Skip to content
2000
image of Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities

Abstract

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides. Although amines and amino acids have some structural similarities, using amino acids rather than amines in the synthesis of sulfonamides minimizes several drawbacks. Comparatively, amino acids are preferred to amines as starting reagents in sulfonamide synthesis due to their biological relevance, chirality, stereochemistry, diversity of side chains, orthogonality in functional group manipulation, the potential for peptide and protein synthesis, mild reaction conditions, alignment with green chemistry principles, diverse synthetic applications, easy availability, and economic viability. Amino acids, having the aforementioned properties, offer a versatile platform for the synthesis of sulfonamides with tailored structures. The reaction mechanism of the synthesis of amino acid-derived sulfonamides involves a nucleophilic attack by the amino group on the activated sulfonyl species to produce a sulfonamide functional group. Amino acid-based sulfonamides have numerous pharmacological activities, including antibacterial, antiviral, anticancer, antioxidant, anti-inflammatory, anti-plasmodial, antimalarial, anti-trypanosomal, and insect growth regulatory properties. This review discusses several synthetic processes, emphasizing established ways, cutting-edge techniques, and novel approaches that emphasize the significance of amino acids in the synthesis of sulfonamides. The structure-activity relationship of amino acid-derived sulfonamides and their pharmacological activities are also highlighted.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575353663241129064820
2025-01-13
2025-04-24
Loading full text...

Full text loading...

References

  1. Egbujor M.C. Okoro U.C. Okafor S.N. Amasiatu I.S. Amadi U.B. Egwuatu P.I. Synthesis, molecular docking and pharmacological investigation of some 4-Methylphenylsulphamoyl carboxylic acid analogs. Int. J Pharm Sci Rev 2020 11 4 5357 5366 10.26452/ijrps.v11i4.3157
    [Google Scholar]
  2. Egbujor M. Uchechukwu O. Sunday O. Nwankwo N.E. Synthesis, characterization, and in silico studies of novel alkanoylated 4-Methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents. eIJPPR 2019 9 3 89 97
    [Google Scholar]
  3. Logemann W. Giraldi P.N. Parenti M.A. Sulphonamides with diuretic activity. Nature 1959 184 4700 Suppl. 22 1711 1711 10.1038/1841711a0 14417969
    [Google Scholar]
  4. Onoabedje E.A. Ibezim A. Okoro U.C. Batra S. Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives. Heliyon 2020 6 9 e04958 10.1016/j.heliyon.2020.e04958 33005786
    [Google Scholar]
  5. Ugwuja D.I. Okoro U.C. Soman S.S. Soni R. Okafor S.N. Ugwu D.I. New peptide derived antimalaria and antimicrobial agents bearing sulphonamide moiety. J. Enzyme Inhib. Med. Chem. 2019 34 1 1388 1399 10.1080/14756366.2019.1651313 31392901
    [Google Scholar]
  6. Egbujor M.C. Garrido J. Borges F. Saso L. Sulfonamide a valid scaffold for antioxidant drug development. Mini Rev. Org. Chem. 2023 20 2 190 209 10.2174/1570193X19666220411134006
    [Google Scholar]
  7. Egbujor M.C. Petrosino M. Zuhra K. Saso L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants 2022 11 7 1255 10.3390/antiox11071255 35883746
    [Google Scholar]
  8. Dakhlaoui I. Bernard P.J. Pietrzak D. Simakov A. Maj M. Refouvelet B. Béduneau A. Cornu R. Jozwiak K. Chabchoub F. Iriepa I. Martin H. Marco-Contelles J. Ismaili L. Exploring the potential of sulfonamide-dihydropyridine hybrids as multitargeted ligands for alzheimer’s disease treatment. Int. J. Mol. Sci. 2023 24 11 9742 10.3390/ijms24119742 37298693
    [Google Scholar]
  9. Egbujor M.C. Sulfonamide derivatives: Recent compounds with potent anti-alzheimer’s disease activity. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 1 82 104 10.2174/0118715249278489231128042135 38275073
    [Google Scholar]
  10. Wan Y. Fang G. Chen H. Deng X. Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 2021 226 113837 10.1016/j.ejmech.2021.113837 34530384
    [Google Scholar]
  11. Wani T.A. Zargar S. Alkahtani H.M. Altwaijry N. Al-Rasheed L.S. Anticancer potential of sulfonamide moieties via in-vitro and in-silico approaches: Comparative investigations for future drug development. Int. J. Mol. Sci. 2023 24 9 7953 10.3390/ijms24097953 37175658
    [Google Scholar]
  12. Actor P. Chow A.W. Dutko F.J. McKinlay M.A. Chemotherapeutics. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley 2000 10.1002/14356007.a06_173
    [Google Scholar]
  13. Tacic A. Nikolic V. Nikolic L. Savic I. Antimicrobial sulfonamide drugs. Adv techn 2017 6 58 71 10.5937/savteh1701058T
    [Google Scholar]
  14. Shahzad S. Qadir M.A. Ahmed M. Ahmad S. Khan M.J. Gulzar A. Muddassar M. Folic acid-sulfonamide conjugates as antibacterial agents: Design, synthesis and molecular docking studies. RSC Advances 2020 10 70 42983 42992 10.1039/D0RA09051D 35514930
    [Google Scholar]
  15. Ovung A. Bhattacharyya J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021 13 2 259 272 10.1007/s12551‑021‑00795‑9 33936318
    [Google Scholar]
  16. al-Rashida M. Hussain S. Hamayoun M. Altaf A. Iqbal J. Sulfa drugs as inhibitors of carbonic anhydrase: New targets for the old drugs. BioMed Res. Int. 2014 2014 1 10 10.1155/2014/162928 25538942
    [Google Scholar]
  17. Ferraroni M. Cornelio B. Sapi J. Supuran C.T. Scozzafava A. Sulfonamide carbonic anhydrase inhibitors: Zinc coordination and tail effects influence inhibitory efficacy and selectivity for different isoforms. Inorg. Chim. Acta 2018 470 128 132 10.1016/j.ica.2017.03.038
    [Google Scholar]
  18. Angeli A. Paoletti N. Supuran C.T. Five-membered heterocyclic sulfonamides as carbonic anhydrase inhibitors. Molecules 2023 28 7 3220 10.3390/molecules28073220 37049983
    [Google Scholar]
  19. Tsikas D. Acetazolamide and human carbonic anhydrases: Retrospect, review and discussion of an intimate relationship. J. Enzyme Inhib. Med. Chem. 2024 39 1 2291336 10.1080/14756366.2023.2291336 38078375
    [Google Scholar]
  20. Gulati S. Aref A.A. Oral acetazolamide for intraocular pressure lowering: Balancing efficacy and safety in ophthalmic practice. Expert Rev. Clin. Pharmacol. 2021 14 8 955 961 10.1080/17512433.2021.1931123 34003717
    [Google Scholar]
  21. Isakovich R. Cates V.C. Pentz B.A. Bird J.D. Vanden Berg E.R. de Freitas E.M. Nysten C.E. Leacy J.K. O’Halloran K.D. Brutsaert T.D. Sherpa M.T. Day T.A. Using modified Fenn diagrams to assess ventilatory acclimatization during ascent to high altitude: Effect of acetazolamide. Exp. Physiol. 2024 109 7 1080 1098 10.1113/EP091748 38747161
    [Google Scholar]
  22. Selam J.L. Pharmacokinetics of hypoglycemic sulfonamides: Ozidia, a new concept. Diabetes Metab. 1997 23 39 43 9463023
    [Google Scholar]
  23. Markowicz-Piasecka M. Huttunen K.M. Broncel M. Sikora J. Sulfenamide and sulfonamide derivatives of Metformin: A new option to improve endothelial function and plasma haemostasis. Sci. Rep. 2019 9 1 6573 10.1038/s41598‑019‑43083‑z 31024058
    [Google Scholar]
  24. Scarim C.B. Chelucci R.C. Dos Santos J.L. Chin C.M. The use of sulfonamide derivatives in the treatment of Trypanosomatid parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. Med Chem. 2020 16 1 24 38 10.2174/1573406415666190620141109
    [Google Scholar]
  25. Ekoh O.C. Okoro U. Ugwu D. Ali R. Okafor S. Ugwuja D. Attah S. Novel dipeptides bearing sulfonamide as antimalarial and antitrypanosomalAgents. Synthesis and Molecular Docking. MC 2022 18 394 405 10.2174/1573406417666210604101201 34097595
    [Google Scholar]
  26. Pedersen P.S. Blakemore D.C. Chinigo G.M. Knauber T. MacMillan D.W.C. One-pot synthesis of sulfonamides from unactivated acids and amines via aromatic decarboxylative halosulfonylation. J. Am. Chem. Soc. 2023 145 39 21189 21196 10.1021/jacs.3c08218 37729614
    [Google Scholar]
  27. Bartzatt Ronald Cirillo Suat Cirillo J.D. Three sulfonamide drugs that inhibit methicillin resistant (MRSA) and susceptible (MSSA) Staphylococcus aureus. Curr Trend. Med Chem 2008
    [Google Scholar]
  28. Chen G. Lian Z. Multicomponent reactions based on SO 2 surrogates: Recent advances. Eur. J. Org. Chem. 2023 26 25 e202300217 10.1002/ejoc.202300217
    [Google Scholar]
  29. Feng R. Li Z.Y. Liu Y.J. Dong Z.B. Selective synthesis of sulfonamides and sulfenamides from sodium sulfinates and amines. J. Org. Chem. 2024 89 3 1736 1747 10.1021/acs.joc.3c02444 38215479
    [Google Scholar]
  30. Shao Z. Liu W. Tao H. Liu F. Zeng R. Champagne P.A. Cao Y. Houk K.N. Liang Y. Bioorthogonal release of sulfonamides and mutually orthogonal liberation of two drugs. Chem. Commun. (Camb.) 2018 54 100 14089 14092 10.1039/C8CC08533A 30480281
    [Google Scholar]
  31. Gioiello A. Rosatelli E. Teofrasti M. Filipponi P. Pellicciari R. Building a sulfonamide library by eco-friendly flow synthesis. ACS Comb. Sci. 2013 15 5 235 239 10.1021/co400012m 23514257
    [Google Scholar]
  32. Wen W. Ai Z.P. Wu Z.L. Cai T. Guo Q.X. Stereoselective synthesis of Δ(1)-pyrroline sulfonamides via a chiral aldehyde mediated cascade reaction. Org. Chem. Front. 2023 11 1 156 163 10.1039/D3QO01675G
    [Google Scholar]
  33. Mukherjee P. Woroch C.P. Cleary L. Rusznak M. Franzese R.W. Reese M.R. Tucker J.W. Humphrey J.M. Etuk S.M. Kwan S.C. am Ende C.W. Ball N.D. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett. 2018 20 13 3943 3947 10.1021/acs.orglett.8b01520 29888600
    [Google Scholar]
  34. Kanyiva K.S. Hamada D. Makino S. Takano H. Shibata T. α‐amino acid sulfonamides as versatile sulfonylation reagents: Silver‐catalyzed synthesis of coumarins and oxindoles by radical cyclization. Eur. J. Org. Chem. 2018 2018 43 5905 5909 10.1002/ejoc.201800901
    [Google Scholar]
  35. Egbujor M.C. Okoro U.C. Okafor S. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med. Chem. Res. 2019 28 12 2118 2127 10.1007/s00044‑019‑02440‑3
    [Google Scholar]
  36. Egbujor M.C. Okoro U.C. Emeruwa C.N. Umeh O.R. Eziafakaego M.I. Egwuatu P.I. Amasiatu I.S. Synthesis of sulphonamides using threonine, and evaluation of their biological activities. Challenges and Advances in Pharmaceutical Research Book Publisher International. 2022 95 107 10.9734/bpi/capr/v2/2274E
    [Google Scholar]
  37. Devi V. Kumari N. Awasthi P. Synthesis, characterization and insect growth regulating study of beta-alanine substituted sulfonamide derivatives as juvenile hormone mimics. Phosphorus Sulfur Silicon Relat. Elem. 2022 197 10 1080 1090 10.1080/10426507.2022.2061970
    [Google Scholar]
  38. Parvaneh Shafieyoon Mehdipour E. Michalski J. Synthesis, characterization, and biological investigation of alanine-based sulfonamide derivative: FT-IR, 1H NMR Spectra: MEP, HOMO–LUMO analysis, and molecular docking. Russ. J. Phys. Chem. A. Focus Chem. 2019 93 7 1285 1296 10.1134/S0036024419070215
    [Google Scholar]
  39. Egbujor M.C. Novel alanine-based antimicrobial and antioxidant agents: Synthesis and molecular docking. Indian J. Sci. Technol. 2020 13 9 1003 1014 10.17485/ijst/2020/v013i09/146687
    [Google Scholar]
  40. Egbujor M.C. Okoro U.C. Udeh C.M. Anieze C.O. Amadi U.B. OkenwaAn U.G. Chidebelu I.C. Synthesis and characterization of benzoylated sulfamoyl carboxylic acids. MOJ Biorg Org Chem 2020 22 25
    [Google Scholar]
  41. El-Din N.S. Synthesis of some sulfonamide derivatives with potential antibacterial activity. Chem. Heterocycl. Compd. 2000 36 4 449 454 10.1007/BF02269544
    [Google Scholar]
  42. Eze F.U. Okoro U.C. Ugwu D.I. Okafor S.N. Biological activity evaluation of some new Benzenesulphonamide derivatives. Front Chem. 2019 7 634 10.3389/fchem.2019.00634 31620427
    [Google Scholar]
  43. Ugwuja D.I. Okoro U. Soman S. Ibezim A. Ugwu D. Soni R. Obi B. Ezugwu J. Ekoh O. New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent. New J. Chem. 2021 45 7 3660 3674 10.1039/D0NJ04387G
    [Google Scholar]
  44. Qadir M.A. Ahmed M. Khaleeq A. Synthesis, antibacterial and antifungal possession of amino acids containing sulfonamide moieties. Pak. J. Pharm. Sci. 2016 29 5 1609 1613 27731819
    [Google Scholar]
  45. Hansen J.C. Bjørn-Yoshimoto W.E. Bisballe N. Nielsen B. Jensen A.A. Bunch L. β-Sulfonamido functionalized aspartate analogues as excitatory amino acid transporter inhibitors: Distinct subtype selectivity profiles arising from subtle structural differences. J. Med. Chem. 2016 59 19 8771 8786 10.1021/acs.jmedchem.6b01066 27636002
    [Google Scholar]
  46. Eze F. Okoro U. Ukoha P. Ugwu D. Okafor S. New antioxidant agents bearing carboxamide moiety: Synthesis molecular docking and in vitro studies of new benzenesulfonamide derivatives. Iran. J. Chem. Chem. Eng. 2021 40 10.30492/ijcce.2020.37980
    [Google Scholar]
  47. Egbujor M.C. Okoro U.C. Okafor S.N. Egu S.A. Amasiatu I.S. Egwuatu P.I. Umeh O.R. Ibo E.M. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents. Res. Pharm. Sci. 2022 17 1 99 110 10.4103/1735‑5362.329930 34909048
    [Google Scholar]
  48. Awakawa T. Barra L. Abe I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J. Ind. Microbiol. Biotechnol. 2021 48 3-4 kuab001 10.1093/jimb/kuab001 33928358
    [Google Scholar]
  49. Ugwu D.I. Eze F.U. Ogboo B.C. Okoro V.N. Ugwu M.C. Okafor S.N. Ayogu J.I. Attah S.I. Synthesis of multi-target benzene-sulphonamide derivatives for the treatment of trypanosomiasis. Med. Chem. 2019 9 83 92
    [Google Scholar]
  50. Tirgir F. Soleimani M. Moghadam G. Khorshidi M. Synthesis, characterization and dehydrogenase activity of novel biodegradable nanostructure spherical shape poly(urethane-imide-sulfonamide) as pseudo-poly(amino acid)s from l-tyrosine. Polym. Bull. 2018 75 3 1055 1073 10.1007/s00289‑017‑2074‑3
    [Google Scholar]
  51. Egbujor M. Okoro U. Okafor S. Nwankwo N. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo Am JP Sci 2019 6 12232 12240
    [Google Scholar]
  52. Aronimo B.S. Okoro U.C. Ali R. Ibeji C.U. Ezugwu J.A. Ugwu D.I. Synthesis, molecular docking and antimalarial activity of phenylalanine-glycine dipeptide bearing sulphonamide moiety. J. Mol. Struct. 2021 1246 131201 10.1016/j.molstruc.2021.131201
    [Google Scholar]
  53. Danish M. Raza M.A. Rani H. Akhtar A. Arshad M.N. Asiri A.M. Enzyme inhibition and antioxidant potential of new synthesized sulfonamides; synthesis, single crystal and molecular docking. J. Mol. Struct. 2021 1241 130608 10.1016/j.molstruc.2021.130608
    [Google Scholar]
  54. Devi K. Awasthi P. Sulfonamide phenylalanine (SPA) series of analogues as an antibacterial, antifungal, anticancer agents along with p53 tumor suppressor-DNA complex inhibitor: Part 1. J. Biomol. Struct. Dyn. 2020 38 14 4081 4097 10.1080/07391102.2019.1671229 31547774
    [Google Scholar]
  55. Hanessian S. Sailes H. Therrien E. Synthesis of functionally diverse bicyclic sulfonamides as constrained proline analogues and application to the design of potential thrombin inhibitors. Tetrahedron 2003 59 35 7047 7056 10.1016/S0040‑4020(03)00919‑0
    [Google Scholar]
  56. Berkessel A. Koch B. Lex J. proline‐derived N‐sulfonylcarboxamides: Readily available, highly enantioselective and versatile catalysts for direct aldol reactions. Adv. Synth. Catal. 2004 346 9-10 1141 1146 10.1002/adsc.200404126
    [Google Scholar]
  57. Xiao-hua S. Cun L. Zhao J. Cai-rong Z. Deng-gao J. New chiral sulfonamide ligands derived from L-proline for catalytic enantioselective cyclopropanation. J. Chem. Res. 2011 35 10 582 584 10.3184/174751911X13171474996075
    [Google Scholar]
  58. Egbujor M.C. Synthesis and biological evaluation of proline derived sulphonamides. J. Res Pharm Sci. 2023 19 26
    [Google Scholar]
  59. Liu H. Zhang B. Zhao W. Yu X. Zhu W. Xia C. Zhou Y. Base-mediated coupling reactions of benzenesulfonyl azides with proline: Synthesis of proline-derived benzenesulfonamides. ACS Omega 2021 6 50 34796 34804 10.1021/acsomega.1c05331 34963962
    [Google Scholar]
  60. Zajdel P. Subra G. Bojarski A.J. Duszyńska B. Pawłowski M. Martinez J. Parallel solid-phase synthesis and characterization of new sulfonamide and carboxamide proline derivatives as potential CNS agents. Bioorg. Med. Chem. 2005 13 8 3029 3035 10.1016/j.bmc.2005.01.060 15781412
    [Google Scholar]
  61. Forbes I.T. Dabbs S. Duckworth D.M. Jennings A.J. King F.D. Lovell P.J. Brown A.M. Collin L. Hagan J.J. Middlemiss D.N. Riley G.J. Thomas D.R. Upton N. ( R )-3, N -Dimethyl- N -[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzenesulfonamide: The first selective 5-HT 7 receptor antagonist. J. Med. Chem. 1998 41 5 655 657 10.1021/jm970519e 9513592
    [Google Scholar]
  62. Lovell P.J. Bromidge S.M. Dabbs S. Duckworth D.M. Forbes I.T. Jennings A.J. King F.D. Middlemiss D.N. Rahman S.K. Saunders D.V. Collin L.L. Hagan J.J. Riley G.J. Thomas D.R. A novel, potent, and selective 5-HT 7 antagonist: ( R )-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J. Med. Chem. 2000 43 3 342 345 10.1021/jm991151j 10669560
    [Google Scholar]
  63. Eze F.U. Okoro U.C. Ugwu D.I. Okafor S.N. New carboxamides bearing benzenesulphonamides: Synthesis, molecular docking and pharmacological properties. Bioorg. Chem. 2019 92 103265 10.1016/j.bioorg.2019.103265 31525524
    [Google Scholar]
  64. Ugwu D.I. Okoro U.C. Ukoha P.O. Okafor S. Ibezim A. Kumar N.M. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide. Eur. J. Med. Chem. 2017 135 349 369 10.1016/j.ejmech.2017.04.029 28460310
    [Google Scholar]
  65. Ezugwu J.A. Okoro U.C. Ezeokonkwo M.A. Bhimapaka C.R. Okafor S.N. Ugwu D.I. Ekoh O.C. Attah S.I. Novel leu-val based dipeptide as antimicrobial and antimalarial agents: Synthesis and molecular docking. Front Chem. 2020 8 583926 10.3389/fchem.2020.583926 33330372
    [Google Scholar]
  66. Patel T.S. Bhatt J.D. Dixit R.B. Chudasama C.J. Patel B.D. Dixit B.C. Design and synthesis of leucine‐linked quinazoline‐4(3 H )‐one‐sulphonamide molecules distorting malarial reductase activity in the folate pathway. Arch. Pharm. (Weinheim) 2019 352 9 1900099 10.1002/ardp.201900099 31381192
    [Google Scholar]
  67. Onyeije U.C. Onugha C.F. Egbujor M.C. Emeruwa C.N. Amasiatu I.S. Synthesis, characterisation and antimicrobial activities of sulphonamides from branched chain amino acids. IRE Journals 2023 6 297 302
    [Google Scholar]
  68. Thompson J.C. Dao W.T. Ku A. Rodriguez-Beltran S.L. Amezcua M. Palomino A.Y. Lien T. Salzameda N.T. Synthesis and activity of isoleucine sulfonamide derivatives as novel botulinum neurotoxin serotype A light chain inhibitors. Bioorg. Med. Chem. 2020 28 18 115659 10.1016/j.bmc.2020.115659 32828426
    [Google Scholar]
  69. Abdul Qadir M. Ahmed M. Iqbal M. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs. BioMed Res. Int. 2015 2015 1 7 10.1155/2015/938486 25802872
    [Google Scholar]
  70. Eze F.U. Ezeorah C.J. Ogboo B.C. Okpareke O.C. Rhyman L. Ramasami P. Okafor S.N. Tania G. Atiga S. Ejiyi T.U. Ugwu M.C. Uzoewulu C.P. Ayogu J.I. Ekoh O.C. Ugwu D.I. Structure and computational studies of new sulfonamide compound: (4-nitrophenyl)sulfonyltryptophan. Molecules 2022 27 21 7400 10.3390/molecules27217400 36364227
    [Google Scholar]
  71. Sharma P. Awasthi P. Synthesis, characterization, in vivo molecular docking, ADMET and Homo-Lumo study of juvenile hormone analogues having sulfonamide feature as an insect growth regulators. J. Mol. Struct. 2021 1231 129945 10.1016/j.molstruc.2021.129945
    [Google Scholar]
  72. Egbujor M.C. Okoro U.C. New methionine-based P-toluenesulphonamoyl carboxamide derivatives as antimicrobial and antioxidant agents: Design, synthesis and molecular docking. J. Pharm. Res. Int. 2019 28 1 1 12 10.9734/jpri/2019/v28i130192
    [Google Scholar]
  73. Egbujor M.C. Okoro U.C. Nwobodo D.C. Ezeagu C.U. Amadi U.B. Okenwa-Ani C.G. Ugwu J.I. Okoye I.G. Abu I.P. Egwuatu P.I. Design, synthesis, antimicrobial and antioxidant activities of novel threonine-based sulfonamide derivatives. J. Pharm. Res. Int. 2020 51 61 10.9734/jpri/2020/v32i830470
    [Google Scholar]
  74. Ceruso M. Bragagni M. AlOthman Z. Osman S.M. Supuran C.T. New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII. J. Enzyme Inhib. Med. Chem. 2015 30 3 430 434 10.3109/14756366.2014.942659 25089707
    [Google Scholar]
  75. Izuchukwu U.D. Chris O.U. Izuchukwu U.D. Synthesis of N-aryl substituted p-toluenesulphonamides via nickel catalyzed amidation reaction and their antibacterial, antifungal and antioxidant activities evaluation. Pak. J. Pharm. Sci. 2018 31 4 1209 1216 30033403
    [Google Scholar]
  76. Ahmed A. Ugwu D.I. Simon O.G. Oluwasola H.O. Synthesis and in vitro antibacterial activity of morpholine derived benzenesulphonamides. J. Chem. Soc. Niger. 2021 46 5 10.46602/jcsn.v46i5.670
    [Google Scholar]
  77. Ezugwu J.A. Okoro U.C. Ezeokonkwo M.A. Bhimapaka C. Okafor S.N. Ugwu D.I. Ugwuja D.I. Synthesis and biological evaluation of Val–Val dipeptide–sulfonamide conjugates. Arch. Pharm. (Weinheim) 2020 353 7 2000074 10.1002/ardp.202000074 32390214
    [Google Scholar]
  78. Egbujor M.C. Egu S.A. Okonkwo V.I. Jacob A.D. Egwuatu P.I. Amasiatu I.S. Antioxidant drug design: Historical and recent developments. J. Pharm. Res. Int. 2021 32 41 36 56 10.9734/jpri/2020/v32i4131042
    [Google Scholar]
  79. Eze C.C. Ezeokonkwo M.A. Ezema B.E. Onoabedje A.E. Ugwu D.I. Synthesis and biological properties of some new lead sulphonamide and carboxamide scaffolds bearing coumarin moieties. Mini Rev. Med. Chem. 2021 21 11 1270 1287 10.2174/1389557520666200730154458 32744970
    [Google Scholar]
  80. Soliman A.M. Ghorab W.M. Lotfy D.M. Karam H.M. Ghorab M.M. Ramadan L.A. Novel iodoquinazolinones bearing sulfonamide moiety as potential antioxidants and neuroprotectors. Sci. Rep. 2023 13 1 15546 10.1038/s41598‑023‑42239‑2 37730974
    [Google Scholar]
  81. Ugwu D.I. Okoro U.C. Ukoha P.O. Gupta A. Okafor S.N. Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem. 2018 33 1 405 415 10.1080/14756366.2018.1426573 29372659
    [Google Scholar]
  82. Attah S.I. Okoro U.C. Onoadbedje E. Ugwu D. Singh S.P. Eze C.E. Ibeji C.U. Okonkwo V.I. Akor J. Novel dipeptides incorporating sulphonamide functionality: Synthesis, biological and computational studies. SSRN 2023
    [Google Scholar]
  83. Onoabedje E.A. Ibezim A. Okoro U.C. Batra S. New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities. PLoS One 2021 16 2 e0243305 10.1371/journal.pone.0243305 33626047
    [Google Scholar]
  84. Ekoh O.C. Timothy R.A. Asogwa F.C. Gber T.E. Ikeuba A.I. Ugwu D.I. Louis H. Modeling of dipeptide sulfonamides as anti-plasmodial drugs: Synthesis, characterization, DFT and in silico studies. Chemistry Africa 2024 7 5 2369 2381 10.1007/s42250‑024‑00908‑3
    [Google Scholar]
  85. Asogwa F.C. Ogechi E.C. Louis H. Izuchukwu U.D. Apebende C.G. Florence E.U. Ekeleme M.C. James E.A. Ikenyirimba O.J. Ikeuba A.I. Owen A.E. Chris O.U. Synthesis, characterization, DFT studies and molecular docking investigation of 2-oxo-ethyl piperidine pentanamide-derived sulfonamides as anti-diabetic agents. Results Chem. 2022 4 100672 10.1016/j.rechem.2022.100672
    [Google Scholar]
  86. Attah S.I. Okoro U.C. Singh S.P. Eze C.C. Ibeji C.U. Ezugwu J.A. Okenyeka O.U. Ekoh O. Ugwu D.I. Eze F.U. Pro-Gly based dipeptide containing sulphonamide functionality, their antidiabetic, antioxidant, and anti-inflammatory activities. Synthesis, characterization and computational studies. J. Mol. Struct. 2022 1264 133280 10.1016/j.molstruc.2022.133280
    [Google Scholar]
  87. Ugwu D.I. Asogwa F.C. Olisaeloka S.G. Ezugwu J.A. Ogbuke S.C. Benjamin I. Louis H. Gber T.E. Ugwu M.C. Eze F.U. Manicum A-L.E. Anti-hypertensive properties of 2-[N-(4-methylbenzenesulfonyl)-1-phenylformamido]-n-(4-nitrophenyl)-3-phenylpropenamide: Experimental and theoretical studies. Chemical Physics Impact 2023 6 100158 10.1016/j.chphi.2022.100158
    [Google Scholar]
  88. Ugwu D. Okoro U. Mishra N. Synthesis, characterization and anthelmintic activity evaluation of pyrimidine derivatives bearing carboxamide and sulphonamide moieties. J. Serb. Chem. Soc. 2018 83 4 401 409 10.2298/JSC170127109U
    [Google Scholar]
  89. Ibezim A. Onoabedje E.A. Adaka I.C. Omeje K.O. Onoabedje U.S. Obi B.C. Carboxamides bearing sulfonamide functionality as potential novel phospholipase A 2 inhibitors. ChemistrySelect 2020 5 45 14416 14421 10.1002/slct.202003784
    [Google Scholar]
  90. Izuchi A. Onoabedje E.A. Ekoh C. Okafor O. Okoro U. Synthesis of medicinally relevant phenyl sulphonylamino alkanamides and N-Aryl P-toluenesulphonamides. J. Med. Chem. Sci 2019 2 4 151 161 10.26655/jmchemsci.2019.8.5
    [Google Scholar]
  91. Ugwu D.I. Okoro U.C. Mishra N.K. Synthesis, characterization and in vitro antitrypanosomal activities of new carboxamides bearing quinoline moiety. PLoS One 2018 13 1 e0191234 10.1371/journal.pone.0191234 29324817
    [Google Scholar]
  92. Ugwu D.I. Okoro U.C. Ahmad H. New carboxamide derivatives bearing benzenesulphonamide as a selective COX-II inhibitor: Design, synthesis and structure-activity relationship. PLoS One 2017 12 9 e0183807 10.1371/journal.pone.0183807 28922386
    [Google Scholar]
  93. Anand N. Sulfonamides and sulfones. Mechanism of Action of Antimicrobial and Antitumor Agents. Corcoran J.W. Hahn F.E. Snell J.F. Arora K.L. Berlin, Heidelberg Springer Berlin Heidelberg 1975 668 698 10.1007/978‑3‑642‑46304‑4_45
    [Google Scholar]
  94. Aronson J.K. Sulfonamides Meyler’s Side Effects of Drugs Elsevier 2016 555 559
    [Google Scholar]
  95. Scholar E. Sulfanilamide xPharm: The Comprehensive Pharmacology Reference; Elsevier 2007 1 5
    [Google Scholar]
  96. El-Qaliei M. El-Gaby M. Ammar A. Sulfonamides: Synthesis and the recent applications in medicinal chemistry. Egypt. J. Chem 2020 63 12 5289 10.21608/ejchem.2020.33860.2707
    [Google Scholar]
  97. Maclean K. Njamo F.O.J.P. Serepa-Dlamini M.H. Kondiah K. Green E. Antimicrobial susceptibility profiles among Pseudomonas aeruginosa isolated from professional SCUBA divers with otitis externa, swimming pools and the ocean at a diving operation in South Africa. Pathogens 2022 11 1 91 10.3390/pathogens11010091 35056039
    [Google Scholar]
  98. Janssen F.J. Deng H. Baggelaar M.P. Allarà M. van der Wel T. den Dulk H. Ligresti A. van Esbroeck A.C.M. McGuire R. Di Marzo V. Overkleeft H.S. van der Stelt M. Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6. J. Med. Chem. 2014 57 15 6610 6622 10.1021/jm500681z 24988361
    [Google Scholar]
  99. Chupak L.S. Zheng X. Hu S. Huang Y. Ding M. Lewis M.A. Westphal R.S. Blat Y. McClure A. Gentles R.G. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase. Bioorg. Med. Chem. 2016 24 7 1455 1468 10.1016/j.bmc.2016.02.006 26917221
    [Google Scholar]
  100. Burnett J.C. Schmidt J.J. McGrath C.F. Nguyen T.L. Hermone A.R. Panchal R.G. Vennerstrom J.L. Kodukula K. Zaharevitz D.W. Gussio R. Bavari S. Conformational sampling of the botulinum neurotoxin serotype a light chain: Implications for inhibitor binding. Bioorg. Med. Chem. 2005 13 2 333 341 10.1016/j.bmc.2004.10.026 15598556
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575353663241129064820
Loading
/content/journals/mrmc/10.2174/0113895575353663241129064820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test