Skip to content
2000
image of The Application of the Pyrazole Structure in the Structural Modification of Natural Products

Abstract

Most natural products in nature have broad but not exceedingly good biological activities. The pyrazole structure has been introduced into natural products due to its suitability for various synthetic methods and its broad pharmacological activities. This article provides a detailed introduction to the anti-inflammatory, antibacterial, antifungal, antiviral, and anti-Alzheimer disease activities of pyrazole-modified natural product derivatives, particularly their anti-tumor activity. It is worth noting that compared to lead compounds, most natural product derivatives modified with pyrazole exhibit excellent pharmacological activity. Some of these derivatives exhibit outstanding anti-tumor activity, with IC values reaching nanomolar levels. This review provides more research directions and choices for future studies on natural products.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575359419241211092252
2025-01-21
2025-04-25
Loading full text...

Full text loading...

References

  1. Tiwari A. Kumar S. Suryawanshi S.N. Mittal M. Vishwakarma P. Gupta S. Chemotherapy of leishmaniasis part X: Synthesis and bioevaluation of novel terpenyl heterocycles. Bioorg. Med. Chem. Lett. 2013 23 1 248 251 10.1016/j.bmcl.2012.10.110 23177254
    [Google Scholar]
  2. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  3. Sharma S. Malakar C.C. Singh V. Transition-metal-free C-S bond forming strategy towards synthesis of highly diverse Pyrazole tethered benzothiazoles: Investigation of their photophysical properties. Asian J. Org. Chem. 2020 9 11 1857 1868 10.1002/ajoc.202000390
    [Google Scholar]
  4. Eftekhari-Sis B. Zirak M. Akbari A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 2013 113 5 2958 3043 10.1021/cr300176g 23347156
    [Google Scholar]
  5. Chougala B.M. Samundeeswari S. Holiyachi M. Shastri L.A. Dodamani S. Jalalpure S. Dixit S.R. Joshi S.D. Sunagar V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2017 125 101 116 10.1016/j.ejmech.2016.09.021 27657808
    [Google Scholar]
  6. Li X. He L. Chen H. Wu W. Jiang H. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles. J. Org. Chem. 2013 78 8 3636 3646 10.1021/jo400162d 23547954
    [Google Scholar]
  7. Boruah D.J. Borkotoky L. Newar U.D. Maurya R.A. Yuvaraj P. Transition-metal-free synthesis of N-Heterocyclic compounds via multi-component reactions. Asian J. Org. Chem. 2023 12 9 e202300297 10.1002/ajoc.202300297
    [Google Scholar]
  8. Mor S. Khatri M. punia R. Sindhu S. Recent progress in anti-cancer agents incorporating pyrazole scaffold. Mini Rev. Med. Chem. 2022 22 1 115 163 10.2174/1389557521666210325115218 33823764
    [Google Scholar]
  9. Sharma S. Singh D. Kumar S. An efficient metal-free and catalyst-free C–S/C–O bondformation strategy: Synthesis of pyrazole-conjugated thioamides and amides. Beilstein J. Org. Chem. 2023 19 231 244 10.3762/bjoc.19.22 36895429
    [Google Scholar]
  10. Abdel-Aziz M. Abuo-Rahma G.E.D.A. Hassan A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem. 2009 44 9 3480 3487 10.1016/j.ejmech.2009.01.032 19268406
    [Google Scholar]
  11. Pasin J.S.M. Ferreira A.P.O. Saraiva A.L.L. Ratzlaff V. Andrighetto R. Machado P. Marchesan S. Zanette R.A. Bonacorso H.G. Zanatta N. Martins M.A.P. Ferreira J. Mello C.F. Antipyretic and antioxidant activities of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles in rats. Braz. J. Med. Biol. Res. 2010 43 12 1193 1202 10.1590/S0100‑879X2010007500139 21140097
    [Google Scholar]
  12. Bonesi M. Loizzo M.R. Statti G.A. Michel S. Tillequin F. Menichini F. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett. 2010 20 6 1990 1993 10.1016/j.bmcl.2010.01.113 20167484
    [Google Scholar]
  13. Lavanya G. Mallikarjuna Reddy L. Padmavathi V. Padmaja A. Synthesis and antimicrobial activity of (1,4-phenylene)bis(arylsulfonylpyrazoles and isoxazoles). Eur. J. Med. Chem. 2014 73 12 187 194 10.1016/j.ejmech.2013.11.041 24398288
    [Google Scholar]
  14. Geronikaki A. Babaev E. Dearden J. Dehaen W. Filimonov D. Galaeva I. Krajneva V. Lagunin A. Macaev F. Molodavkin G. Poroikov V. Pogrebnoi S. Saloutin V. Stepanchikova A. Stingaci E. Tkach N. Vlad L. Voronina T. Design, synthesis, computational and biological evaluation of new anxiolytics. Bioorg. Med. Chem. 2004 12 24 6559 6568 10.1016/j.bmc.2004.09.016 15556772
    [Google Scholar]
  15. Cottineau B. Toto P. Marot C. Pipaud A. Chenault J. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg. Med. Chem. Lett. 2002 12 16 2105 2108 10.1016/S0960‑894X(02)00380‑3 12127514
    [Google Scholar]
  16. Küçükgüzel Ş.G. Şenkardeş S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem. 2015 97 5 786 815 10.1016/j.ejmech.2014.11.059 25555743
    [Google Scholar]
  17. Singh D. Sharma P. Kumar R. Pandey S.K. Malakar C.C. Singh V. An expeditious approach towards synthesis of β-Carboline and pyrazole based molecular hybrids. Asian J. Org. Chem. 2018 7 2 383 394 10.1002/ajoc.201700545
    [Google Scholar]
  18. Liu Y. Yan Q. Zeng Z. Fan C. Xiong W. Advances and prospects of mRNA vaccines in cancer immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2024 1879 2 189068 10.1016/j.bbcan.2023.189068 38171406
    [Google Scholar]
  19. Cao Y. Yang P. Yang Y. Lin Z. Fan Z. Wei X. Yan L. Li Y. He Z. Ma L. Xu H. Wu C. Discovery of a novel 1H-pyrazole- [3,4-b] pyridine-based lysine demethylase 5B inhibitor with potential anti-prostate cancer activity that perturbs the phosphoinositide 3-kinase/AKT pathway. Eur. J. Med. Chem. 2023 251 115250 10.1016/j.ejmech.2023.115250 36931124
    [Google Scholar]
  20. Farag P.S. AboulMagd A.M. Hemdan M.M. Hassaballah A.I. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg. Chem. 2023 130 106231 10.1016/j.bioorg.2022.106231 36335649
    [Google Scholar]
  21. Semenova M.N. Demchuk D.V. Tsyganov D.V. Chernysheva N.B. Samet A.V. Silyanova E.A. Kislyi V.P. Maksimenko A.S. Varakutin A.E. Konyushkin L.D. Raihstat M.M. Kiselyov A.S. Semenov V.V. Sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles isoxazoles,- 1,2,3-triazoles, and -pyrroles as tubulin-binding agents. ACS Comb. Sci. 2018 20 12 700 721 10.1021/acscombsci.8b00113 30452225
    [Google Scholar]
  22. Yang Y. Cao Y. Yu J. Yu X. Guo Y. Wang F. Ren Q. Li C. Design and synthesis of novel 3-amino-5-phenylpyrazole derivatives as tubulin polymerization inhibitors targeting the colchicine-binding site. Eur. J. Med. Chem. 2024 267 116177 10.1016/j.ejmech.2024.116177 38280356
    [Google Scholar]
  23. Zhang H. Zhu P. Liu J. Lin Y. Yao H. Jiang J. Ye W. Wu X. Xu J. Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives. Bioorg. Med. Chem. Lett. 2015 25 3 728 732 10.1016/j.bmcl.2014.11.058 25529742
    [Google Scholar]
  24. Liu J. Zhu Z. Tang J. Lin Q. Chen L. Sun J. Design and synthesis of NO-releasing betulinic acid derivatives as potential anticancer agents. Anticancer. Agents Med. Chem. 2017 17 2 241 249 10.2174/1871520616666160926115747 27671295
    [Google Scholar]
  25. Chen Y. Li C. Zheng Y. Gao Y. Hu J. Chen H. Discovery of FZU-03,010 as a self-assembling anticancer amphiphile for acute myeloid leukemia. Bioorg. Med. Chem. Lett. 2017 27 4 1007 1011 10.1016/j.bmcl.2016.12.071 28073673
    [Google Scholar]
  26. Zhu S.L. Wu Y. Liu C.J. Wei C.Y. Tao J.C. Liu H.M. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2013 23 5 1343 1346 10.1016/j.bmcl.2012.12.091 23347685
    [Google Scholar]
  27. Ma L. Miao D. Lee J.J. Li T. Chen Y. Su G. Zhao Y. Synthesis and biological evaluation of heterocyclic ring-fused dammarane-type ginsenoside derivatives as potential anti-tumor agents. Bioorg. Chem. 2021 116 105365 10.1016/j.bioorg.2021.105365 34563998
    [Google Scholar]
  28. Lei Z.C. Li N. Yu N.R. Ju W. Sun X.N. Zhang X.L. Dong H.J. Sun J.B. Chen L. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells. J. Nat. Prod. 2022 85 5 1282 1293 10.1021/acs.jnatprod.1c01236 35536757
    [Google Scholar]
  29. Zhang Y. Yuan W. Wang X. Zhang H. Sun Y. Zhang X. Zhao Y. Synthesis, characterization and cytotoxic activity evaluation of ginsengdiol oxidation and nitrogen hybrid derivatives. MedChemComm 2018 9 11 1910 1919 10.1039/C8MD00387D 30568759
    [Google Scholar]
  30. Luan S. Zhong H. Zhao X. Yang J. Jing Y. Liu D. Zhao L. Synthesis, anticancer evaluation and pharmacokinetic study of novel 10-O-phenyl ethers of dihydroartemisinin. Eur. J. Med. Chem. 2017 141 584 595 10.1016/j.ejmech.2017.10.023 29102180
    [Google Scholar]
  31. Wang J. Li T. Zhao T. Wu T. Liu C. Ding H. Li Z. Bian J. Design of wogonin-inspired selective cyclin-dependent kinase 9 (CDK9) inhibitors with potent in vitro and in vivo antitumor activity. Eur. J. Med. Chem. 2019 178 782 801 10.1016/j.ejmech.2019.06.024 31238183
    [Google Scholar]
  32. Khan I. Garikapati K.R. Setti A. Shaik A.B. Kanth Makani V.K. Shareef M.A. Rajpurohit H. Vangara N. Pal-Bhadra M. Kamal A. Kumar C.G. Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno[1,2-c]pyrazole chalcone as EGFR /Akt pathway inhibitors. Eur. J. Med. Chem. 2019 163 636 648 10.1016/j.ejmech.2018.12.011 30562699
    [Google Scholar]
  33. Tangeti V.S. Vasundhara D. Satyanarayana K.V.V.V. Pavan Kumar K.S. Synthesis and antiproliferative activity of some dihydro-1H-furo[2,3-c]pyrazole-flavone hybrids. Asian J. Chem. 2017 29 7 1525 1532 10.14233/ajchem.2017.20550
    [Google Scholar]
  34. Pham V.T.B. Nguyen T.V. Nguyen H.V. Nguyen T.T. Hoang H.M. Curcuminoids versus pyrazole‐modified analogues: Synthesis and cytotoxicity against HepG2 cancer cell cine. ChemistrySelect 2020 5 37 11681 11684 10.1002/slct.202003003
    [Google Scholar]
  35. Kumar S. Lathwal E. Kumar G. Saroha B. Kumar S. Mahata S. Sahoo P.K. Nasare V.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line. Chemical Data Collections 2020 30 100559 10.1016/j.cdc.2020.100559
    [Google Scholar]
  36. Kamal A. Srinivasulu V. Nayak V.L. Sathish M. Shankaraiah N. Bagul C. Reddy N.V.S. Rangaraj N. Nagesh N. Design and synthesis of C3-pyrazole/chalcone-linked beta-carboline hybrids: antitopoisomerase I, DNA-interactive, and apoptosis-inducing anticancer agents. ChemMedChem 2014 9 9 2084 2098 10.1002/cmdc.201300406 24470122
    [Google Scholar]
  37. Budzisz E. Paneth P. Geromino I. Muzioł T. Rozalski M. Krajewska U. Pipiak P. Ponczek M.B. Małecka M. Kupcewicz B. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis. J. Mol. Struct. 2017 1137 267 276 10.1016/j.molstruc.2017.02.037
    [Google Scholar]
  38. Kovács D. Wölfling J. Szabó N. Szécsi M. Schelz Z. Zupkó I. Frank É. Synthesis of novel 17-(4′-formyl)pyrazolylandrosta-5,16-dienes and their derivatives as potent 17α-hydroxylase/C17,20-lyase inhibitors or antiproliferative agents depending on the substitution pattern of the heteroring. Eur. J. Med. Chem. 2016 120 284 295 10.1016/j.ejmech.2016.05.006 27209562
    [Google Scholar]
  39. Li J. Huo H. Guo R. Liu B. Li L. Dan W. Xiao X. Zhang J. Shi B. Facile and efficient access to Androsten-17-(1′,3′,4′)-pyrazoles and Androst-17β-(1′,3′,4′)-pyrazoles via Vilsmeier reagents, and their antiproliferative activity evaluation in vitro. Eur. J. Med. Chem. 2017 130 1 14 10.1016/j.ejmech.2017.02.033 28237792
    [Google Scholar]
  40. Liu H.S. Zheng H.L. Ge M. Xia P. Chen Y. Synthesis and VEGF inhibitory activity of 16,17-pyrazo-annulated steroids. Chin. Chem. Lett. 2011 22 7 757 760 10.1016/j.cclet.2010.12.043
    [Google Scholar]
  41. Mótyán G. Zupkó I. Minorics R. Schneider G. Wölfling J. Frank É. Lewis acid-induced intramolecular access to novel steroidal ring D-condensed arylpyrazolines exerting in vitro cell-growth-inhibitory effects. Mol. Divers. 2015 19 3 511 527 10.1007/s11030‑015‑9593‑3 25894363
    [Google Scholar]
  42. Shamsuzzaman Khanam H. Mashrai A. Sherwani A. Owais M. Siddiqui N. Synthesis and anti-tumor evaluation of B-ring substituted steroidal pyrazoline derivatives. Steroids 2013 78 12-13 1263 1272 10.1016/j.steroids.2013.09.006 24064114
    [Google Scholar]
  43. Li J. Zhao X. Li L. Yuan Z. Tan F. Shi B. Zhang J. Design, synthesis and cytotoxic activity of a novel series of steroidal phenylpyrazoles. Steroids 2016 107 45 54 10.1016/j.steroids.2015.12.018 26742627
    [Google Scholar]
  44. Huang Y. Liu M. Meng L. Feng P. Guo Y. Ying M. Zhu X. Chen Y. Synthesis and antitumor evaluation of novel hybrids of phenylsulfonylfuroxan and epiandrosterone/dehydroepiandrosterone derivatives. Steroids 2015 101 7 14 10.1016/j.steroids.2015.05.003 26004429
    [Google Scholar]
  45. Baji Á. Kovács F. Mótyán G. Schneider G. Wölfling J. Sinka I. Zupkó I. Ocsovszki I. Frank É. Investigation of pH and substituent effects on the distribution ratio of novel steroidal ring D- and A-fused arylpyrazole regioisomers and evaluation of their cell-growth inhibitory effects in vitro. Steroids 2017 126 35 49 10.1016/j.steroids.2017.08.003 28803210
    [Google Scholar]
  46. Huo H. Jiang W. Sun F. Li J. Shi B. Synthesis and biological evaluation of novel steroidal pyrazole amides as highly potent anticancer agents. Steroids 2021 176 108931 10.1016/j.steroids.2021.108931 34655595
    [Google Scholar]
  47. Vaarla K. Kesharwani R.K. Santosh K. Vedula R.R. Kotamraju S. Toopurani M.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett. 2015 25 24 5797 5803 10.1016/j.bmcl.2015.10.042 26542964
    [Google Scholar]
  48. Amin K.M. Abou-Seri S.M. Awadallah F.M. Eissa A.A.M. Hassan G.S. Abdulla M.M. Synthesis and anticancer activity of some 8-substituted-7-methoxy-2H-chromen-2-one derivatives toward hepatocellular carcinoma HepG2 cells. Eur. J. Med. Chem. 2015 90 221 231 10.1016/j.ejmech.2014.11.027 25461322
    [Google Scholar]
  49. Zhang L. Zhang Z. Chen F. Chen Y. Lin Y. Wang J. Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways. Eur. J. Med. Chem. 2016 123 226 235 10.1016/j.ejmech.2016.07.050 27484511
    [Google Scholar]
  50. Wang Y. Cheng F.X. Yuan X.L. Tang W.J. Shi J.B. Liao C.Z. Liu X.H. Dihydropyrazole derivatives as telomerase inhibitors: Structure-based design, synthesis, SAR and anticancer evaluation in vitro and in vivo. Eur. J. Med. Chem. 2016 112 231 251 10.1016/j.ejmech.2016.02.009 26900656
    [Google Scholar]
  51. Dai H. Huang M. Qian J. Liu J. Meng C. Li Y. Ming G. Zhang T. Wang S. Shi Y. Yao Y. Ge S. Zhang Y. Ling Y. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids. Eur. J. Med. Chem. 2019 166 470 479 10.1016/j.ejmech.2019.01.070 30739827
    [Google Scholar]
  52. Velpula R. Deshineni R. Gali R. Bavantula R. One-pot multicomponent synthesis of novel 1-thiazolyl-5-coumarin-3-yl-pyrazole derivatives and evaluation of their cytotoxic activity. Res. Chem. Intermed. 2016 42 3 1729 1740 10.1007/s11164‑015‑2114‑2
    [Google Scholar]
  53. Garazd Y. Garazd M. Lesyk R. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharm. J. 2017 25 2 214 223 10.1016/j.jsps.2016.05.005 28344471
    [Google Scholar]
  54. Hura N. Naaz A. Prassanawar S.S. Guchhait S.K. Panda D. Drug-clinical agent molecular hybrid: Synthesis of diaryl(trifluoromethyl)pyrazoles as tubulin targeting anticancer agents. ACS Omega 2018 3 2 1955 1969 10.1021/acsomega.7b01784 30023819
    [Google Scholar]
  55. Elmeligie S. Khalil N.A. Ahmed E.M. Emam S.H. Zaitone S.A.B. Synthesis of new N1-substituted-5-aryl-3-(3,4,5-trimethoxyphenyl)-2-pyrazoline derivatives as antitumor agents targeting the colchicine site on tubulin. Biol. Pharm. Bull. 2016 39 10 1611 1622 10.1248/bpb.b16‑00277 27725438
    [Google Scholar]
  56. Wang S.F. Yin Y. Zhang Y.L. Mi S.W. Zhao M.Y. Lv P.C. Wang B.Z. Zhu H.L. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents. Eur. J. Med. Chem. 2015 93 291 299 10.1016/j.ejmech.2015.02.018 25703297
    [Google Scholar]
  57. Romagnoli R. Oliva P. Salvador M.K. Camacho M.E. Padroni C. Brancale A. Ferla S. Hamel E. Ronca R. Grillo E. Bortolozzi R. Rruga F. Mariotto E. Viola G. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Eur. J. Med. Chem. 2019 181 111577 10.1016/j.ejmech.2019.111577 31400707
    [Google Scholar]
  58. Wang C. Yang S. Du J. Ni J. Wu Y. Wang J. Guan Q. Zuo D. Bao K. Wu Y. Zhang W. Synthesis and bioevaluation of diarylpyrazoles as antiproliferative agents. Eur. J. Med. Chem. 2019 171 1 10 10.1016/j.ejmech.2019.02.049 30901597
    [Google Scholar]
  59. Brown A.W. Fisher M. Tozer G.M. Kanthou C. Harrity J.P.A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. J. Med. Chem. 2016 59 20 9473 9488 10.1021/acs.jmedchem.6b01128 27690431
    [Google Scholar]
  60. Zheng C.J. Xu L.L. Sun L.P. Miao J. Piao H.R. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines. Eur. J. Med. Chem. 2012 58 112 116 10.1016/j.ejmech.2012.10.012 23123727
    [Google Scholar]
  61. Verma R. Verma S.K. Rakesh K.P. Girish Y.R. Ashrafizadeh M. Sharath Kumar K.S. Rangappa K.S. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. Eur. J. Med. Chem. 2021 212 113134 10.1016/j.ejmech.2020.113134 33395624
    [Google Scholar]
  62. Lawrence J.A. Huang Z. Rathinavelu S. Hu J.F. Garo E. Ellis M. Norman V.L. Buckle R. Williams R.B. Starks C.M. Eldridge G.R. Optimized plant compound with potent anti-biofilm activity across gram-negative species. Bioorg. Med. Chem. 2020 28 5 115229 10.1016/j.bmc.2019.115229 32033878
    [Google Scholar]
  63. Farooq S. Ngaini Z. Microwave‐assisted synthesis, antimicrobial activities and molecular docking of methoxycarboxylated chalcone derived pyrazoline and pyrazole derivatives. ChemistrySelect 2022 7 1 e202103984 10.1002/slct.202103984
    [Google Scholar]
  64. Yu L.G. Ni T.F. Gao W. He Y. Wang Y.Y. Cui H.W. Yang C.G. Qiu W.W. The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives. Eur. J. Med. Chem. 2015 90 10 20 10.1016/j.ejmech.2014.11.015 25461307
    [Google Scholar]
  65. Liu H. Ren Z.L. Wang W. Gong J.X. Chu M.J. Ma Q.W. Wang J.C. Lv X.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem. 2018 157 81 87 10.1016/j.ejmech.2018.07.059 30075404
    [Google Scholar]
  66. Kumar S. Kumar N. Drabu S. Synthesis of benzo[G]quinoxaline-5,10-dione based pyrazoline derivatives and their antimycobacterial activity. Int. J. Pharm. Sci. Res. 2018 9 2 498 508
    [Google Scholar]
  67. Kim B.R. Park J.Y. Jeong H.J. Kwon H.J. Park S.J. Lee I.C. Ryu Y.B. Lee W.S. Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase. J. Enzyme Inhib. Med. Chem. 2018 33 1 1256 1265 10.1080/14756366.2018.1488695 30126306
    [Google Scholar]
  68. Ashok D. Rangu K. Hanumantha Rao V. Gundu S. Srilata B. Vijjulatha M. Microwave-assisted synthesis, molecular docking and antimicrobial activity of novel 2-(3-aryl,1-phenyl-1H-pyrazol-4-yl)-8H-pyrano[2,3-f]chromen-4-ones. Med. Chem. Res. 2016 25 3 501 514 10.1007/s00044‑016‑1505‑2
    [Google Scholar]
  69. Whitt J. Duke C. Sumlin A. Chambers S.A. Alnufaie R. Gilmore D. Fite T. Basnakian A.G. Alam M.A. Synthesis of hydrazone derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as potent growth inhibitors of antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules 2019 24 11 2051 10.3390/molecules24112051 31146470
    [Google Scholar]
  70. Alnufaie R. Raj KC H. Alsup N. Whitt J. Andrew Chambers S. Gilmore D. Alam M.A. Basnakian A.G. Alam M.A. Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent anti-staphylococcus aureus agents. Molecules 2020 25 12 2758 10.3390/molecules25122758 32549248
    [Google Scholar]
  71. Gondru R. Banothu J. Thatipamula R.K. Hussain SK A. Bavantula R. 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono)methyl)-1H-pyrazol-3-yl)-2H-chromen-2-ones: One-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies. RSC Advances 2015 5 42 33562 33569 10.1039/C5RA04196A
    [Google Scholar]
  72. Guo Y. Wang X. Qu L. Xu S. Zhao Y. Xie R. Huang M. Zhang Y. Design, synthesis, antibacterial and insecticidal activities of novel N-phenylpyrazole fraxinellone hybrid compounds. RSC Adv. 2017 7 19 11796 11802 10.1039/C6RA28064A
    [Google Scholar]
  73. Aragade P. Palkar M. Ronad P. Satyanarayana D. Coumarinyl pyrazole derivatives of INH: Promising antimycobacterial agents. Med. Chem. Res. 2013 22 5 2279 2283 10.1007/s00044‑012‑0222‑8
    [Google Scholar]
  74. Corrales J. Ramos-Alonso L. González-Sabín J. Ríos-Lombardía N. Trevijano-Contador N. Engen Berg H. Sved Skottvoll F. Moris F. Zaragoza O. Chymkowitch P. Garcia I. Enserink J.M. Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole. Microbiol. Spectr. 2024 12 2 e02594-23 10.1128/spectrum.02594‑23 38230926
    [Google Scholar]
  75. Dong H.H. Wang Y.H. Peng X.M. Zhou H.Y. Zhao F. Jiang Y.Y. Zhang D.Z. Jin Y.S. Synergistic antifungal effects of curcumin derivatives as fungal biofilm inhibitors with fluconazole. Chem. Biol. Drug Des. 2021 97 5 1079 1088 10.1111/cbdd.13827 33506609
    [Google Scholar]
  76. Ashok D. Kifah M.A. Lakshmi B.V. Sarasija M. Adam S. Microwave-assisted one-pot synthesis of some new flavonols by modified Algar–Flynn–Oyamada reaction and their antimicrobial activity. Chem. Heterocycl. Compd. 2016 52 3 172 176 10.1007/s10593‑016‑1852‑4
    [Google Scholar]
  77. Li S. Wang K. Jiang K. Xing D. Deng R. Xu Y. Ding Y. Guan H. Chen L.L. Wang D. Chen Y. Bu W. Xiang Y. Brazilin-Ce nanoparticles attenuate inflammation by de/anti-phosphorylation of IKKβ. Biomaterials 2024 305 122466 10.1016/j.biomaterials.2023.122466 38184960
    [Google Scholar]
  78. Guo H.Y. Li X. Sang X.T. Quan Z.S. Shen Q.K. Design and synthesis of forsythin derivatives as anti-inflammatory agents for acute lung injury. Eur. J. Med. Chem. 2024 267 116223 10.1016/j.ejmech.2024.116223 38342013
    [Google Scholar]
  79. Wu Y. Jin F. Wang Y. Li F. Wang L. Wang Q. Ren Z. Wang Y. In vitro and in vivo anti-inflammatory effects of theaflavin-3,3′-digallate on lipopolysaccharide-induced inflammation. Eur. J. Pharmacol. 2017 794 52 60 10.1016/j.ejphar.2016.11.027 27871911
    [Google Scholar]
  80. Passos G.F. Medeiros R. Marcon R. Nascimento A.F.Z. Calixto J.B. Pianowski L.F. The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. Eur. J. Pharmacol. 2013 698 1-3 413 420 10.1016/j.ejphar.2012.10.019 23099255
    [Google Scholar]
  81. Marcondes Sari M.H. Souza A.C.G. Rosa S.G. Chagas P.M. da Luz S.C.A. Rodrigues O.E.D. Nogueira C.W. Biochemical and histological evaluations of anti-inflammatory and antioxidant p-chloro-selenosteroid actions in acute murine models of inflammation. Eur. J. Pharmacol. 2016 781 25 35 10.1016/j.ejphar.2016.03.051 27102337
    [Google Scholar]
  82. Ragab F.A. Abdel Gawad N.M. Georgey H.H. Said M.F. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2013 63 645 654 10.1016/j.ejmech.2013.03.005 23567953
    [Google Scholar]
  83. Ahmed A.H.H. Mohamed M.F.A. Allam R.M. Nafady A. Mohamed S.K. Gouda A.E. Beshr E.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg. Chem. 2022 129 106171 10.1016/j.bioorg.2022.106171 36166898
    [Google Scholar]
  84. Ren S.Z. Wang Z.C. Zhu X.H. Zhu D. Li Z. Shen F.Q. Duan Y.T. Cao H. Zhao J. Zhu H.L. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg. Med. Chem. 2018 26 14 4264 4275 10.1016/j.bmc.2018.07.022 30031652
    [Google Scholar]
  85. Chavan H.V. Bandgar B.P. Adsul L.K. Dhakane V.D. Bhale P.S. Thakare V.N. Masand V. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones. Bioorg. Med. Chem. Lett. 2013 23 5 1315 1321 10.1016/j.bmcl.2012.12.094 23357629
    [Google Scholar]
  86. Ahmed M. Qadir M.A. Hameed A. Imran M. Muddassar M. Screening of curcumin‐derived isoxazole, pyrazoles, and pyrimidines for their anti‐inflammatory, antinociceptive, and cyclooxygenase‐2 inhibition. Chem. Biol. Drug Des. 2018 91 1 338 343 10.1111/cbdd.13076 28741789
    [Google Scholar]
  87. Wang J. Wei W. Zhang X. Cao S. Hu B. Ye Y. Jiang M. Wang T. Zuo J. He S. Yang C. Synthesis and biological evaluation of C-17-amino-substituted pyrazole-fused betulinic acid derivatives as novel agents for osteoarthritis treatment. J. Med. Chem. 2021 64 18 13676 13692 10.1021/acs.jmedchem.1c01019 34491054
    [Google Scholar]
  88. Macarini A.F. Sobrinho T.U.C. Rizzi G.W. Corrêa R. Pyrazole–chalcone derivatives as selective COX-2 inhibitors: Design, virtual screening, and in vitro analysis. Med. Chem. Res. 2019 28 8 1235 1245 10.1007/s00044‑019‑02368‑8
    [Google Scholar]
  89. Wu J. Bao B.H. Shen Q. Zhang Y.C. Jiang Q. Li J.X. Novel heterocyclic ring-fused oleanolic acid derivatives as osteoclast inhibitors for osteoporosis. MedChemComm 2016 7 2 371 377 10.1039/C5MD00482A
    [Google Scholar]
  90. Cai X. Zhao S. Cai D. Zheng J. Zhu Z. Wei D. Zheng Z. Zhu H. Chen Y. Synthesis and evaluation of novel D-ring substituted steroidal pyrazolines as potential anti-inflammatory agents. Steroids 2019 146 70 78 10.1016/j.steroids.2019.03.012 30951758
    [Google Scholar]
  91. Xu Y. Zhang Z. Jiang X. Chen X. Wang Z. Alsulami H. Qin H.L. Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies. Eur. J. Med. Chem. 2019 181 111598 10.1016/j.ejmech.2019.111598 31415981
    [Google Scholar]
  92. Gutti G. Kumar D. Paliwal P. Ganeshpurkar A. Lahre K. Kumar A. Krishnamurthy S. Singh S.K. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease. Bioorg. Chem. 2019 90 103080 10.1016/j.bioorg.2019.103080 31271946
    [Google Scholar]
  93. Li Z. Yin B. Zhang S. Lan Z. Zhang L. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives. Eur. J. Med. Chem. 2023 261 115817 10.1016/j.ejmech.2023.115817 37722288
    [Google Scholar]
  94. Messaad M. Dhouib I. Abdelhedi M. Khemakhem B. Synthesis, bioassay and molecular docking of novel pyrazole and pyrazolone derivatives as acetylcholinesterase inhibitors. J. Mol. Struct. 2022 1263 133105 10.1016/j.molstruc.2022.133105
    [Google Scholar]
  95. Yamali C. Gul H.I. Kazaz C. Levent S. Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem. 2020 96 103627 10.1016/j.bioorg.2020.103627 32058104
    [Google Scholar]
  96. Jain M. Dhariwal R. Bhardava K. Das S. Shaikh M. Tendulkar R. Wani R. Sharma M. Delta A.K. Kaushik P. Insilico and invitro profiling of curcumin and its derivatives as a potent acetylcholinesterase inhibitor. Biocatal. Agric. Biotechnol. 2024 56 103022 10.1016/j.bcab.2024.103022
    [Google Scholar]
  97. Taslimi P. Türkan F. Cetin A. Burhan H. Karaman M. Bildirici I. Gulçin İ. Şen F. Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials. Bioorg. Chem. 2019 92 103213 10.1016/j.bioorg.2019.103213 31470200
    [Google Scholar]
  98. Amin K.M. Abdel Rahman D.E. Abdelrasheed Allam H. El-Zoheiry H.H. Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Chem. 2021 110 104792 10.1016/j.bioorg.2021.104792 33799178
    [Google Scholar]
  99. Benazzouz-Touami A. Chouh A. Halit S. Terrachet-Bouaziz S. Makhloufi-Chebli M. Ighil-Ahriz K. Silva A.M.S. New coumarin-pyrazole hybrids: Synthesis, docking studies and biological evaluation as potential cholinesterase inhibitors. J. Mol. Struct. 2022 1249 131591 10.1016/j.molstruc.2021.131591
    [Google Scholar]
  100. Endo H. Nikaido Y. Nakadate M. Ise S. Konno H. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor. Bioorg. Med. Chem. Lett. 2014 24 24 5621 5626 10.1016/j.bmcl.2014.10.076 25467149
    [Google Scholar]
  101. Okuda M. Hijikuro I. Fujita Y. Teruya T. Kawakami H. Takahashi T. Sugimoto H. Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg. Med. Chem. Lett. 2016 26 20 5024 5028 10.1016/j.bmcl.2016.08.092 27624076
    [Google Scholar]
  102. Okuda M. Fujita Y. Hijikuro I. Wada M. Uemura T. Kobayashi Y. Waku T. Tanaka N. Nishimoto T. Izumi Y. Kume T. Akaike A. Takahashi T. Sugimoto H. PE859, A novel curcumin derivative, inhibits amyloid-β and Tau aggregation, and ameliorates cognitive dysfunction in senescence-accelerated mouse prone 8. J. Alzheimers Dis. 2017 59 1 313 328 10.3233/JAD‑161017 28598836
    [Google Scholar]
  103. Shi C.J. Peng W. Zhao J.H. Yang H.L. Qu L.L. Wang C. Kong L.Y. Wang X.B. Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur. J. Med. Chem. 2020 187 111961 10.1016/j.ejmech.2019.111961 31865017
    [Google Scholar]
  104. Kotani R. Urano Y. Sugimoto H. Noguchi N. Tooyama I. Decrease of amyloid-β levels by curcumin derivative via modulation of amyloid-β protein precursor trafficking. J. Alzheimers Dis. 2017 56 2 529 542 10.3233/JAD‑160794 27983550
    [Google Scholar]
  105. Martinez Botella G. Salituro F.G. Harrison B.L. Beresis R.T. Bai Z. Shen K. Belfort G.M. Loya C.M. Ackley M.A. Grossman S.J. Hoffmann E. Jia S. Wang J. Doherty J.J. Robichaud A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-Aminobutyric Acid)A receptor: Structure–activity relationships of heterocyclic substitution at C-21. J. Med. Chem. 2015 58 8 3500 3511 10.1021/acs.jmedchem.5b00032 25799373
    [Google Scholar]
  106. Martinez Botella G. Salituro F.G. Harrison B.L. Beresis R.T. Bai Z. Blanco M.J. Belfort G.M. Dai J. Loya C.M. Ackley M.A. Althaus A.L. Grossman S.J. Hoffmann E. Doherty J.J. Robichaud A.J. Neuroactive steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5β-pregnan-20-one (SAGE-217): A clinical next generation neuroactive steroid positive allosteric modulator of the (γ-Aminobutyric Acid)A receptor. J. Med. Chem. 2017 60 18 7810 7819 10.1021/acs.jmedchem.7b00846 28753313
    [Google Scholar]
  107. Zia M. Hameed S. Nadeem H. Kharl A.A. Dege N. Paracha R.Z. Arshad I. Naseer M.M. Synthesis, structure and acetylcholinesterase inhibition activity of new diarylpyrazoles. Bioorg. Chem. 2022 121 105658 10.1016/j.bioorg.2022.105658 35182888
    [Google Scholar]
  108. El-Sabbagh O.I. Baraka M.M. Ibrahim S.M. Pannecouque C. Andrei G. Snoeck R. Balzarini J. Rashad A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem. 2009 44 9 3746 3753 10.1016/j.ejmech.2009.03.038 19419804
    [Google Scholar]
  109. Rashad A.E. Hegab M.I. Abdel-Megeid R.E. Fathalla N. Abdel-Megeid F.M.E. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem. 2009 44 8 3285 3292 10.1016/j.ejmech.2009.02.012 19285757
    [Google Scholar]
  110. Rashad A.E. Hegab M.I. Abdel-Megeid R.E. Micky J.A. Abdel-Megeid F.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem. 2008 16 15 7102 7106 10.1016/j.bmc.2008.06.054 18635363
    [Google Scholar]
  111. Pal R. Teli G. Akhtar M.J. Matada G.S.P. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis. Eur. J. Med. Chem. 2023 258 115609 10.1016/j.ejmech.2023.115609 37421889
    [Google Scholar]
  112. Sharma A. Shahid A. Banerjee R. Kumar K.J. Emerging insights into the structure-activity relationship of water-soluble polysaccharides in antiviral therapy. Eur J Med Chem Rep 2024 10 100122 10.1016/j.ejmcr.2023.100122
    [Google Scholar]
  113. Li W. Li J. Shen H. Cheng J. Li Z. Xu X. Synthesis, nematicidal activity and docking study of novel chromone derivatives containing substituted pyrazole. Chin. Chem. Lett. 2018 29 6 911 914 10.1016/j.cclet.2017.10.011
    [Google Scholar]
  114. Matiadis D. Saporiti T. Aguilera E. Robert X. Guillon C. Cabrera N. Pérez-Montfort R. Sagnou M. Alvarez G. Pyrazol(in)e derivatives of curcumin analogs as a new class of anti-Trypanosoma cruzi agents. Future Med. Chem. 2021 13 8 701 714 10.4155/fmc‑2020‑0349 33648346
    [Google Scholar]
  115. Shtro A.A. Zarubaev V.V. Luzina O.A. Sokolov D.N. Kiselev O.I. Salakhutdinov N.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem. 2014 22 24 6826 6836 10.1016/j.bmc.2014.10.033 25464881
    [Google Scholar]
  116. Jadav S.S. Kaptein S. Timiri A. De Burghgraeve T. Badavath V.N. Ganesan R. Sinha B.N. Neyts J. Leyssen P. Jayaprakash V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett. 2015 25 8 1747 1752 10.1016/j.bmcl.2015.02.059 25791449
    [Google Scholar]
  117. Nourazarian A.R. Kangari P. Salmaninejad A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac. J. Cancer Prev. 2014 15 12 4745 4751 10.7314/APJCP.2014.15.12.4745 24998536
    [Google Scholar]
  118. Lozada-García M. Enríquez R. Ramírez-Apán T. Nieto-Camacho A. Palacios-Espinosa J. Custodio-Galván Z. Soria-Arteche O. Pérez-Villanueva J. Synthesis of curcuminoids and evaluation of their cytotoxic and antioxidant properties. Molecules 2017 22 4 633 10.3390/molecules22040633 28420097
    [Google Scholar]
  119. Sherin D.R. Rajasekharan K.N. Mechanochemical synthesis and antioxidant activity of curcumin‐templated azoles. Arch. Pharm. 2015 348 12 908 914 10.1002/ardp.201500305 26554539
    [Google Scholar]
  120. Zhao Y. Cao Y. Chen H. Zhuang F. Wu C. Yoon G. Zhu W. Su Y. Zheng S. Liu Z. Cheon S.H. Synthesis, biological evaluation, and molecular docking study of novel allyl-retrochalcones as a new class of protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 2019 27 6 963 977 10.1016/j.bmc.2019.01.034 30737132
    [Google Scholar]
  121. De-la-Cruz-Martínez L. Duran-Becerra C. González-Andrade M. Páez-Franco J.C. Germán-Acacio J.M. Espinosa-Chávez J. Torres-Valencia J.M. Pérez-Villanueva J. Palacios-Espinosa J.F. Soria-Arteche O. Cortés-Benítez F. Indole- and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies. Molecules 2021 26 14 4375 10.3390/molecules26144375 34299651
    [Google Scholar]
  122. Nidhar M. Sonker P. Sharma V.P. Kumar S. Tewari A.K. Design, synthesis and in-silico & in vitro enzymatic inhibition assays of pyrazole-chalcone derivatives as dual inhibitors of α-amylase & DPP-4 enzyme. Chem. Zvesti 2022 76 3 1707 1720 10.1007/s11696‑021‑01985‑1
    [Google Scholar]
  123. Ahmed M. Qadir M.A. Hameed A. Arshad M.N. Asiri A.M. Muddassar M. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies. Bioorg. Chem. 2018 76 218 227 10.1016/j.bioorg.2017.11.015 29190478
    [Google Scholar]
  124. Tugrak M. Gul H.I. Akincioglu H. Gulcin I. New chalcone derivatives with pyrazole and sulfonamide pharmacophores as carbonic anhydrase inhibitors. Lett. Drug Des. Discov. 2021 18 2 191 198 10.2174/1570180817999201001160414
    [Google Scholar]
  125. Banday A.H. Shameem S.A. Jeelani S. Steroidal pyrazolines and pyrazoles as potential 5α-reductase inhibitors: Synthesis and biological evaluation. Steroids 2014 92 13 19 10.1016/j.steroids.2014.09.004 25278254
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575359419241211092252
Loading
/content/journals/mrmc/10.2174/0113895575359419241211092252
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biological activity ; natural products ; Pyrazole ; structural modification
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test