html
    [Google Scholar]
  2. ArghanM. KoukabiN. KolvariE. Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: As a strong solid base catalyst for the synthesis of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation.J. Saudi Chem. Soc.201923215016110.1016/j.jscs.2018.05.008
    [Google Scholar]
  3. NarimaniH. Research on synthesis of heterocyclic structures using ZnO NPs as catalyst.J Synth Chem202216283[Available from: https://www.jsynthchem.com/article_155232.html
    [Google Scholar]
  4. DeviN. SinghD. RawalR.K. BariwalJ. SinghV. Medicinal attributes of imidazo[1,2-a]pyridine derivatives: an update.Curr. Top. Med. Chem.201616262963299410.2174/1568026616666160506145539 27150367
    [Google Scholar]
  5. PRAJAPATI, AK.; MODI, VP. Synthesis and biological evaluation of some substituted amino thiazole derivatives.J. Chil. Chem. Soc.201055[Available from: http://www.scielo.cl/scielo.php?script= sci_arttext&pid=S0717- 97072010000200021&lng=en&nrm=iso&tlng=en
    [Google Scholar]
  6. ZhengS. ZhongQ. XiY. MottamalM. ZhangQ. SchroederR.L. SridharJ. HeL. McFerrinH. WangG. Modification and biological evaluation of thiazole derivatives as novel inhibitors of metastatic cancer cell migration and invasion.J. Med. Chem.201457156653666710.1021/jm500724x 25007006
    [Google Scholar]
  7. YurttaşL. ÖzkayY. Karaca GençerH. AcarU. Synthesis of some new thiazole derivatives and their biological activity evaluation.J. Chem.201520151710.1155/2015/464379
    [Google Scholar]
  8. AymanM. AbdelmonsefA.H. RashdanH.R.M. Mini review on the synthesis and biological impact of thiazoles.Chem.Sel.2023814e20230041410.1002/slct.202300414
    [Google Scholar]
  9. Al-MutabaganiL.A. AbdelrazekF.M. GomhaS.M. HebishyA.S. AbdelfattahM.S. HassanS.M. SayedA.R. ElaasserM.M. Synthesis and biological evaluation of thiazolyl-ethylidene hydrazino-thiazole derivatives: a novel heterocyclic system.Appl. Sci.20211119890810.3390/app11198908
    [Google Scholar]
  10. TianQ. LuoW. GanZ. LiD. DaiZ. WangH. WangX. YuanJ. Eco-friendly syntheses of 2-substituted benzoxazoles and 2-substituted benzothiazoles from 2-aminophenols, 2-aminothiophenols and dmf derivatives in the presence of imidazolium chloride.Molecules201924117410.3390/molecules24010174 30621218
    [Google Scholar]
  11. PetrouA. FesatidouM. GeronikakiA. Thiazole ring: A biologically active scaffold.Molecules20212611316610.3390/molecules26113166 34070661
    [Google Scholar]
  12. OthmanI.M.M. AlamshanyZ.M. TashkandiN.Y. Gad-ElkareemM.A.M. Abd El-KarimS.S. NossierE.S. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors.RSC Advances202112156157710.1039/D1RA08055E 35424523
    [Google Scholar]
  13. GujjarappaR. KabiA.K. SravaniS. Overview on Biological Activities of Thiazole Derivatives202210113410.1007/978‑981‑16‑8399‑2_5
    [Google Scholar]
  14. AliS.H. SayedA.R. Review of the synthesis and biological activity of thiazoles.Synth. Commun.202151567070010.1080/00397911.2020.1854787
    [Google Scholar]
  15. GümüşM. YakanM. Kocaİ. Recent advances of thiazole hybrids in biological applications.Future Med. Chem.201911151979199810.4155/fmc‑2018‑0196 31517529
    [Google Scholar]
  16. KashyapS.J. GargV.K. SharmaP.K. KumarN. DudheR. GuptaJ.K. Thiazoles: Having diverse biological activities.Med. Chem. Res.20122182123213210.1007/s00044‑011‑9685‑2
    [Google Scholar]
  17. KadamV. ChoudhareT. WagareD. Four components one-pot synthesis of new thiazoles and their biological screening for anti-tuberculosis activity., Iran J Chem Chem Eng.2023Available from: https://ijcce.ac.ir/article_704015.html
  18. A.Ibrahim S. F.Rizk, H. Synthesis and biological evaluation of thiazole derivatives.In: Azoles - Synth Prop Appl Perspect;IntechOpen2021Available from: https://www.intechopen.com/books/azoles-synthesis-properties-applications-and-perspectives/synthesis-and-biological-evaluation-of-thiazole-derivatives
    [Google Scholar]
  19. XingQ. MaY. XieH. XiaoF. ZhangF. DengG.J. Iron-promoted three-component 2-substituted benzothiazole formation via nitroarene ortho -c-h sulfuration with elemental sulfur.J. Org. Chem.20198431238124610.1021/acs.joc.8b02619 30606012
    [Google Scholar]
  20. SunY. JiangH. WuW. ZengW. WuX. Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles.Org. Lett.20131571598160110.1021/ol400379z 23496117
    [Google Scholar]
  21. YangZ. HuR. LiX. WangX. GuR. HanS. One-pot copper-catalyzed synthesis of 2-substituted benzothiazoles from 2-iodoanilines, benzyl chlorides and elemental sulfur.Tetrahedron Lett.201758242366236910.1016/j.tetlet.2017.05.004
    [Google Scholar]
  22. LiuK.G. SharifzadehZ. RouhaniF. GhorbanlooM. MorsaliA. Metal-organic framework composites as green/sustainable catalysts.Coord. Chem. Rev.202143621382710.1016/j.ccr.2021.213827
    [Google Scholar]
  23. XinB. JiaC. LiX. Supported ionic liquids: efficient and reusable green media in organic catalytic chemistry.Curr. Org. Chem.201520561662810.2174/1385272819666150825220817
    [Google Scholar]
  24. KambleR.B. ChavanS.S. SuryavanshiG. An efficient heterogeneous copper fluorapatite (CuFAP)-catalysed oxidative synthesis of diaryl sulfone under mild ligand- and base-free conditions.New J. Chem.20194331632163610.1039/C8NJ04845B
    [Google Scholar]
  25. PengY. Synthesis of symmetrical diaryl sulfone by homocoupling of sodium arylsulfinate.J. Chem. Res.201438526526810.3184/174751914X13946336636551
    [Google Scholar]
  26. KhazenipourK. MoeinpourF. Mohseni-ShahriF.S. Cu(II)‐supported graphene quantum dots modified NiFe 2 O 4: A green and efficient catalyst for the synthesis of 4H‐pyrimido[2,1‐b]benzothiazoles in water.J. Chin. Chem. Soc.202168112113010.1002/jccs.202000213
    [Google Scholar]
  27. GhobadiM. Based on copper ferrite nanoparticles (CuFe2O4 NPs): Catalysis in synthesis of heterocycles.J Synth Chem202218496[Available from: https://www.jsynthchem.com/article_155234.html
    [Google Scholar]
  28. SarodeS.A. JadhavV.G. NagarkarJ.M. Synthesis of 2-aryl quinazolines from (2-aminophenyl)methanol and oxime ether catalyzed by copper ferrite nanoparticles.Tetrahedron Lett.201758877978410.1016/j.tetlet.2017.01.037
    [Google Scholar]
  29. GhazviniM. Sheikholeslami-FarahaniF. HamedaniN.F. ShahvelayatiA.S. RostamiZ. Bio-Fe3O4 magnetic nanoparticles promoted green synthesis of thioxo- 1,3-oxazole derivatives: study of antimicrobial and antioxidant activity.Comb. Chem. High Throughput Screen.20212481261127010.2174/1386207323666201001113545 33001007
    [Google Scholar]
  30. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  31. BertolucciE. GallettiA.M.R. AntonettiC. Chemical and magnetic properties characterization of magnetic nanoparticles.2015 IEEE Int Instrum Meas Technol Conf ProcIEEE201514921496Available from: http://ieeexplore.ieee.org/document/7151498/
    [Google Scholar]
  32. MoghadasiZ. Noory FajerA. One-pot three-component synthesis of 2-substituted benzothiazoles using Fe3O4 nanoparticles modified with serine supported cu (i) iodide.Nanomater Chem202312431[Available from: https://www.nanomaterchem.com/ article_ 180744.html
    [Google Scholar]
  33. DadaeiM. NaeimiH. Nano cobalt ferrite encapsulated‐silica particles bearing melamine as an easily recyclable catalyst for the synthesis of dihydropyrano[2,3‐ c]pyrazoles under green conditions.Appl. Organomet. Chem.20213510e636510.1002/aoc.6365
    [Google Scholar]
  34. SagadevanS. LettJ.A. WeldegebriealG.K. ud Dowla Biswas, M.R.; Oh, W.C.; Alshahateet, S.F.; Fatimah, I.; Mohammad, F.; Al-Lohedan, H.A.; Paiman, S.; Podder, J.; Johan, M.R. Enhanced gas sensing and photocatalytic activity of reduced graphene oxide loaded TiO2 nanoparticles.Chem. Phys. Lett.202178013889710.1016/j.cplett.2021.138897
    [Google Scholar]
  35. KazemiM. MohammadiM. Magnetically recoverable catalysts: catalysis in synthesis of polyhydroquinolines.Appl. Organomet. Chem.2020343e540010.1002/aoc.5400
    [Google Scholar]
  36. ZhangQ. YangX. GuanJ. Applications of magnetic nanomaterials in heterogeneous catalysis.ACS Appl. Nano Mater.2019284681469710.1021/acsanm.9b00976
    [Google Scholar]
  37. Abu-DiefA.M. Abdel-FatahS.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis.Beni. Suef Univ. J. Basic Appl. Sci.201871556710.1016/j.bjbas.2017.05.008
    [Google Scholar]
  38. DadashiJ. KhaleghianM. MirtamizdoustB. HanifehpourY. JooS.W. Fabrication of copper(ii)-coated magnetic core-shell nanoparticles Fe3O4@SiO2: an effective and recoverable catalyst for reduction/degradation of environmental pollutants.Crystals202212686210.3390/cryst12060862
    [Google Scholar]
  39. MaM. HouP. ZhangP. CaoJ. LiuH. YueH. TianG. FengS. Magnetic Fe3O4 nanoparticles as easily separable catalysts for efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol.Appl. Catal. A Gen.202060211770910.1016/j.apcata.2020.117709
    [Google Scholar]
  40. HouJ. KazemiM. A comprehensive review on synthesis of oxazoles: Research on magnetically recoverable catalysts.Res. Chem. Intermed.202410.1007/s11164‑024‑05245‑1
    [Google Scholar]
  41. Ghamari KargarP. BagherzadeG. Robust, highly active, and stable supported Co(II) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation.RSC Advances20211138231922320610.1039/D1RA00208B 35479769
    [Google Scholar]
  42. KumarT.H.V. RajendranJ. AtchudanR. AryaS. GovindasamyM. HabilaM.A. SundramoorthyA.K. Cobalt ferrite/semiconducting single-walled carbon nanotubes based field-effect transistor for determination of carbamate pesticides.Environ. Res.2023238Pt 211719310.1016/j.envres.2023.117193 37758116
    [Google Scholar]
  43. RajendranJ. Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film.J. Hazard. Mater.202344913097910.1016/j.jhazmat.2023.130979 36801710
    [Google Scholar]
  44. MoslehiA. ZareiM. Application of magnetic Fe 3 O 4 nanoparticles as a reusable heterogeneous catalyst in the synthesis of β-lactams containing amino groups.New J. Chem.20194332126901269710.1039/C9NJ02759A
    [Google Scholar]
  45. SheikhS. NasseriM.A. AllahresaniA. VarmaR.S. Copper adorned magnetic nanoparticles as a heterogeneous catalyst for Sonogashira coupling reaction in aqueous media.Sci. Rep.20221211798610.1038/s41598‑022‑22567‑5 36289249
    [Google Scholar]
  46. EisaviR. AhmadiF. Fe3O4@SiO2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles.Sci. Rep.20221211193910.1038/s41598‑022‑15980‑3 35831386
    [Google Scholar]
  47. GovanJ. Gun’koY. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts.Nanomaterials20144222224110.3390/nano4020222 28344220
    [Google Scholar]
  48. SappinoC. PrimitivoL. De AngelisM. DomeniciM.O. MastrodonatoA. RomdanI.B. TatangeloC. SuberL. PilloniL. RicelliA. RighiG. Functionalized magnetic nanoparticles as catalysts for enantioselective henry reaction.ACS Omega2019426218092181710.1021/acsomega.9b02683 31891058
    [Google Scholar]
  49. ThakareN.V. AswarA.S. SalunkheN.G. CoFe2O4@SiO2-HClO4 magnetic nanoparticles: synthesis and its application in catalysis.Emergent Mater2023612851297[Available from: https://link.springer.com/10.1007/s42247-023-00502-2
    [Google Scholar]
  50. FarghalyT.A. AlfaifiG.H. GomhaS.M. Recent literature on the synthesis of thiazole derivatives and their biological activities.Mini Rev. Med. Chem.20242419625110.2174/1389557523666230726142459
    [Google Scholar]
  51. JiT. YeJ. TangL. Recent reports on nanocatalysts in the synthesis of biological thiazoles.Synth. Commun.2021511636165510.1080/00397911.2021.1897627
    [Google Scholar]
  52. ChandrappaA.K.G. BodkeY.D.R. ObaihN. Facile and novel one-pot three-component synthesis of isatin-thiazoles catalyzed by biogenic iron oxide nanoparticles.Chem Data Collect20224210096410.1016/j.cdc.2022.100964
    [Google Scholar]
  53. GuravR. SurveS.K. BabarS. ChoudhariP. PatilD. MoreV. SankpalS. HangirgekarS. Rust-derived Fe 2 O 3 nanoparticles as a green catalyst for the one-pot synthesis of hydrazinyl thiazole derivatives.Org. Biomol. Chem.202018244575458210.1039/D0OB00109K 32319501
    [Google Scholar]
  54. MohammadiR. Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives.J Synth Chem202212226[Available from https://www.jsynthchem.com/article_149220.html
    [Google Scholar]
  55. YangD. ZhuX. WeiW. SunN. YuanL. JiangM. YouJ. WangH. Magnetically recoverable and reusable CuFe 2 O 4 nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant.RSC Advances2014434178321783910.1039/C4RA00559G
    [Google Scholar]
  56. KarimianA. Mohammadzadeh KakhkiR. Kargar BeidokhtiH. Magnetic Co‐doped NiFe2O4 nanocomposite: A heterogeneous and recyclable catalyst for the one‐pot synthesis of benzimidazoles, benzoxazoles and benzothiazoles under solvent‐free conditions.J. Chin. Chem. Soc. (Taipei)201764111316132510.1002/jccs.201700060
    [Google Scholar]
  57. ShaterianH.R. MolaeiP. Fe 3 O 4 @vitamin B 1 as a sustainable superparamagnetic heterogeneous nanocatalyst promoting green synthesis of trisubstituted 1,3‐thiazole derivatives.Appl. Organomet. Chem.2019337e496410.1002/aoc.4964
    [Google Scholar]
  58. BodaghifardM.A. ShafiS. Ionic liquid-immobilized hybrid nanomaterial: An efficient catalyst in the synthesis of benzimidazoles and benzothiazoles via anomeric-based oxidation.J. Indian Chem. Soc.202118367768710.1007/s13738‑020‑02055‑1
    [Google Scholar]
  59. NguyenH.T. NguyenT.H. PhamD.D. NguyenC.T. TranP.H. A green approach for the synthesis of 2-substituted benzoxazoles and benzothiazoles via coupling/cyclization reactions.Heliyon2021711e0830910.1016/j.heliyon.2021.e08309 34820534
    [Google Scholar]
  60. DezfoolinezhadE. GhodratiK. BadriR. Fe3O4@SiO2@polyionene/Br 3− core-shell-shell magnetic nanoparticles: A novel catalyst for the synthesis of imidazole derivatives under solvent-free conditions.New J. Chem.20164054575458710.1039/C5NJ02680F
    [Google Scholar]
  61. GhafuriH. EsmailiE. TalebiM. Fe3O4@SiO2/collagen: An efficient magnetic nanocatalyst for the synthesis of benzimidazole and benzothiazole derivatives.C. R. Chim.201619894295010.1016/j.crci.2016.05.003
    [Google Scholar]
  62. Ghorbani-VagheiR. AlaviniaS. MeratiZ. IzadkhahV. MNPs@SiO 2 ‐Pr‐AP: A new catalyst for the synthesis of 2‐amino‐4‐aryl thiazole derivatives.Appl. Organomet. Chem.2018323e412710.1002/aoc.4127
    [Google Scholar]
  63. KoraniE. GhodratiK. AsnaashariM. Magnetic core-shell nanoparticles containing i 3 − $_{3}^{-}$ as a novel catalyst for the facile synthesis of imidazole, thiazole and pyrimidine derivatives in solvent-free conditions.Silicon20181014331441[Available from http://link.springer.com/10.1007/s12633-017-9623-0
    [Google Scholar]
  64. PatraI. KadhimM.M. KzarH.H. MustafaY.F. JameelH.A. Fe3O4@SiO2-(Imine-Thiazole)-Cu(OAc)2 nanocomposite catalyzed one-pot three-component synthesis of 2-Substituted benzothiazoles using S 8 as sulfur source.J. Sulfur Chem.202344221723110.1080/17415993.2022.2137413
    [Google Scholar]
  65. AziziK. KarimiM. HeydariA. Oxidative coupling of formamides with β-dicarbonyl compounds and the synthesis of 2-aminobenzothiazole using Cu(II)-functionalized Fe3O4 nanoparticles.Tetrahedron Lett.201556681281610.1016/j.tetlet.2014.12.110
    [Google Scholar]
  66. BhardwajM. JamwalB. PaulS. Novel Cu(0)-Fe3O4@SiO2/NH2cel as an efficient and sustainable magnetic catalyst for the synthesis of 1,4-disubstituted-1,2,3-triazoles and 2-substituted-benzothiazoles via one-pot strategy in aqueous media.Catal. Lett.2016146362964410.1007/s10562‑015‑1672‑7
    [Google Scholar]
  67. SunM. LiuW. WuW. LiQ. ShenL. Fe 3 O 4 @ABA-aniline-CuI nanocomposite as a highly efficient and reusable nanocatalyst for the synthesis of benzothiazole-sulfide aryls and heteroaryls.RSC Advances20231329203512036410.1039/D3RA03069E 37448779
    [Google Scholar]
  68. Hameed MahmoodZ. RiadiY. HammoodiH.A. AlkaimA.F. Fakri MustafaY. Magnetic nanoparticles supported copper nanocomposite: a highly active nanocatalyst for synthesis of benzothiazoles and polyhydroquinolines.Polycycl. Aromat. Compd.20234343687370510.1080/10406638.2022.2077390
    [Google Scholar]
  69. ShafikM-S. Copper (II) complex immobilized on magnetic nanoparticles catalyzed synthesis of oxazole and thiazole derivatives.J Synth Chem20231163170[Available from https://www.jsynthchem.com/article_174117.html
    [Google Scholar]
  70. DehbanipourZ. ZarnegaryanA. Magnetic nanoparticles supported a palladium bis(benzothiazole) complex: A novel efficient and recyclable catalyst for the synthesis of benzimidazoles and benzothiazoles from benzyl alcohol.Inorg. Chem. Commun.202214110951310.1016/j.inoche.2022.109513
    [Google Scholar]
  71. CaiY. YuanH. GaoQ. WuL. XueL. FengN. SunY. Palladium (II) complex supported on magnetic nanoparticles modified with phenanthroline: A highly active reusable nanocatalyst for the synthesis of benzoxazoles, benzothiazoles and cyanation of aryl halides.Catal. Lett.2023153246047610.1007/s10562‑022‑03990‑9
    [Google Scholar]
  72. KalhorM. VahediZ. GharoubiH. Design of a new method for one-pot synthesis of 2-amino thiazoles using trichloroisocyanuric acid in the presence of a novel multi-functional and magnetically catalytic nanosystem: Ca/4-MePy-IL@ZY-Fe 3 O 4.RSC Advances202313149208922110.1039/D3RA00758H 36950710
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298296678240402080951
Loading
/content/journals/mroc/10.2174/0118756298296678240402080951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test