Skip to content
2000
image of Olaparib: A Chemosensitizer for the Treatment of Glioblastoma

Abstract

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6-Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0129503779343780241011045810
2024-10-22
2024-12-26
Loading full text...

Full text loading...

References

  1. McKinnon C. Nandhabalan M. Murray S.A. Plaha P. Glioblastoma: Clinical presentation, diagnosis, and management. BMJ 2021 374 n1560 10.1136/bmj.n1560 34261630
    [Google Scholar]
  2. Grochans S. Cybulska A.M. Simińska D. Korbecki J. Kojder K. Chlubek D. Baranowska-Bosiacka I. Epidemiology of glioblastoma multiforme–literature review. Cancers (Basel) 2022 14 10 2412 10.3390/cancers14102412 35626018
    [Google Scholar]
  3. Naim A. ouazzani H. Rafii S. Azhari A. Badou A. Epidemiology, treatment, and evolution of glioblastoma in a low-income country: Moroccan experience. J. Cancer Sci. Clin. Ther. 2023 7 1 16 20 10.26502/jcsct.5079187
    [Google Scholar]
  4. Hanif F. Muzaffar K. Perveen K. Malhi S.M. Simjee ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017 18 1 3 9 28239999
    [Google Scholar]
  5. Singh N. Miner A. Hennis L. Mittal S. Mechanisms of temozolomide resistance in glioblastoma - A comprehensive review. Cancer Drug Resist. 2021 4 1 17 10.20517/cdr.2020.79 34337348
    [Google Scholar]
  6. Delello Di Filippo L. Hofstätter Azambuja J. Paes Dutra J.A. Tavares Luiz M. Lobato Duarte J. Nicoleti L.R. Olalla Saad S.T. Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur. J. Pharm. Biopharm. 2021 168 76 89 10.1016/j.ejpb.2021.08.011 34461214
    [Google Scholar]
  7. Teraiya M. Perreault H. Chen V.C. An overview of glioblastoma multiforme and temozolomide resistance: Can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front. Oncol. 2023 13 1166207 10.3389/fonc.2023.1166207 37182181
    [Google Scholar]
  8. Bisht P. Kumar V.U. Pandey R. Velayutham R. Kumar N. Role of PARP inhibitors in glioblastoma and perceiving challenges as well as strategies for successful clinical development. Front. Pharmacol. 2022 13 939570 10.3389/fphar.2022.939570 35873570
    [Google Scholar]
  9. Curtin N.J. PARP inhibitors for cancer therapy. Expert Rev. Mol. Med. 2005 7 4 1 20 10.1017/S146239940500904X 15836799
    [Google Scholar]
  10. Zhang J. Stevens M.F.G. Bradshaw T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012 5 1 102 114 10.2174/1874467211205010102 22122467
    [Google Scholar]
  11. Sim H.W. Galanis E. Khasraw M. PARP inhibitors in glioma: A review of therapeutic opportunities. Cancers (Basel) 2022 14 4 1003 10.3390/cancers14041003 35205750
    [Google Scholar]
  12. Montaldi A. Lima S. Godoy P. Xavier D. Sakamoto-Hojo E. PARP‑1 inhibition sensitizes temozolomide‑treated glioblastoma cell lines and decreases drug resistance independent of MGMT activity and PTEN proficiency. Oncol. Rep. 2020 44 5 2275 2287 10.3892/or.2020.7756 32901889
    [Google Scholar]
  13. Silpa N. Qiu-Xu T. Jagadish K. Jingquan W. Yehuda G.A. Charles R.A.J. Zhe-Sheng C. Poly (ADP-ribose) polymerase (PARP) inhibitors as chemosensitizing compounds for the treatment of drug resistant cancers. J. Mol. Clin. Med. 2019 2 3 55 67 10.31083/j.jmcm.2019.03.0303
    [Google Scholar]
  14. Christ T.N. Olaparib: A tale of two dosage forms. Semin. Oncol. 2019 41 6 100 101 10.1053/j.seminoncol.2018.11.003 30583807
    [Google Scholar]
  15. Deeks E.D. Olaparib: First global approval. Drugs 2015 75 2 231 240 10.1007/s40265‑015‑0345‑6 25616434
    [Google Scholar]
  16. Thorsell A.G. Ekblad T. Karlberg T. Löw M. Pinto A.F. Trésaugues L. Moche M. Cohen M.S. Schüler H. Structural basis for potency and promiscuity in poly (ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 2017 60 4 1262 1271 10.1021/acs.jmedchem.6b00990 28001384
    [Google Scholar]
  17. Friedlander M. Gebski V. Gibbs E. Davies L. Bloomfield R. Hilpert F. Wenzel L.B. Eek D. Rodrigues M. Clamp A. Penson R.T. Provencher D. Korach J. Huzarski T. Vidal L. Salutari V. Scott C. Nicoletto M.O. Tamura K. Espinoza D. Joly F. Pujade-Lauraine E. Health-related quality of life and patient-centred outcomes with olaparib maintenance after chemotherapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT Ov-21): A placebo-controlled, phase 3 randomised trial. Lancet Oncol. 2018 19 8 1126 1134 10.1016/S1470‑2045(18)30343‑7 30026002
    [Google Scholar]
  18. Rolfo C. de Vos-Geelen J. Isambert N. Molife L.R. Schellens J.H.M. De Grève J. Dirix L. Grundtvig-Sørensen P. Jerusalem G. Leunen K. Mau-Sørensen M. Plummer R. Learoyd M. Bannister W. Fielding A. Ravaud A. Pharmacokinetics and safety of olaparib in patients with advanced solid tumours and renal impairment. Clin. Pharmacokinet. 2019 58 9 1165 1174 10.1007/s40262‑019‑00754‑4 30877569
    [Google Scholar]
  19. Ledermann J.A. Pujade-Lauraine E. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther. Adv. Med. Oncol. 2019 11 10.1177/1758835919849753 31205507
    [Google Scholar]
  20. Pujade-Lauraine E. Ledermann J.A. Selle F. Gebski V. Penson R.T. Oza A.M. Korach J. Huzarski T. Poveda A. Pignata S. Friedlander M. Colombo N. Harter P. Fujiwara K. Ray-Coquard I. Banerjee S. Liu J. Lowe E.S. Bloomfield R. Pautier P. Korach J. Huzarski T. Byrski T. Pautier P. Friedlander M. Harter P. Colombo N. Pignata S. Scambia G. Nicoletto M. Nussey F. Clamp A. Penson R. Oza A. Poveda Velasco A. Rodrigues M. Lotz J-P. Selle F. Ray-Coquard I. Provencher D. Prat Aparicio A. Vidal Boixader L. Scott C. Tamura K. Yunokawa M. Lisyanskaya A. Medioni J. Pécuchet N. Dubot C. de la Motte Rouge T. Kaminsky M-C. Weber B. Lortholary A. Parkinson C. Ledermann J. Williams S. Banerjee S. Cosin J. Hoffman J. Penson R. Plante M. Covens A. Sonke G. Joly F. Floquet A. Banerjee S. Hirte H. Amit A. Park-Simon T-W. Matsumoto K. Tjulandin S. Kim J.H. Gladieff L. Sabbatini R. O’Malley D. Timmins P. Kredentser D. Laínez Milagro N. Barretina Ginesta M.P. Tibau Martorell A. Gómez de Liaño Lista A. Ojeda González B. Mileshkin L. Mandai M. Boere I. Ottevanger P. Nam J-H. Filho E. Hamizi S. Cognetti F. Warshal D. Dickson-Michelson E. Kamelle S. McKenzie N. Rodriguez G. Armstrong D. Chalas E. Celano P. Behbakht K. Davidson S. Welch S. Helpman L. Fishman A. Bruchim I. Sikorska M. Słowińska A. Rogowski W. Bidziński M. Śpiewankiewicz B. Casado Herraez A. Mendiola Fernández C. Gropp-Meier M. Saito T. Takehara K. Enomoto T. Watari H. Choi C.H. Kim B-G. Kim J.W. Hegg R. Vergote I. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017 18 9 1274 1284 10.1016/S1470‑2045(17)30469‑2 28754483
    [Google Scholar]
  21. Bochum S. Berger S. Martens U.M. Olaparib. Small Molecules in Oncology Springer Cham Martens U. 2018 217 233 10.1007/978‑3‑319‑91442‑8_15
    [Google Scholar]
  22. Lee S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016 3 3 198 210 10.1016/j.gendis.2016.04.007 30258889
    [Google Scholar]
  23. Tomar M.S. Kumar A. Srivastava C. Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta Rev. Cancer 2021 1876 2 188616 10.1016/j.bbcan.2021.188616 34419533
    [Google Scholar]
  24. Yoshimoto K. Mizoguchi M. Hata N. Murata H. Hatae R. Amano T. Nakamizo A. Sasaki T. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front. Oncol. 2012 2 186 10.3389/fonc.2012.00186 23227453
    [Google Scholar]
  25. Kitange G.J. Carlson B.L. Schroeder M.A. Grogan P.T. Lamont J.D. Decker P.A. Wu W. James C.D. Sarkaria J.N. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro-oncol. 2009 11 3 281 291 10.1215/15228517‑2008‑090 18952979
    [Google Scholar]
  26. Cropper J.D. Alimbetov D.S. Brown K.T.G. Likhotvorik R.I. Robles A.J. Guerra J.T. He B. Chen Y. Kwon Y. Kurmasheva R.T. PARP1-MGMT complex underpins pathway crosstalk in O6-methylguanine repair. J. Hematol. Oncol. 2022 15 1 146 10.1186/s13045‑022‑01367‑4 36242092
    [Google Scholar]
  27. Parsons J. Edmonds M. The base excision repair pathway. Encyclopedia of Cell Biology 2016 10.1016/B978‑0‑12‑394447‑4.10046‑X
    [Google Scholar]
  28. Tang J. Svilar D. Trivedi R.N. Wang X. Goellner E.M. Moore B. Hamilton R.L. Banze L.A. Brown A.R. Sobol R.W. N-methylpurine DNA glycosylase and DNA polymerase β modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro-oncol. 2011 13 5 471 486 10.1093/neuonc/nor011 21377995
    [Google Scholar]
  29. Messaoudi K. Clavreul A. Lagarce F. Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov. Today 2015 20 7 899 905 10.1016/j.drudis.2015.02.011 25744176
    [Google Scholar]
  30. Kamaletdinova T. Fanaei-Kahrani Z. Wang Z.Q. The enigmatic function of PARP1: From parylation activity to PAR readers. Cells 2019 8 12 1625 10.3390/cells8121625 31842403
    [Google Scholar]
  31. Rouleau M. Patel A. Hendzel M.J. Kaufmann S.H. Poirier G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 2010 10 4 293 301 10.1038/nrc2812 20200537
    [Google Scholar]
  32. Zhang J. Zhang J. Li H. Chen L. Yao D. Dual-target inhibitors of PARP1 in cancer therapy: A drug discovery perspective. Drug Discov. Today 2023 28 7 103607 10.1016/j.drudis.2023.103607 37146962
    [Google Scholar]
  33. Wu S. Li X. Gao F. de Groot J.F. Koul D. Yung W.K.A. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-oncol. 2021 23 6 920 931 10.1093/neuonc/noab003 33433610
    [Google Scholar]
  34. Robson M. Im S.A. Senkus E. Xu B. Domchek S.M. Masuda N. Delaloge S. Li W. Tung N. Armstrong A. Wu W. Goessl C. Runswick S. Conte P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 2017 377 6 523 533 10.1056/NEJMoa1706450 28578601
    [Google Scholar]
  35. Chen Y. Zhang L. Hao Q. Olaparib: A promising PARP inhibitor in ovarian cancer therapy. Arch. Gynecol. Obstet. 2013 288 2 367 374 10.1007/s00404‑013‑2856‑2 23619942
    [Google Scholar]
  36. Kim G. Ison G. McKee A.E. Zhang H. Tang S. Gwise T. Sridhara R. Lee E. Tzou A. Philip R. Chiu H.J. Ricks T.K. Palmby T. Russell A.M. Ladouceur G. Pfuma E. Li H. Zhao L. Liu Q. Venugopal R. Ibrahim A. Pazdur R. FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin. Cancer Res. 2015 21 19 4257 4261 10.1158/1078‑0432.CCR‑15‑0887 26187614
    [Google Scholar]
  37. Bixel K. Hays J. Olaparib in the management of ovarian cancer. Pharm. Genomics Pers. Med. 2015 8 127 135 10.2147/PGPM.S62809 26309417
    [Google Scholar]
  38. Yang Y.G. Cortes U. Patnaik S. Jasin M. Wang Z.Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 2004 23 21 3872 3882 10.1038/sj.onc.1207491 15021907
    [Google Scholar]
  39. Mateo J. Carreira S. Sandhu S. Miranda S. Mossop H. Perez-Lopez R. Nava Rodrigues D. Robinson D. Omlin A. Tunariu N. Boysen G. Porta N. Flohr P. Gillman A. Figueiredo I. Paulding C. Seed G. Jain S. Ralph C. Protheroe A. Hussain S. Jones R. Elliott T. McGovern U. Bianchini D. Goodall J. Zafeiriou Z. Williamson C.T. Ferraldeschi R. Riisnaes R. Ebbs B. Fowler G. Roda D. Yuan W. Wu Y.M. Cao X. Brough R. Pemberton H. A’Hern R. Swain A. Kunju L.P. Eeles R. Attard G. Lord C.J. Ashworth A. Rubin M.A. Knudsen K.E. Feng F.Y. Chinnaiyan A.M. Hall E. de Bono J.S. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 2015 373 18 1697 1708 10.1056/NEJMoa1506859 26510020
    [Google Scholar]
  40. Hwang K. Lee J-H. Kim S.H. Go K-O. Ji S.Y. Han J.H. Kim C-Y. The combination PARP inhibitor olaparib with temozolomide in an experimental glioblastoma model. In Vivo 2021 35 4 2015 2023 10.21873/invivo.12470
    [Google Scholar]
  41. Valiakhmetova A. Gorelyshev S. Konovalov A. Trunin Y. Savateev A. Kram D.E. Severson E. Hemmerich A. Edgerly C. Duncan D. Britt N. Huang R.S.P. Elvin J. Miller V. Ross J.S. Gay L. McCorkle J. Rankin A. Erlich R.L. Chudnovsky Y. Ramkissoon S.H. Treatment of pediatric glioblastoma with combination olaparib and temozolomide demonstrates 2‐year durable response. Oncologist 2020 25 2 e198 e202 10.1634/theoncologist.2019‑0603 32043779
    [Google Scholar]
  42. Dungey F.A. Löser D.A. Chalmers A.J. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: Mechanisms and therapeutic potential. Int. J. Radiat. Oncol. Biol. Phys. 72 4 1188 1197 2008 10.1016/j.ijrobp.2008.07.031 18954712
    [Google Scholar]
  43. van Vuurden D.G. Hulleman E. Meijer O.L.M. Wedekind L.E. Kool M. Witt H. Vandertop W.P. Würdinger T. Noske D.P. Kaspers G.J.L. Cloos J. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2011 2 12 984 996 10.18632/oncotarget.362 22184287
    [Google Scholar]
  44. Karpel-Massler G. Pareja F. Aimé P. Shu C. Chau L. Westhoff M.A. Halatsch M.E. Crary J.F. Canoll P. Siegelin M.D. PARP inhibition restores extrinsic apoptotic sensitivity in glioblastoma. PLoS One 2014 9 12 e114583 10.1371/journal.pone.0114583 25531448
    [Google Scholar]
  45. Hanna C. Kurian K.M. Williams K. Watts C. Jackson A. Carruthers R. Strathdee K. Cruickshank G. Dunn L. Erridge S. Godfrey L. Jefferies S. McBain C. Sleigh R. McCormick A. Pittman M. Halford S. Chalmers A.J. Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: Results of the phase I OPARATIC trial. Neuro-oncol. 2020 22 12 1840 1850 10.1093/neuonc/noaa104 32347934
    [Google Scholar]
  46. Navarro-Carrasco E. Lazo P.A. VRK1 depletion facilitates the synthetic lethality of temozolomide and olaparib in glioblastoma cells. Front. Cell Dev. Biol. 2021 9 683038 10.3389/fcell.2021.683038 34195200
    [Google Scholar]
  47. Chalmers A.J. Phase I clinical trials evaluating olaparib in combination with radiotherapy (RT) and/or temozolomide (TMZ) in glioblastoma patients: Results of OPARATIC and PARADIGM phase I and early results of PARADIGM-2 J. Clin. Oncol. 2018 36 Suppl 15 10.1200/JCO.2018.36.15_suppl.2018
    [Google Scholar]
  48. Rottenberg S. Jaspers J.E. Kersbergen A. van der Burg E. Nygren A.O.H. Zander S.A.L. Derksen P.W.B. de Bruin M. Zevenhoven J. Lau A. Boulter R. Cranston A. O’Connor M.J. Martin N.M.B. Borst P. Jonkers J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 2008 105 44 17079 17084 10.1073/pnas.0806092105 18971340
    [Google Scholar]
  49. Li H. Liu Z.Y. Wu N. Chen Y.C. Cheng Q. Wang J. PARP inhibitor resistance: The underlying mechanisms and clinical implications. Mol. Cancer 2020 19 1 107 10.1186/s12943‑020‑01227‑0 32563252
    [Google Scholar]
  50. Ito S. Murphy C.G. Doubrovina E. Jasin M. Moynahan M.E. PARP inhibitors in clinical use induce genomic instability in normal human cells. PLoS One 2016 11 7 e0159341 10.1371/journal.pone.0159341 27428646
    [Google Scholar]
  51. Agarwal S. Mittapalli R.K. Zellmer D.M. Gallardo J.L. Donelson R. Seiler C. Decker S.A. SantaCruz K.S. Pokorny J.L. Sarkaria J.N. Elmquist W.F. Ohlfest J.R. Active efflux of Dasatinib from the brain limits efficacy against murine glioblastoma: Broad implications for the clinical use of molecularly targeted agents. Mol. Cancer Ther. 2012 11 10 2183 2192 10.1158/1535‑7163.MCT‑12‑0552 22891038
    [Google Scholar]
  52. Gupta S.K. Smith E.J. Mladek A.C. Tian S. Decker P.A. Kizilbash S.H. Kitange G.J. Sarkaria J.N. PARP inhibitors for sensitization of alkylation chemotherapy in glioblastoma: Impact of blood-brain barrier and molecular heterogeneity. Front. Oncol. 2019 8 670 10.3389/fonc.2018.00670 30723695
    [Google Scholar]
  53. Saran F. James A. McBain C. Jefferies S. Harris F. Cseh A. Pemberton K. Schaible J. Bender S. Brada M. ACTR-38. A phase I trial of afatinib and radiotherapy (rt) with or without temozolomide (tmz) in patients with newly diagnosed glioblastoma (GBM). Neuro-oncol. 2018 20 Suppl 6 vi20 10.1093/neuonc/noy148.071
    [Google Scholar]
  54. Berens M.E. Giese A. “...those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1999 1 3 208 219 10.1038/sj.neo.7900034 10935475
    [Google Scholar]
  55. Pitz M.W. Desai A. Grossman S.A. Blakeley J.O. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J. Neurooncol. 2011 104 3 629 638 10.1007/s11060‑011‑0564‑y 21400119
    [Google Scholar]
  56. Levin V.A. Patlak C.S. Landahl H.D. Heuristic modeling of drug delivery to malignant brain tumors. J. Pharmacokinet. Biopharm. 1980 8 3 257 296 10.1007/BF01059646 7420270
    [Google Scholar]
  57. Blakeley J.O. Olson J. Grossman S.A. He X. Weingart J. Supko J.G. Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: A microdialysis study. J. Neurooncol. 2009 91 1 51 58 10.1007/s11060‑008‑9678‑2 18787762
    [Google Scholar]
  58. Gupta S.K. Mladek A.C. Carlson B.L. Boakye-Agyeman F. Bakken K.K. Kizilbash S.H. Schroeder M.A. Reid J. Sarkaria J.N. Discordant in vitro and in vivo chemopotentiating effects of the PARP inhibitor veliparib in temozolomide-sensitive versus -resistant glioblastoma multiforme xenografts. Clin. Cancer Res. 2014 20 14 3730 3741 10.1158/1078‑0432.CCR‑13‑3446 24838527
    [Google Scholar]
  59. Kizilbash S.H. Gupta S.K. Chang K. Kawashima R. Parrish K.E. Carlson B.L. Bakken K.K. Mladek A.C. Schroeder M.A. Decker P.A. Kitange G.J. Shen Y. Feng Y. Protter A.A. Elmquist W.F. Sarkaria J.N. Restricted delivery of talazoparib across the blood–brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma. Mol. Cancer Ther. 2017 16 12 2735 2746 10.1158/1535‑7163.MCT‑17‑0365 28947502
    [Google Scholar]
  60. Parrish K.E. Cen L. Murray J. Calligaris D. Kizilbash S. Mittapalli R.K. Carlson B.L. Schroeder M.A. Sludden J. Boddy A.V. Agar N.Y.R. Curtin N.J. Elmquist W.F. Sarkaria J.N. Efficacy of PARP inhibitor rucaparib in orthotopic glioblastoma xenografts is limited by ineffective drug penetration into the central nervous system. Mol. Cancer Ther. 2015 14 12 2735 2743 10.1158/1535‑7163.MCT‑15‑0553 26438157
    [Google Scholar]
  61. Gupta S.K. Kizilbash S.H. Carlson B.L. Mladek A.C. Boakye-Agyeman F. Bakken K.K. Pokorny J.L. Schroeder M.A. Decker P.A. Cen L. Eckel-Passow J.E. Sarkar G. Ballman K.V. Reid J.M. Jenkins R.B. Verhaak R.G. Sulman E.P. Kitange G.J. Sarkaria J.N. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J. Natl. Cancer Inst. 2015 108 5 djv369 10.1093/jnci/djv369 26615020
    [Google Scholar]
  62. Sargazi S. Mukhtar M. Rahdar A. Barani M. Pandey S. Díez-Pascual A. Active targeted nanoparticles for delivery of poly (ADP-ribose) polymerase (PARP) inhibitors: A preliminary review. Int. J. Mol. Sci. 2021 22 19 10319 10.3390/ijms221910319 34638660
    [Google Scholar]
  63. Mensah L.B. Morton S.W. Li J. Xiao H. Quadir M.A. Elias K.M. Penn E. Richson A.K. Ghoroghchian P.P. Liu J. Hammond P.T. Layer‐by‐layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum‐based drug resistance therapy in ovarian cancer. Bioeng. Transl. Med. 2019 4 2 e10131 10.1002/btm2.10131 31249881
    [Google Scholar]
  64. Baldwin P. Tangutoori S. Sridhar S. In vitro analysis of PARP inhibitor nanoformulations. Int. J. Nanomedicine 2018 13 T-NANO 2014 Abstracts 59 61 10.2147/IJN.S124992 29593397
    [Google Scholar]
  65. Zhang D. Baldwin P. Leal A.S. Carapellucci S. Sridhar S. Liby K.T. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics 2019 9 21 6224 6238 10.7150/thno.36281 31534547
    [Google Scholar]
  66. Patel P. Combined nanoparticle delivery of PARP and DNA-PK inhibition for multiple myeloma. Blood 2017 130 1809
    [Google Scholar]
  67. Baldwin P. Ohman A.W. Tangutoori S. Dinulescu D.M. Sridhar S. Intraperitoneal delivery of NanoOlaparib for disseminated late-stage cancer treatment. Int. J. Nanomedicine 2018 13 8063 8074 10.2147/IJN.S186881 30555227
    [Google Scholar]
  68. Pathade A.D. Kommineni N. Bulbake U. Thummar M.M. Samanthula G. Khan W. Preparation and comparison of oral bioavailability for different nanoformulations of olaparib. AAPS PharmSciTech 2019 20 7 276 10.1208/s12249‑019‑1468‑y 31388783
    [Google Scholar]
  69. McCrorie P. Mistry J. Taresco V. Lovato T. Fay M. Ward I. Ritchie A.A. Clarke P.A. Smith S.J. Marlow M. Rahman R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur. J. Pharm. Biopharm. 2020 157 108 120 10.1016/j.ejpb.2020.10.005 33068736
    [Google Scholar]
  70. Fulton B. Short S.C. James A. Nowicki S. McBain C. Jefferies S. Kelly C. Stobo J. Morris A. Williamson A. Chalmers A.J. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status. Clin. Transl. Radiat. Oncol. 2018 8 12 16 10.1016/j.ctro.2017.11.003 29594237
    [Google Scholar]
/content/journals/mrmc/10.2174/0129503779343780241011045810
Loading
/content/journals/mrmc/10.2174/0129503779343780241011045810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test