Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better anti-inflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2–related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575307480240610055622
2024-06-15
2025-01-08
Loading full text...

Full text loading...

References

  1. NathanC. DingA. Nonresolving inflammation.Cell2010140687188210.1016/j.cell.2010.02.029 20303877
    [Google Scholar]
  2. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature07201 18650913
    [Google Scholar]
  3. Ferrero-MilianiL. NielsenO.H. AndersenP.S. GirardinS.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation.Clin. Exp. Immunol.2007147222723510.1111/j.1365‑2249.2006.03261.x 17223962
    [Google Scholar]
  4. ZhouY. HongY. HuangH. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway.Kidney Blood Press. Res.201641690191010.1159/000452591 27871079
    [Google Scholar]
  5. VarelaM.L. MogildeaM. MorenoI. LopesA. Acute inflammation and metabolism.Inflammation20184141115112710.1007/s10753‑018‑0739‑1 29404872
    [Google Scholar]
  6. MedzhitovR. Inflammation 2010: New adventures of an old flame.Cell2010140677177610.1016/j.cell.2010.03.006 20303867
    [Google Scholar]
  7. BarcelosI.P. TroxellR.M. GravesJ.S. Mitochondrial dysfunction and multiple sclerosis.Biology (Basel)2019823710.3390/biology8020037 31083577
    [Google Scholar]
  8. TsaiD.H. RiedikerM. BerchetA. PaccaudF. WaeberG. VollenweiderP. BochudM. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population.Environ. Sci. Pollut. Res. Int.20192619196971970410.1007/s11356‑019‑05194‑y 31079306
    [Google Scholar]
  9. DeepakP. AxelradJ.E. AnanthakrishnanA.N. The role of the radiologist in determining disease severity in inflammatory bowel diseases.Gastrointest. Endosc. Clin. N. Am.201929344747010.1016/j.giec.2019.02.006 31078247
    [Google Scholar]
  10. VaneJ.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.Nat. New Biol.19712312523223510.1038/newbio231232a0 5284360
    [Google Scholar]
  11. SostresC. GargalloC.J. ArroyoM.T. LanasA. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract.Best Pract. Res. Clin. Gastroenterol.201024212113210.1016/j.bpg.2009.11.005 20227026
    [Google Scholar]
  12. HarirforooshS. AsgharW. JamaliF. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications.J. Pharm. Pharm. Sci.201416582184710.18433/J3VW2F 24393558
    [Google Scholar]
  13. YuanG. WahlqvistM.L. HeG. YangM. LiD. Natural products and anti-inflammatory activity.Asia Pac. J. Clin. Nutr.2006152143152 16672197
    [Google Scholar]
  14. JuY. VarmaR.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives.J. Org. Chem.200671113514110.1021/jo051878h 16388628
    [Google Scholar]
  15. JuY. KumarD. VarmaR.S. Revisiting nucleophilic substitution reactions: Microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium.J. Org. Chem.200671176697670010.1021/jo061114h 16901176
    [Google Scholar]
  16. LokhandeP.D. SakateS.S. Regioselective one-pot synthesis of 3,5-diarylpyrazoles.Indian J. Chem.200544B22382242
    [Google Scholar]
  17. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules24213839 31731387
    [Google Scholar]
  18. García-ValverdeM. TorrobaT. Sulfur-nitrogen heterocycles.Molecules200510231832010.3390/10020318
    [Google Scholar]
  19. Kumar PatidarA. JeyakandanM. MobiyaA.K. SelvamG. Exploring potential of quinoxaline moiety.Int. J. Pharm. Tech. Res.201131386392
    [Google Scholar]
  20. WatanabeK. OguriH. OikawaH. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway.Curr. Opin. Chem. Biol.200913218919610.1016/j.cbpa.2009.02.012 19278894
    [Google Scholar]
  21. El AdnaniZ. McharfiM. SfairaM. BenzakourM. BenjellounA.T. TouhamiM.E. HammoutiB. TalebM. DFT Study of 7-R-3methylquinoxalin-2(1H)-ones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid.Int. J. Electrochem. Sci.2012786738675110.1016/S1452‑3981(23)15743‑9
    [Google Scholar]
  22. ObotI.B. Obi-EgbediN.O. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation.Corros. Sci.201052119820410.1016/j.corsci.2009.09.002
    [Google Scholar]
  23. KabandaM.M. MurulanaL.C. OzcanM. KaradagF. DehriI. ObotI.B. EbensoE.E. Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium.Int. J. Electrochem. Sci.2012765035505610.1016/S1452‑3981(23)19602‑7
    [Google Scholar]
  24. Justin ThomasK.R. LinJ.T. TaoY.T. KoC.W. Light-emitting carbazole derivatives: Potential electroluminescent materials.J. Am. Chem. Soc.2001123389404941110.1021/ja010819s 11562223
    [Google Scholar]
  25. RagabA. ElsisiD.M. Abu AliO.A. AbusaifM.S. AskarA.A. FaragA.A. AmmarY.A. Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation.Arab. J. Chem.202215110349710.1016/j.arabjc.2021.103497
    [Google Scholar]
  26. TangX. ZhouQ. ZhanW. HuD. ZhouR. SunN. ChenS. WuW. XueW. Synthesis of novel antibacterial and antifungal quinoxaline derivatives.RSC Advances20221242399240710.1039/D1RA07559D 35425241
    [Google Scholar]
  27. El-ZahabiH.S.A. Synthesis, characterization, and biological evaluation of some novel quinoxaline derivatives as antiviral agents.Arch. Pharm. (Weinheim)20173505170002810.1002/ardp.201700028 28407276
    [Google Scholar]
  28. ZhangG.R. RenY. YinX.M. QuanZ.S. Synthesis and evaluation of the anticonvulsant activities of new 5-substitued-[1,2,4]triazolo[4,3-a]quinoxalin-4(5h)-one derivatives.Lett. Drug Des. Discov.201815440641310.2174/1570180814666170619094408
    [Google Scholar]
  29. AlanaziM.M. ElkadyH. AlsaifN.A. ObaidullahA.J. AlanaziW.A. Al-HossainiA.M. AlharbiM.A. EissaI.H. DahabM.A. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study.J. Mol. Struct.2022125313222010.1016/j.molstruc.2021.132220
    [Google Scholar]
  30. GuiradoA. López SánchezJ.I. Ruiz-AlcarazA.J. BautistaD. GálvezJ. Synthesis and biological evaluation of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines as inhibitors of TNF-α and IL-6.Eur. J. Med. Chem.201254879410.1016/j.ejmech.2012.04.035 22621841
    [Google Scholar]
  31. DoğanI.S. KahveciB. SariS. KolciK. ReisR. SipahiH. Synthesis, molecular modelling and in vitro anti‐inflammatory activity of novel 1,2,4‐triazolo[4,3‐a]quinoxaline derivatives.ChemistrySelect2022726e20220093510.1002/slct.202200935
    [Google Scholar]
  32. KnappR.J. GoldenbergR. ShuckC. CecilA. WatkinsJ. MillerC. CritesG. MalatynskaE. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model.Eur. J. Pharmacol.20024401273510.1016/S0014‑2999(02)01338‑9 11959085
    [Google Scholar]
  33. O’NeillM. WitkinJ. AMPA receptor potentiators: Application for depression and Parkinson’s disease.Curr. Drug Targets20078560362010.2174/138945007780618517 17504104
    [Google Scholar]
  34. CantorL.B. The evolving pharmacotherapeutic profile of brimonidine, an 2-adrenergic agonist, after four years of continuous use.Expert Opin. Pharmacother.20001481583410.1517/14656566.1.4.815 11249518
    [Google Scholar]
  35. GalanopoulosA. GoldbergI. Clinical efficacy and neuroprotective effects of brimonidine in the management of glaucoma and ocular hypertension.Clin. Ophthalmol.20093117122 19668554
    [Google Scholar]
  36. GreenfieldD.S. LiebmannJ.M. RitchR. RitchR. Brimonidine.J. Glaucoma19976425025810.1097/00061198‑199708000‑00010 9264305
    [Google Scholar]
  37. KongD. ParkE.J. StephenA.G. CalvaniM. CardellinaJ.H. MonksA. FisherR.J. ShoemakerR.H. MelilloG. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity.Cancer Res.200565199047905510.1158/0008‑5472.CAN‑05‑1235 16204079
    [Google Scholar]
  38. ZhaoN. WangL. LuX. JiaH. FangB. ZengZ. DingH. Pharmacokinetics of cyadox and its major metabolites in swine after intravenous and oral administration.J. Integr. Agric.201312349550110.1016/S2095‑3119(13)60250‑6
    [Google Scholar]
  39. WedemeyerH. ErrenP. NaumannU. RiekeA. StoehrA. ZimmermannT. LohmannK. KönigB. MaussS. Glecaprevir/pibrentasvir is safe and effective in hepatitis C patients with cirrhosis: Real‐world data from the German Hepatitis C‐Registry.Liver Int.202141594995510.1111/liv.14829 33592123
    [Google Scholar]
  40. LlanerasJ. Riveiro-BarcielaM. LensS. DiagoM. CacheroA. García-SamaniegoJ. CondeI. ArencibiaA. ArenasJ. GeaF. TorrasX. Luis CallejaJ. Antonio CarriónJ. FernándezI. María MorillasR. RosalesJ.M. CarmonaI. Fernández-RodríguezC. Hernández-GuerraM. LlerenaS. BernalV. TurnesJ. González-SantiagoJ.M. MontoliuS. FigueruelaB. BadiaE. DelgadoM. Fernández-BermejoM. IñarrairaeguiM. PascasioJ.M. EstebanR. MariñoZ. ButiM. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs.J. Hepatol.201971466667210.1016/j.jhep.2019.06.002 31203153
    [Google Scholar]
  41. LiL.Y. Tyrphostin AG1296, a platelet-derived growth factor receptor inhibitor, induces apoptosis, and reduces viability and migration of PLX4032-resistant melanoma cells.OncoTargets Ther.2015May104310.2147/OTT.S70691
    [Google Scholar]
  42. SalviR. LobarinasE. SunW. Pharmacological treatments for tinnitus: New and old.Drugs Future200934538140010.1358/dof.2009.34.5.1362442 21765586
    [Google Scholar]
  43. RoubalK. MyintZ.W. KolesarJ.M. Erdafitinib: A novel therapy for FGFR-mutated urothelial cancer.Am. J. Health Syst. Pharm.202077534635110.1093/ajhp/zxz329 32073123
    [Google Scholar]
  44. DattaA. HalderS. Dowex 50W: Mild efficient reusable heterogeneous catalyst for synthesis of quinoxaline derivatives in aqueous medium.Orient. J. Chem.20203661218122410.13005/ojc/360629
    [Google Scholar]
  45. DânounK. EssamlaliY. AmadineO. MahiH. ZahouilyM. Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst.BMC Chem.2020141610.1186/s13065‑020‑0662‑z 32025664
    [Google Scholar]
  46. MalekB. Bahammouİ. ZimouO. El HallaouiA. GhailaneR. Boukhri̇sS. SouiziA. Eco-friendly synthesis of quinoxaline derivatives using mineral fertilizers as heterogeneous catalysts.J. Turkish Chem. Soc. Sec. A: Chem.20207242744010.18596/jotcsa.577101
    [Google Scholar]
  47. BashirzadehM. BehbahaniF.K. Green synthesis of quinoxaline derivatives at room temperature in ethylene glycol with H2SO4/SiO2 catalyst.Eur. Chem. Bull.202091333710.17628/ecb.2020.9.33‑37
    [Google Scholar]
  48. ChatterjeeR. MahatoS. MukherjeeA. ZyryanovG.V. MajeeA. Synthesis of quinoxaline derivatives catalyzed by Brønsted acidic ionic liquid under solvent-free conditions.AIP Conf. Proc.20202280105001210.1063/5.0018532
    [Google Scholar]
  49. SheeS. PanjaD. KunduS. Nickel-catalyzed direct synthesis of quinoxalines from 2-nitroanilines and vicinal diols: Identifying nature of the active catalyst.J. Org. Chem.20208542775278410.1021/acs.joc.9b03104 31903762
    [Google Scholar]
  50. XieF. LiY. ChenX. ChenL. ZhuZ. LiB. HuangY. ZhangK. ZhangM. Direct synthesis of novel quinoxaline derivatives via palladium-catalyzed reductive annulation of catechols and nitroarylamines.Chem. Commun. (Camb.)202056445997600010.1039/C9CC09649C 32347834
    [Google Scholar]
  51. LiF. TangX. XuY. WangC. WangZ. LiZ. WangL. A dual-protein cascade reaction for the regioselective synthesis of quinoxalines.Org. Lett.202022103900390410.1021/acs.orglett.0c01186 32337998
    [Google Scholar]
  52. Ahmadi SabeghM. KhalafyJ. The regioselective catalyst-free synthesis of bis-quinoxalines and bis-pyrido[2,3- b]pyrazines by double condensation of 1,4-phenylene-bis-glyoxal with 1,2-diamines.Heterocycl. Commun.201824419319610.1515/hc‑2018‑0039
    [Google Scholar]
  53. SheeS. GanguliK. JanaK. KunduS. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives.Chem. Commun. (Camb.)201854506883688610.1039/C8CC02366B 29790492
    [Google Scholar]
  54. PardeshiS.D. SatheP.A. VadagaonkarK.S. ChaskarA.C. One‐pot protocol for the synthesis of imidazoles and quinoxalines using N ‐Bromosuccinimide.Adv. Synth. Catal.2017359234217422610.1002/adsc.201700900
    [Google Scholar]
  55. HazarikaD. PhukanP. Metal free synthesis of quinoxalines from alkynes via a cascade process using TsNBr2.Tetrahedron201773101374137910.1016/j.tet.2017.01.056
    [Google Scholar]
  56. IndalkarK.S. KhatriC.K. ChaturbhujG.U. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst.J. Chem. Sci.2017129214114810.1007/s12039‑017‑1235‑0
    [Google Scholar]
  57. Shamsi-SaniM. ShiriniF. AbediniM. SeddighiM. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst.Res. Chem. Intermed.20164221091109910.1007/s11164‑015‑2075‑5
    [Google Scholar]
  58. TejeswararaoD. Recyclable acidic brønsted ionic liquid catalyzed synthesis of quinoxaline.J. Chil. Chem. Soc.20166112843284510.4067/S0717‑97072016000100018
    [Google Scholar]
  59. BaghbanianS.M. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives.Chin. Chem. Lett.20152691113111610.1016/j.cclet.2015.04.037
    [Google Scholar]
  60. Khorramabadi-ZadA. AzadmaneshM. MohammadiS. One-pot, facile synthesis of quinoxaline derivatives from bis-aryl a-hydroxyketones and o-arenediamines using KMnO4/CuSO4.S. Afr. J. Chem.2013Aug66
    [Google Scholar]
  61. WadavraoS.B. GhogareR.S. NarsaiahA.V. A simple and efficient protocol for the synthesis of quinoxalines catalyzed by pyridine.Org Commun.2013612330
    [Google Scholar]
  62. TangX-Y. GongY. HuoH. Metal-free synthesis of pyrrolo[1,2-a]quinoxalines mediated by TEMPO oxoammonium salts.Synthesis201850142727274010.1055/s‑0037‑1610131
    [Google Scholar]
  63. GaoJ. RenZ.G. LangJ.P. One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines catalyzed by a zwtterionic Cu(II)/calix[4]arene complex.Chin. Chem. Lett.20172851087109210.1016/j.cclet.2016.12.035
    [Google Scholar]
  64. LiuX. Synthesis of dihydropyridines and quinoxaline derivatives using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new, reusable and efficient Brønsted acidic ionic liquid catalyst.Iran J. Chem. Chem. Eng.20173667784
    [Google Scholar]
  65. SajjadifarS. Mohammadi-AghdamS. Synthesis of dihydropyridines and quinoxaline derivatives using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new, reusable and efficient Brønsted acidic ionic liquid catalyst Asian J.Green Chem.2017111510.22631/ajgc.2017.46496
    [Google Scholar]
  66. TarpadaU.P. ThummarB.B. RavalD.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid.Arab. J. Chem.201710S2902S290710.1016/j.arabjc.2013.11.021
    [Google Scholar]
  67. BadaliM. KhalafyJ. AghazadehM. PragerR.H. Synthesis of bis-quinoxaline derivatives using Tonsil clay as a catalyst.Bull. Chem. Soc. Ethiop.2016301129136
    [Google Scholar]
  68. KathrotiyaH.G. NaliaparaY.T. Synthesis of some new quinoxalines bearing pyridinyl thiazole moiety.Int. Lett. Chem. Phys. Astron.2015527483
    [Google Scholar]
  69. KumarK. MudshingeS.R. GoyalS. GangarM. NairV.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides.Tetrahedron Lett.201556101266127110.1016/j.tetlet.2015.01.138
    [Google Scholar]
  70. XieF. ZhangM. JiangH. ChenM. LvW. ZhengA. JianX. Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy.Green Chem.201517127928410.1039/C4GC01316F
    [Google Scholar]
  71. ZhangH. A green synthesis of indolo[2,3-b]quinoxaline derivatives.J. Chem. Res.2014381270570910.3184/174751914X14146737095013
    [Google Scholar]
  72. PiltanM. One-pot synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine derivatives via the three-component reaction of 1,2-diamines, ethyl pyruvate and α-bromo ketones.Chin. Chem. Lett.201425111507151010.1016/j.cclet.2014.06.013
    [Google Scholar]
  73. MahadikP. JagwaniD. JoshiR. A greener chemistry approach for synthesis of 2,3-diphenyl quinoxaline. Int. J. Innov. Sci.Eng. Technol2014179
    [Google Scholar]
  74. ViswanadhamK.K.D.R. Prathap ReddyM. SathyanarayanaP. RaviO. KantR. BathulaS.R. Iodine-mediated oxidative annulation for one-pot synthesis of pyrazines and quinoxalines using a multipathway coupled domino strategy.Chem. Commun. (Camb.)20145088135171352010.1039/C4CC05844E 25238170
    [Google Scholar]
  75. MulikA. ChandamD. PatilP. PatilD. JagdaleS. DeshmukhM. Proficient synthesis of quinoxaline and phthalazinetrione derivatives using [C8dabco]Br ionic liquid as catalyst in aqueous media.J. Mol. Liq.201317910410910.1016/j.molliq.2012.12.006
    [Google Scholar]
  76. El-AtawyM.A. HamedE.A. AlhadiM. OmarA.Z. Synthesis and antimicrobial activity of some new substituted quinoxalines.Molecules20192422419810.3390/molecules24224198 31752396
    [Google Scholar]
  77. DhanarajC.J. JohnsonJ. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.J. Photochem. Photobiol. B201616110812110.1016/j.jphotobiol.2016.04.033 27236046
    [Google Scholar]
  78. PatilK.R. MahajanU.B. UngerB.S. GoyalS.N. BelemkarS. SuranaS.J. OjhaS. PatilC.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals.Int. J. Mol. Sci.20192018436710.3390/ijms20184367 31491986
    [Google Scholar]
  79. AhmedE.A. MohamedM.F.A. OmranO.A. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: Synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents.RSC Advances20221239252042521610.1039/D2RA04498F 36199335
    [Google Scholar]
  80. DewanganD. NakhateK.T. VermaV.S. NagoriK. BadwaikH. NairN. TripathiD.K. MishraA. Synthesis and molecular docking study of novel hybrids of 1,3,4‐oxadiazoles and quinoxaline as a potential analgesic and anti‐inflammatory agents.J. Heterocycl. Chem.201855122901291010.1002/jhet.3363
    [Google Scholar]
  81. Ruiz-AlcarazA.J. Tristán-ManzanoM. GuiradoA. GálvezJ. Martínez-EsparzaM. García-PeñarrubiaP. Intracellular signaling modifications involved in the anti-inflammatory effect of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines on macrophages.Eur. J. Pharm. Sci.20179929229810.1016/j.ejps.2016.12.037 28057547
    [Google Scholar]
  82. ShenQ.K. GongG.H. LiG. JinM. CaoL.H. QuanZ.S. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents.J. Enzyme Inhib. Med. Chem.2020351859510.1080/14756366.2019.1680658 31707866
    [Google Scholar]
  83. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017217023
    [Google Scholar]
  84. de GaetanoM. TigheC. GahanK. ZanettiA. ChenJ. NewsonJ. CacaceA. MaraiM. GaffneyA. BrennanE. KantharidisP. CooperM.E. LeroyX. PerrettiM. GilroyD. GodsonC. GuiryP.J. Asymmetric synthesis and biological screening of quinoxaline-containing synthetic lipoxin A 4 mimetics (QNX-sLXms).J. Med. Chem.202164139193921610.1021/acs.jmedchem.1c00403 34138563
    [Google Scholar]
  85. BachstetterA.D. Van EldikL.J. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS.Aging Dis.201013199211 22720195
    [Google Scholar]
  86. AnjaliK.P. KambojP. AlamO. PatelH. AhmadI. AhmadS.S. AmirM. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors.Arch. Pharm. (Weinheim)20243571230030110.1002/ardp.202300301 37847883
    [Google Scholar]
  87. TariqS. AlamO. AmirM. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety.Bioorg. Chem.20187634335810.1016/j.bioorg.2017.12.003 29227918
    [Google Scholar]
  88. WangL. HeC. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis.Front. Immunol.20221396719310.3389/fimmu.2022.967193 36032081
    [Google Scholar]
  89. KandasamyM. MakK.K. DevadossT. ThanikachalamP.V. SakirollaR. ChoudhuryH. PichikaM.R. Construction of a novel quinoxaline as a new class of Nrf2 activator.BMC Chem.201913111710.1186/s13065‑019‑0633‑4 31572984
    [Google Scholar]
  90. Al-HasaniR. BruchasM.R. JohnsonA.B. Molecular mechanisms of opioid receptor-dependent signaling and behavior.Anesthesiology201111561363138110.1097/ALN.0b013e318238bba6 22020140
    [Google Scholar]
  91. TangherliniG. BörgelF. SchepmannD. SlocumS. CheT. WagnerS. SchwegmannK. HermannS. MykickiN. LoserK. WünschB. Synthesis and pharmacological evaluation of fluorinated quinoxaline‐based κ‐Opioid Receptor (KOR) agonists designed for PET studies.ChemMedChem202015191834185310.1002/cmdc.202000502 33448685
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575307480240610055622
Loading
/content/journals/mrmc/10.2174/0113895575307480240610055622
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test