Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

-dimethyl bicyclic [3.1.0] proline, an azadicyclohexane derivative, constitutes a prevalent skeleton structure in drugs, which serves an important role in the synthesis of antiviral drugs, such as Nirmatrelvir, Boceprevir, Narlaprevir, This study offers a comprehensive overview of the documented synthetic strategies for dimethyl bicyclic [3.1.0] proline methyl ester and delves into the application characteristics of each synthetic strategy. These synthetic approaches can be divided into three major types: the first synthetic method uses proline derivatives as the starting material, the second one uses cyclopropane derivatives as the starting material, and the third one uses the bicyclic skeleton as the starting material. Of these strategies, the third method stands out as the most extensively adopted.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298298861240401074137
2024-04-29
2025-04-06
Loading full text...

Full text loading...

References

  1. HammondJ. Leister-TebbeH. GardnerA. AbreuP. BaoW. WisemandleW. BanieckiM. HendrickV.M. DamleB. Simón-CamposA. PypstraR. RusnakJ.M. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19.N. Engl. J. Med.2022386151397140810.1056/NEJMoa2118542 35172054
    [Google Scholar]
  2. LambY.N. Nirmatrelvir plus ritonavir: First approval.Drugs202282558559110.1007/s40265‑022‑01692‑5 35305258
    [Google Scholar]
  3. McDonaldE.G. LeeT.C. Nirmatrelvir-ritonavir for COVID-19.CMAJ20221946E21810.1503/cmaj.220081 35115376
    [Google Scholar]
  4. SaravolatzL.D. DepcinskiS. SharmaM. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs.Clin. Infect. Dis.202376116517110.1093/cid/ciac180 35245942
    [Google Scholar]
  5. DeS.K. Novel proline derivatives for treating COVID-19.Curr. Med. Chem.202330121458146110.2174/0929867329666220922095343 36154584
    [Google Scholar]
  6. ChenW. LiangB. WuX. LiL. WangC. XingD. Advances and challenges in using nirmatrelvir and its derivatives against SARS-CoV-2 infection.J. Pharm. Anal.202313325526110.1016/j.jpha.2022.10.005 36345404
    [Google Scholar]
  7. AbrahamS. NohriaA. NeilanT.G. AsnaniA. SajiA.M. ShahJ. LechT. GrossmanJ. AbrahamG.M. McQuillenD.P. MartinD.T. SaxP.E. DaniS.S. GanatraS. Cardiovascular drug interactions with nirmatrelvir/ritonavir in patients with COVID-19.J. Am. Coll. Cardiol.202280201912192410.1016/j.jacc.2022.08.800 36243540
    [Google Scholar]
  8. ReisS. MetzendorfM.I. KuehnR. PoppM. GagyorI. KrankeP. MeybohmP. SkoetzN. WeibelS. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19.Cochrane Libr.202220229CD01539510.1002/14651858.CD015395.pub2 36126225
    [Google Scholar]
  9. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑3 32015508
    [Google Scholar]
  10. YüceM. FiliztekinE. ÖzkayaK.G. COVID-19 diagnosis —A review of current methods.Biosens. Bioelectron.202117211275210.1016/j.bios.2020.112752 33126180
    [Google Scholar]
  11. ChenY. KleinS.L. GaribaldiB.T. LiH. WuC. OsevalaN.M. LiT. MargolickJ.B. PawelecG. LengS.X. Aging in COVID-19: Vulnerability, immunity and intervention.Ageing Res. Rev.20216510120510.1016/j.arr.2020.101205 33137510
    [Google Scholar]
  12. ZhangH. SunY. WangY. YaziciD. AzkurD. OgulurI. AzkurA.K. YangZ. ChenX. ZhangA.Z. HuJ. LiuG.H. AkdisM. AkdisC.A. GaoY. Recent developments in the immunopathology of COVID ‐19.Allergy202378236938810.1111/all.15593 36420736
    [Google Scholar]
  13. PeelingR.W. HeymannD.L. TeoY.Y. GarciaP.J. Diagnostics for COVID-19: moving from pandemic response to control.Lancet20223991032675776810.1016/S0140‑6736(21)02346‑1 34942102
    [Google Scholar]
  14. SharmaA. BaldaS. AprejaM. KatariaK. CapalashN. SharmaP. COVID-19 Diagnosis: Current and future techniques. Int. J. Bio. Macromol.2021193Part B1835184410.1016/j.ijbiomac.2021.11.016
    [Google Scholar]
  15. DavisH.E. McCorkellL. VogelJ.M. TopolE.J. Long COVID: Major findings, mechanisms and recommendations.Nat. Rev. Microbiol.202321313314610.1038/s41579‑022‑00846‑2 36639608
    [Google Scholar]
  16. TelentiA. ArvinA. CoreyL. CortiD. DiamondM.S. García-SastreA. GarryR.F. HolmesE.C. PangP.S. VirginH.W. After the pandemic: Perspectives on the future trajectory of COVID-19.Nature2021596787349550410.1038/s41586‑021‑03792‑w 34237771
    [Google Scholar]
  17. MaddurH. KwoP.Y. Boceprevir.Hepatology20115462254225810.1002/hep.24773 22095684
    [Google Scholar]
  18. MaC. SaccoM.D. HurstB. TownsendJ.A. HuY. SzetoT. ZhangX. TarbetB. MartyM.T. ChenY. WangJ. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease.Cell Res.202030867869210.1038/s41422‑020‑0356‑z 32541865
    [Google Scholar]
  19. Garnock-JonesK.P. Boceprevir.Drugs201272182431245610.2165/11209560‑000000000‑00000 23231027
    [Google Scholar]
  20. KhaliliehS. FengH.P. HulskotteE.G.J. WenningL.A. ButtertonJ.R. Clinical pharmacology profile of boceprevir, a hepatitis C virus NS3 protease inhibitor: Focus on drug-drug interactions.Clin. Pharmacokinet.201554659961410.1007/s40262‑015‑0260‑8 25787025
    [Google Scholar]
  21. HuY. MaC. SzetoT. HurstB. TarbetB. WangJ. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses.ACS Infect. Dis.20217358659710.1021/acsinfecdis.0c00761 33645977
    [Google Scholar]
  22. Rao YerrabellyJ. RebelliP. Kumari YalamanchiliB. Reddy GhojalaV. A new and convenient synthesis of the boceprevir p1 fragment β-amino-α-hydroxy amide.Lett. Org. Chem.201613535235810.2174/1570178613666160628090059
    [Google Scholar]
  23. ChengK.C. LiC. LiuT. WangG. HsiehY. PavloskyA. BroskeL. PreluskyD. LiuR. WhiteR. UssA. GuptaS. NjorogeF. Use of pre-clinical in vitro and in vivo pharmacokinetics for the selection of a potent Hepatitis C virus protease inhibitor, boceprevir, for clinical development.Lett. Drug Des. Discov.20096431231810.2174/157018009788452474
    [Google Scholar]
  24. KnellerD.W. LiH. PhillipsG. WeissK.L. ZhangQ. ArnouldM.A. JonssonC.B. SurendranathanS. ParvathareddyJ. BlakeleyM.P. CoatesL. LouisJ.M. BonnesenP.V. KovalevskyA. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease.Nat. Commun.2022131226810.1038/s41467‑022‑29915‑z 35477935
    [Google Scholar]
  25. de BruijneJ. BergmannJ.F. ReesinkH.W. WeeginkC.J. MolenkampR. SchinkelJ. TongX. LiJ. TreitelM.A. HughesE.A. van LierJ.J. van VlietA.A. JanssenH.L.A. de KnegtR.J. Antiviral activity of narlaprevir combined with ritonavir and pegylated interferon in chronic hepatitis C patients.Hepatology20105251590159910.1002/hep.23899 20938912
    [Google Scholar]
  26. BaiY. YeF. FengY. LiaoH. SongH. QiJ. GaoG.F. TanW. FuL. ShiY. Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir.Signal Transduct. Target. Ther.2021615110.1038/s41392‑021‑00468‑9 33542181
    [Google Scholar]
  27. CacoubP. SaadounD. Extrahepatic manifestations of chronic HCV infection.N. Engl. J. Med.2021384111038105210.1056/NEJMra2033539 33730456
    [Google Scholar]
  28. KohliA. ShafferA. ShermanA. KottililS. Treatment of hepatitis C: A systematic review.JAMA2014312663164010.1001/jama.2014.7085 25117132
    [Google Scholar]
  29. WangC.C. ChengP.N. KaoJ.H. Systematic review: Chronic viral hepatitis and metabolic derangement.Aliment. Pharmacol. Ther.202051221623010.1111/apt.15575 31746482
    [Google Scholar]
  30. ZhangX. Direct anti-HCV agents.Acta Pharm. Sin. B201661263110.1016/j.apsb.2015.09.008 26904396
    [Google Scholar]
  31. deLemosA.S. ChungR.T. Hepatitis C treatment: An incipient therapeutic revolution.Trends Mol. Med.201420631532110.1016/j.molmed.2014.02.002 24636306
    [Google Scholar]
  32. González-GrandeR. Jiménez-PérezM. González ArjonaC. Mostazo TorresJ. New approaches in the treatment of hepatitis C.World J. Gastroenterol.20162241421143210.3748/wjg.v22.i4.1421 26819511
    [Google Scholar]
  33. PolS. Vallet-PichardA. HermineO. Extrahepatic cancers and chronic HCV infection.Nat. Rev. Gastroenterol. Hepatol.201815528329010.1038/nrgastro.2017.172 29339810
    [Google Scholar]
  34. OwenD.R. AllertonC.M.N. AndersonA.S. AschenbrennerL. AveryM. BerrittS. BorasB. CardinR.D. CarloA. CoffmanK.J. DantonioA. DiL. EngH. FerreR. GajiwalaK.S. GibsonS.A. GreasleyS.E. HurstB.L. KadarE.P. KalgutkarA.S. LeeJ.C. LeeJ. LiuW. MasonS.W. NoellS. NovakJ.J. ObachR.S. OgilvieK. PatelN.C. PetterssonM. RaiD.K. ReeseM.R. SammonsM.F. SathishJ.G. SinghR.S.P. SteppanC.M. StewartA.E. TuttleJ.B. UpdykeL. VerhoestP.R. WeiL. YangQ. ZhuY. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19.Science202137465751586159310.1126/science.abl4784 34726479
    [Google Scholar]
  35. DrożdżalS. RosikJ. LechowiczK. MachajF. SzostakB. PrzybycińskiJ. LorzadehS. KotfisK. GhavamiS. ŁosM.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment.Drug Resist. Updat.20215910079410.1016/j.drup.2021.100794 34991982
    [Google Scholar]
  36. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑7 33024307
    [Google Scholar]
  37. MaloneB. UrakovaN. SnijderE.J. CampbellE.A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design.Nat. Rev. Mol. Cell Biol.2022231213910.1038/s41580‑021‑00432‑z 34824452
    [Google Scholar]
  38. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x 34611326
    [Google Scholar]
  39. HolmesE.C. GoldsteinS.A. RasmussenA.L. RobertsonD.L. Crits-ChristophA. WertheimJ.O. AnthonyS.J. BarclayW.S. BoniM.F. DohertyP.C. FarrarJ. GeogheganJ.L. JiangX. LeibowitzJ.L. NeilS.J.D. SkernT. WeissS.R. WorobeyM. AndersenK.G. GarryR.F. RambautA. The origins of SARS-CoV-2: A critical review.Cell2021184194848485610.1016/j.cell.2021.08.017 34480864
    [Google Scholar]
  40. YangH. RaoZ. Structural biology of SARS-CoV-2 and implications for therapeutic development.Nat. Rev. Microbiol.2021191168570010.1038/s41579‑021‑00630‑8 34535791
    [Google Scholar]
  41. HarrisE. FDA Grants full approval to paxlovid, COVID-19 antiviral treatment.JAMA202332924211810.1001/jama.2023.9925 37285173
    [Google Scholar]
  42. BurkiT. The future of Paxlovid for COVID-19.Lancet Respir. Med.2022107e6810.1016/S2213‑2600(22)00192‑8 35623373
    [Google Scholar]
  43. Navitha ReddyG. JogvanshiA. NaikwadiS. SontiR. Nirmatrelvir and ritonavir combination: An antiviral therapy for COVID-19.Expert Rev. Anti Infect. Ther.202321994395510.1080/14787210.2023.2241638 37525997
    [Google Scholar]
  44. NairL.G. SaksenaA. LoveyR. SannigrahiM. WongJ. KongJ. FuX. GirijavallabhanV. A facile and efficient synthesis of 3,3-dimethyl isopropylidene proline from (+)-3-carene.J. Org. Chem.20107541285128810.1021/jo9022759 20108962
    [Google Scholar]
  45. ChenX. LiP. HuangJ. YangY. ZhangH. WangZ. ZhuZ. WangJ. ZhangJ. ChenK. HeH. LongC. ChenS. Discovery of novel bicyclic[3.3.0]proline peptidyl α-ketoamides as potent 3CL-protease inhibitors for SARS-CoV-2.Bioorg. Med. Chem. Lett.20239012932410.1016/j.bmcl.2023.129324 37182612
    [Google Scholar]
  46. HuY. ZouY. YangH. JiH. JinY. ZhangZ. LiuY. ZhangW. Precise synthesis of chiral Z ‐allylamides by cobalt‐catalyzed asymmetric sequential hydrogenations.Angew. Chem. Int. Ed.20236215e20221787110.1002/anie.202217871 36753391
    [Google Scholar]
  47. ZhaoL. LuoY. XiaoJ. HuoX. MaS. ZhangW. Stereodivergent synthesis of allenes with α,β‐adjacent central chiralities empowered by synergistic Pd/Cu catalysis.Angew. Chem. Int. Ed.2023629e20221814610.1002/anie.202218146 36594710
    [Google Scholar]
  48. NieY. YuanQ. GaoF. TeradaM. ZhangW. Iridium-catalyzed double asymmetric hydrogenation of 2,5-dialkylienecyclopentanones for the synthesis of chiral cyclopentanones.Org. Lett.202224437878788210.1021/acs.orglett.2c02656 36264061
    [Google Scholar]
  49. YangG. ZhangW. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis.Chem. Soc. Rev.20184751783181010.1039/C7CS00615B 29469141
    [Google Scholar]
  50. WangM. ZhangZ. ZhangW. Design, Synthesis, and application of chiral bicyclic imidazole catalysts.Acc. Chem. Res.202255182708272710.1021/acs.accounts.2c00455 36043467
    [Google Scholar]
  51. SanganyadoE. LuZ. FuQ. SchlenkD. GanJ. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.Water Res.201712452754210.1016/j.watres.2017.08.003 28806704
    [Google Scholar]
  52. Mas-RosellóJ. HerraizA.G. AudicB. LavernyA. CramerN. chiral cyclopentadienyl ligands: Design, syntheses, and applications in asymmetric catalysis.Angew. Chem. Int. Ed.20216024131981322410.1002/anie.202008166 32672405
    [Google Scholar]
  53. LiuD. LiB. ChenJ. GridnevI.D. YanD. ZhangW. Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines.Nat. Commun.2020111593510.1038/s41467‑020‑19807‑5 33230219
    [Google Scholar]
  54. PavlovaA.S. IvanovaO.A. ChagarovskiyA.O. StebunovN.S. OrlovN.V. ShumskyA.N. BudyninaE.M. RybakovV.B. TrushkovI.V. Domino Staudinger/aza ‐wittig/mannich reaction: An approach to diversity of di‐ and tetrahydropyrrole scaffolds.Chemistry20162250179671797110.1002/chem.201604056 27685760
    [Google Scholar]
  55. Durán-PeñaM.J. Botubol AresJ.M. HansonJ.R. ColladoI.G. Hernández-GalánR. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit.Nat. Prod. Rep.20153281236124810.1039/C5NP00024F 25994531
    [Google Scholar]
  56. Durán-PeñaM.J. Botubol AresJ.M. ColladoI.G. Hernández-GalánR. Biologically active diterpenes containing a gem-dimethylcyclopropane subunit: An intriguing source of PKC modulators.Nat. Prod. Rep.201431794095210.1039/C4NP00008K 24844588
    [Google Scholar]
  57. DegennaroL. TrincheraP. LuisiR. Recent advances in the stereoselective synthesis of aziridines.Chem. Rev.2014114167881792910.1021/cr400553c 24823261
    [Google Scholar]
  58. HeD. ZhongW. ZhouM. WangB. LiM. JiangH. WuW. Palladium-Catalyzed regio- and stereoselective coupling of alkynylsulfones with alkenes: Access to dichlorinated vinyl sulfones.Org. Lett.202224315802580610.1021/acs.orglett.2c02324 35917554
    [Google Scholar]
  59. ChenX. ZhengD. JiangL. WangZ. DuanX. CuiD. LiuS. ZhangY. YuX. GeJ. XuJ. Photoenzymatic hydrosulfonylation for the stereoselective synthesis of chiral sulfones.Angew. Chem. Int. Ed.20236223e20221814010.1002/anie.202218140 37017018
    [Google Scholar]
  60. LiuX. ZhaoC. ZhuR. LiuL. Construction of vicinal quaternary carbon stereocenters through diastereo‐ and enantioselective oxidative 1,6‐conjugate addition.Angew. Chem. Int. Ed.20216034184991850310.1002/anie.202105594 34278672
    [Google Scholar]
  61. KallamS.R. EdaV.R. SenS. Datrika, R.; Rapolu, R. K.; Khobare, S. R.; Gajare, V.; Banda, M.; Khan, R. A.; Singh, M.; Lloyd, M. C.; Kandagatla, B.; Janagili, M. B.; Tadikonda, V. P.; Vidavalur, S.; Iqbal, J.; Fox, M. E.; Dahanukar, V. H.; Oruganti, S. A diastereoselective synthesis of boc’p’evir’s gem-dimethyl bicyclic [3.1.0] proline intermediate from an insecticide ingredient ciscypermethric acid.Tetrahedron2017733042854294https://www.sciencedirect.com/science/article/abs/pii/S004040201730589610.1016/j.tet.2017.05.080
    [Google Scholar]
  62. VenkatramanS. BogenS.L. ArasappanA. BennettF. ChenK. JaoE. LiuY.T. LoveyR. HendrataS. HuangY. PanW. ParekhT. PintoP. PopovV. PikeR. RuanS. SanthanamB. VibulbhanB. WuW. YangW. KongJ. LiangX. WongJ. LiuR. ButkiewiczN. ChaseR. HartA. AgrawalS. IngravalloP. PichardoJ. KongR. BaroudyB. MalcolmB. GuoZ. ProngayA. MadisonV. BroskeL. CuiX. ChengK.C. HsiehY. BrissonJ.M. PreluskyD. KorfmacherW. WhiteR. Bogdanowich-KnippS. PavlovskyA. BradleyP. SaksenaA.K. GangulyA. PiwinskiJ. GirijavallabhanV. NjorogeF.G. Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: A potential therapeutic agent for the treatment of hepatitis C infection.J. Med. Chem.200649206074608610.1021/jm060325b 17004721
    [Google Scholar]
  63. ShanL. YuanC. JiangL. Research progress on alkyl、aryl and fluoroalkyl selenation reactions. Organic.Chemistry20224202434457http://siocjournal.cn/Jwk_yjhx/EN/10.6023/cjoc202108001
    [Google Scholar]
  64. GuoH. FanY.C. SunZ. WuY. KwonO. Phosphine organocatalysis.Chem. Rev.201811820100491029310.1021/acs.chemrev.8b00081 30260217
    [Google Scholar]
  65. VolkovA. TinnisF. SlagbrandT. TrilloP. AdolfssonH. Chemoselective reduction of carboxamides.Chem. Soc. Rev.201645246685669710.1039/C6CS00244G 27775122
    [Google Scholar]
  66. ElsenH. FärberC. BallmannG. HarderS. LiAlH 4: From stoichiometric reduction to imine hydrogenation catalysis.Angew. Chem. Int. Ed.201857247156716010.1002/anie.201803804 29683545
    [Google Scholar]
  67. Sheetal; Chauhan, A.S.; Sharma, A.K.; Sharma, N.; Giri, K.; Das, P. Pd/C-catalyzed carbonylative amidation for the synthesis of 2-carboxamidocyclohexane-1,3-diones.Org. Lett.202325468188819310.1021/acs.orglett.3c02808
    [Google Scholar]
  68. MitachiK. KurosuS.M. EslamimehrS. LemieuxM.R. IshizakiY. ClemonsW.M.Jr KurosuM. Semisynthesis of an anticancer DPAGT1 inhibitor from a muraymycin biosynthetic intermediate.Org. Lett.201921487687910.1021/acs.orglett.8b03716 30698984
    [Google Scholar]
  69. VerschuerenR.H. GillesP. Van MileghemS. De BorggraeveW.M. Solvent-free N -Boc deprotection by ex situ generation of hydrogen chloride gas.Org. Biomol. Chem.202119265782578710.1039/D1OB00728A 33973618
    [Google Scholar]
  70. ParkJ. H. SudhakarA. WongG. S. Process and intermediates for the preparation of (1r,2s,5s)-6,6-dimethyl-3- azabicyclo[3,1,0]hexane-2-carboxylates or salts thereof.WO Patent 2004113295A12004
    [Google Scholar]
  71. Tamanna; Hussain, Y.; Sharma, D.; Chauhan, P. Asymmetric synthesis of cyclohexenone-fused isochromans via quinidine-catalyzed domino peroxyhemiacetalization/oxa-michael addition/desymmetrization sequence.J. Org. Chem.20228796397640210.1021/acs.joc.2c00215 35438500
    [Google Scholar]
  72. BaoX. WeiS. ZouL. HeY. XueF. QuJ. WangB. Asymmetric chlorination of 4-substituted pyrazolones catalyzed by natural cinchona alkaloid.Chem. Commun. (Camb.)20165276114261142910.1039/C6CC06236A 27711284
    [Google Scholar]
  73. HanB. HeX.H. LiuY.Q. HeG. PengC. LiJ.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry.Chem. Soc. Rev.20215031522158610.1039/D0CS00196A 33496291
    [Google Scholar]
  74. XuP. HuangZ. Catalytic reductive desymmetrization of malonic esters.Nat. Chem.202113763464210.1038/s41557‑021‑00715‑0 34112991
    [Google Scholar]
  75. CassaniC. Martín-RapúnR. ArceoE. BravoF. MelchiorreP. Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds.Nat. Protoc.20138232534410.1038/nprot.2012.155 23329005
    [Google Scholar]
  76. RylandB.L. StahlS.S. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.Angew. Chem. Int. Ed.201453348824883810.1002/anie.201403110 25044821
    [Google Scholar]
  77. WuG. ChenF Process for the preparation of 6, 6-dimethyl-3- azabicyclo-[3.1.0]-hexane compounds and enantiomeric salts thereof. WO Patent 2007075790A12007
  78. WangW. ZhangY. XuL. PeiY. NiuJ. Efficient hydrogenation of p-chlorophenol and Cr(VI) driven by hydrogen rich balls over Pd/C catalysts.J. Hazard. Mater.202243712943410.1016/j.jhazmat.2022.129434 35897191
    [Google Scholar]
  79. BeloglazkinaE.K. BogatovaT.V. NenajdenkoV.G. Nikolay Zelinsky (1861–1953): Mendeleev’s protege, a brilliant scientist, and the top soviet chemist of the stalin era.Angew. Chem. Int. Ed.20205947207442075210.1002/anie.202005233 32881264
    [Google Scholar]
  80. AlonsoE.R. LeónI. KolesnikováL. MataS. AlonsoJ.L. Unveiling five naked structures of tartaric acid.Angew. Chem. Int. Ed.20216032174101741410.1002/anie.202105718 34060688
    [Google Scholar]
  81. SzeleczkyZ. Kis-MihályE. SemseyS. PatakiH. BagiP. PálovicsE. MarosiG. PokolG. FogassyE. MadarászJ. Effect of ultrasound-assisted crystallization in the diastereomeric salt resolution of tetramisole enantiomers in ternary system with O,O′-dibenzoyl-(2R,3R)-tartaric acid.Ultrason. Sonochem.20163281710.1016/j.ultsonch.2016.02.015 27150740
    [Google Scholar]
  82. SuiJ. WangN. WangJ. HuangX. WangT. ZhouL. HaoH. Strategies for chiral separation: From racemate to enantiomer.Chem. Sci. (Camb.)20231443119551200310.1039/D3SC01630G 37969602
    [Google Scholar]
  83. QianH.L. XuS.T. YanX.P. Recent Advances in Separation and Analysis of Chiral Compounds.Anal. Chem.202395130431810.1021/acs.analchem.2c04371 36625130
    [Google Scholar]
  84. KwokD. L. LeeH Dehydrohalogenation process for the preparation of intermediates useful in providing 6,6-dimethyl-3- azabicyclo-[3.1.0]-hexane compounds.WO Patent 2009073380A12009
  85. ChenQ. du JourdinX.M. KnochelP. Transition-metal-free BF3-mediated regioselective direct alkylation and arylation of functionalized pyridines using Grignard or organozinc reagents.J. Am. Chem. Soc.2013135134958496110.1021/ja401146v 23506449
    [Google Scholar]
  86. MengX. YorkE.A. LiuS. EdgarK.J. Hydroboration–oxidation: A chemoselective route to cellulose ω-hydroxyalkanoate esters.Carbohydr. Polym.201513326226910.1016/j.carbpol.2015.06.080 26344280
    [Google Scholar]
  87. Hilario-MartínezJ.C. MurilloF. García-MéndezJ. DzibE. Sandoval-RamírezJ. Muñoz-HernándezM.Á. BernèsS. KürtiL. DuarteF. MerinoG. Fernández-HerreraM.A. trans-Hydroboration–oxidation products in Δ 5 -steroids via a hydroboration- retro -hydroboration mechanism.Chem. Sci. (Camb.)20201147127641276810.1039/D0SC01701A 34094471
    [Google Scholar]
  88. ChenW. FanH. BalakrishnanK. WangY. SunH. FanY. GandhiV. ArnoldL.A. PengX. Discovery and optimization of novel hydrogen peroxide activated aromatic nitrogen mustard derivatives as highly potent anticancer agents.J. Med. Chem.201861209132914510.1021/acs.jmedchem.8b00559 30247905
    [Google Scholar]
  89. PanX. BoussonnièreA. CurranD.P. Molecular iodine initiates hydroborations of alkenes with N-heterocyclic carbene boranes.J. Am. Chem. Soc.201313538144331443710.1021/ja407678e 23981246
    [Google Scholar]
  90. AltarejosJ. MerinoE. SucunzaD. VaqueroJ.J. CarrerasJ. One-pot (3 + 2) cycloaddition–isomerization–oxidation of 2,2,2-trifluorodiazoethane and styryl derivatives.J. Org. Chem.20238815112581126210.1021/acs.joc.3c00396 37478336
    [Google Scholar]
  91. LiX. ThakoreR.R. TakaleB.S. GallouF. LipshutzB.H. High turnover Pd/C catalyst for nitro group reductions in water. one-pot sequences and syntheses of pharmaceutical intermediates.Org. Lett.202123208114811810.1021/acs.orglett.1c03258 34613746
    [Google Scholar]
  92. SolaiselviR. ShanmugamP. MandalA.B. Unprecedented one-pot, domino tertiary alcohol protection-Michael type addition of halides to Morita-Baylis-Hillman adduct of isatin with RCOX/K2CO3: Diastereoselective synthesis of oxindole appended β-halo esters.Org. Lett.20131561186118910.1021/ol303554c 23461280
    [Google Scholar]
  93. HirataN. UemuraT. UshioH. Process for producing polycyclic proline derivative or acid adduct salt thereof. WO Patent 20071227442007
  94. WangW. Q. ShimasakiY. IkemotoT. Method for producing proline compound.WO Patent 2012165607A12012
  95. LiT. LiangJ. AmbrogellyA. BrennanT. GloorG. HuismanG. LalondeJ. LekhalA. MijtsB. MuleyS. NewmanL. TobinM. WongG. ZaksA. ZhangX. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization.J. Am. Chem. Soc.2012134146467647210.1021/ja3010495 22409428
    [Google Scholar]
  96. O’ReillyE. IglesiasC. GhislieriD. HopwoodJ. GalmanJ.L. LloydR.C. TurnerN.J. A regio- and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2,5-disubstituted pyrrolidines.Angew. Chem. Int. Ed.20145392447245010.1002/anie.201309208 24478044
    [Google Scholar]
  97. XiaoK. JiangF. ShenY. Synthesis method of boceprevir intermediates.CN Patent 1034355322013
  98. ZhaoX. YangR. ZhangZ. Preparation method of boceprevir intermediate.CN Patent 1053305892016
/content/journals/mroc/10.2174/0118756298298861240401074137
Loading
/content/journals/mroc/10.2174/0118756298298861240401074137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test