- Home
- A-Z Publications
- Mini Reviews in Medicinal Chemistry
- Previous Issues
- Volume 23, Issue 9, 2023
Mini Reviews in Medicinal Chemistry - Volume 23, Issue 9, 2023
Volume 23, Issue 9, 2023
-
-
Fungal Endophytes: A Storehouse of Bioactive Compounds
Authors: Suraj K. Shah, Yadu Nandan Dey, Yasasve Madhavan and Arindam MaityFungal endophytes are the microbial adaptations that usually enter the plant tissues during their life cycle without harming the host plants. They are found everywhere on earth and generally depend on the hosts by developing various symbiotic relationships, like mutualism, hostility, and parasitism on rare occasions, leading to the growth and rise in the nutrient content of the hosts. Endophytes can develop tolerance in host organisms against the stresses induced by either living or non-living agents. They may protect them from insects or pests by building resistance. Interestingly, endophytes can synthesize many phytohormones, natural medicinal compounds and several essential enzymes beneficial for biotechnological perspectives that can be obtained by culturing plant tissue in a suitable medium. These endophytes are a reservoir of many new active phytoconstituents, like alkaloids, phenolics, steroids, quinones, tannins, saponins, etc., which exhibit anticancer, antiinsecticidal, antioxidant, antibacterial, antiviral, antifungal, and many more properties. Exploring the new bioactive chemical entities from the endophytes may supply potent lead compounds for drug discovery to combat numerous disease conditions. Hence, the present review was carried out to explore the significance of the fungal endophytes and their medicinal, food, and cosmetic use.
-
-
-
Potential of Phytomolecules in Alliance with Nanotechnology to Surmount the Limitations of Current Treatment Options in the Management of Osteoarthritis
Authors: Atul Mourya, Shubhra, Neha Bajwa, Ashish Baldi, Kamalinder K Singh, Manisha Pandey, Shashi B. Singh and Jitender MadanOsteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
-
-
-
Toward Early Diagnosis of Colorectal Cancer: Focus on Optical Nano Biosensors
Authors: Mahdieh Darroudi, Kousar Ghasemi, Majid Rezayi and Majid KhazaeiBackground: Colorectal cancer is a leading cause of death among cancers worldwide, with the symptoms mimicking other far more common lower gastrointestinal disorders. Objective: This challenge in separating colorectal cancer from other diseases has driven researchers to investigate a noninvasive screening technique and effective method. The early detection of colorectal cancer is imperative. Biomarkers play a critical role in colorectal screening tests, treatment, clinical and prognosis management. Therefore, sensitive and rapid biomarker detection would be helpful and demand the early diagnosis of colorectal cancer. Methods: Recently, several investigations have been performed to design biosensors for early detection of cancer diagnosis and profiling with strong applied ability and high sensitivity. Results: In comparison, optical biosensors are one of the promising platforms for the costeffective and rapid detection of biomarkers. This review will focus on the advancements and progress of the various optical-transducing approaches for diagnosing colorectal cancer. Conclusion: Further, the prospects and limitations of these optical biosensors in colorectal cancer diagnosis will be discussed. Here, an overview of optical biosensors and meaningful information for scientists worldwide will be demonstrated.
-
-
-
TiO2-NPs Toxicity and Safety: An Update of the Findings Published over the Last Six Years
Authors: Emilia Bevacqua, Maria A. Occhiuzzi, Fedora Grande and Paola TucciNanotechnology has greatly impacted our daily life and has certainly yielded many promising benefits. Titanium dioxide nanoparticles (TiO2-NPs) are among those produced on a large industrial scale that have found many practical applications in industry and daily life. Due to their presence in products such as food, cosmetics, sunscreens, medications, paints or textiles, contact with TiO2-NPs in our daily life is inevitable. The small size, together with the corresponding large specific surface area, make nanoparticles able to penetrate through cellular barriers and reach various parts of the body through different routes of exposure, including inhalation, injection, dermal penetration, and gastrointestinal tract absorption. Furthermore, after long-term exposure, the TiO2-NPs could accumulate in tissues leading to chronic diseases. This raises serious doubts about their potentially harmful effects on human health. In the past, TiO2-NPs have been considered inert, however, many in vitro studies have shown that they were cyto- and genotoxic, leading to the production of reactive oxygen species (ROS) and to the activation of signaling pathways involved in inflammation and cell death. Several in vivo studies have also demonstrated that TiO2-NPs, once in the bloodstream, could reach and accumulate in important organs causing toxic effects. Very recently, the International Agency for Research on Cancer (IARC) has classified these nanoparticles as possibly carcinogenic to humans. In this survey, we summarize the latest advances in acknowledging the toxicity and safety of TiO2-NPs. Since the literature is often controversial, further studies are still needed to define the risk/benefit ratio of using these nanoparticles. Overall, the data herein reported are critical for assessing human risk after exposure to TiO2-NPs.
-
-
-
The Characteristics of Green-synthesized Magnesium Oxide Nanoparticles (MgONPs) and their Biomedical Applications
Authors: Rajkuberan Chandrasekaran, Sunita Patil, Muthukumar Krishnan and Kamil KucaIn the current epoch, noble metals/metal oxides with precise structures are needed to develop sustainable products to improve the welfare of human beings and the environment. Nanomaterials in the regime 1 -100 nm scale are a promising material for the research fraternities owing to their stupendous properties. The metallic/metal oxide nanoparticles (silver, gold, copper oxide, iron oxide, magnesium oxide) are gaining significant momentum and need to be extensively studied. Magnesium oxide nanoparticles (MgONPs) are a periclase, white hygroscopic material consisting of Mg2+ ions and O-2 ions in lattice arranged. These nanoparticles can be fabricated through physical, chemical and biological methods. The development of green synthesized MgONPs needs to be ascertained and explored its ultimate in medicine, health, cosmetics, environmental protection, chemical industries, and energy. Therefore, the present review manifests the green synthetic approaches of MgONPs and their impact on crystalline structure and shape. Further, we have provided the antibacterial and anticancer activities of MgONPs thoroughly reported in various kinds of literature. Overall, the unique MgONPs can be plausibly used as safe biomaterials in biomedical applications.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)