Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that leads to cognitive decline and memory impairment. It is characterized by the accumulation of Amyloid-beta (Aβ) plaques, the abnormal phosphorylation of tau protein forming neurofibrillary tangles, and is often accompanied by neuroinflammation and oxidative stress, which contribute to neuronal loss and brain atrophy. At present, clinical anti-AD drugs are mostly single-target, improving the cognitive ability of AD patients, but failing to effectively slow down the progression of AD. Therefore, research on effective multi-target drugs for AD has become an urgent problem to address. The main derivatives of hydroxycinnamic acid, caffeic acid, and ferulic acid, are widely present in nature and have many pharmacological activities, such as antimicrobial, antioxidant, anti-inflammatory, neuroprotective, anti-Aβ deposition, and so on. The occurrence and development of AD are often accompanied by pathologies, such as oxidative stress, neuroinflammation, and Aβ deposition, suggesting that caffeic acid and ferulic acid can be used in the research on anti-AD drugs. Therefore, in this article, we have summarized the multi-target anti-AD derivatives based on caffeic acid and ferulic acid in recent years, and discussed the new design direction of cinnamic acid derivatives as backbone compounds. It is hoped that this review will provide some useful strategies for anti-AD drugs based on cinnamic acid derivatives.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575330648240819112435
2024-08-30
2025-01-09
Loading full text...

Full text loading...

References

  1. UnnithanA.K.A. Hemorrhagic Stroke.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  2. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  3. IliyasuM.O. MusaS.A. OladeleS.B. IliyaA.I. Amyloid-beta aggregation implicates multiple pathways in Alzheimer’s disease: Understanding the mechanisms.Front. Neurosci.202317108193810.3389/fnins.2023.1081938 37113145
    [Google Scholar]
  4. ChenL.L. FanY.G. ZhaoL.X. ZhangQ. WangZ.Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators.Bioorg. Chem.202313110630110.1016/j.bioorg.2022.106301 36455485
    [Google Scholar]
  5. PathakC. KabraU.D. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer’s disease.Bioorg. Chem.202414410715210.1016/j.bioorg.2024.107152 38290187
    [Google Scholar]
  6. JangidK. DeviB. SahooA. KumarV. DwivediA.R. TharejaS. KumarR. KumarV. Virtual screening and molecular dynamics simulation approach for the identification of potential multi-target directed ligands for the treatment of Alzheimer’s disease.J. Biomol. Struct. Dyn.202442150952710.1080/07391102.2023.2201838 37114423
    [Google Scholar]
  7. DrakontaeidiA. PontikiE. SharmaH.S. Multi-target-directed cinnamic acid hybrids targeting Alzheimer’s disease.Int. J. Mol. Sci.202425158210.3390/ijms25010582 38203753
    [Google Scholar]
  8. PratiF. De SimoneA. BisignanoP. ArmirottiA. SummaM. PizziraniD. ScarpelliR. PerezD.I. AndrisanoV. Perez-CastilloA. MontiB. MassenzioF. PolitoL. RacchiM. FaviaA.D. BottegoniG. MartinezA. BolognesiM.L. CavalliA. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3β inhibitors.Angew. Chem. Int. Ed.20155451578158210.1002/anie.201410456 25504761
    [Google Scholar]
  9. VerveridisF. TrantasE. DouglasC. VollmerG. KretzschmarG. PanopoulosN. Biotechnology of flavonoids and other phenylpropanoid‐derived natural products. Part I: Chemical diversity, impacts on plant biology and human health.Biotechnol. J.20072101214123410.1002/biot.200700084 17935117
    [Google Scholar]
  10. MancusoC. SantangeloR. Ferulic acid: Pharmacological and toxicological aspects.Food Chem. Toxicol.201465185195
    [Google Scholar]
  11. GuzmanJ. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.Molecules20141912192921934910.3390/molecules191219292 25429559
    [Google Scholar]
  12. DengH. XuQ. GuoH.Y. HuangX. ChenF. JinL. QuanZ.S. ShenQ.K. Application of cinnamic acid in the structural modification of natural products: A review.Phytochemistry202320611353210.1016/j.phytochem.2022.113532 36470328
    [Google Scholar]
  13. LooM.H. EganD. VaughanE.D.Jr MarionD. FelsenD. WeismanS. The effect of the thromboxane A2 synthesis inhibitor OKY-046 on renal function in rabbits following release of unilateral ureteral obstruction.J. Urol.1987137357157610.1016/S0022‑5347(17)44108‑5 3820396
    [Google Scholar]
  14. BhatiaP. KaurG. SinghN. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia.Vascul. Pharmacol.202113710682710.1016/j.vph.2020.106827 33346090
    [Google Scholar]
  15. NeumanR.S. ZebrowskaG. Serotonin (5-HT2) receptor mediated enhancement of cortical unit activity.Cancer J. Physiol. Pharmacol.199270121604160910.1139/y92‑230 1301238
    [Google Scholar]
  16. RogosnitzkyM. DanksR. KardashE. Therapeutic potential of tranilast, an anti-allergy drug, in proliferative disorders.Anticancer Res.201232724712478 22753703
    [Google Scholar]
  17. HoriuchiY. Seasonal facial erythema in a patient with allergic rhinitis treated using a combination of tranilast and roxithromycin.Immunopharmacol. Immunotoxicol.202345450851010.1080/08923973.2022.2151916 36519507
    [Google Scholar]
  18. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  19. ZhangX. HeX. ChenQ. LuJ. RapposelliS. PiR. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease.Bioorg. Med. Chem.201826354355010.1016/j.bmc.2017.12.042 29310862
    [Google Scholar]
  20. ChaiA.B. CallaghanR. GelissenI.C. Regulation of P-glycoprotein in the brain.Int. J. Mol. Sci.202223231466710.3390/ijms232314667 36498995
    [Google Scholar]
  21. PiscitelliJ. NikanjamM. CapparelliE.V. BlaqueraC.L. PenzakS.R. NolinT.D. PaineM.F. MaJ.D. Fexofenadine plasma concentrations to estimate systemic exposure in healthy adults using a limited sampling strategy with a population pharmacokinetic approach.Ther. Drug Monit.202345453954510.1097/FTD.0000000000001052 36645711
    [Google Scholar]
  22. SamraG.K. Dual targeting agents for Aβ plaque/P-glycoprotein and Aβ plaque/nicotinic acetylcholine α4β2* receptors-potential approaches to facilitate Aβ plaque removal in Alzheimer’s disease brain.Med. Chem. Res.201827616341646
    [Google Scholar]
  23. LanJ.S. XieS.S. LiS.Y. PanL.F. WangX.B. KongL.Y. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201422216089610410.1016/j.bmc.2014.08.035 25282654
    [Google Scholar]
  24. LanJ.S. HouJ.W. LiuY. DingY. ZhangY. LiL. ZhangT. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N -benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201732177678810.1080/14756366.2016.1256883 28585866
    [Google Scholar]
  25. PainuliS. SemwalP. ZamW. TaheriY. EzzatS.M. ZuoP. LiL. KumarD. Sharifi-RadJ. Cruz-MartinsN. NMDA inhibitors: A potential contrivance to assist in management of Alzheimer’s disease.Comb. Chem. High Throughput Screen.202326122099211210.2174/1386207325666220428112541 36476432
    [Google Scholar]
  26. RosiniM. SimoniE. CaporasoR. BasagniF. CatanzaroM. AbuI.F. FagianiF. FuscoF. MasuzzoS. AlbaniD. LanniC. MellorI.R. MinariniA. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease.Eur. J. Med. Chem.201918011112010.1016/j.ejmech.2019.07.011 31301562
    [Google Scholar]
  27. NakiT. MatsheW.M.R. BalogunM.O. Sinha RayS. EgieyehS.A. AderibigbeB.A. Polymer drug conjugates containing memantine, tacrine and cinnamic acid: promising nanotherapeutics for the treatment of Alzheimer’s disease.J. Microencapsul.2023401152810.1080/02652048.2023.2167011 36622880
    [Google Scholar]
  28. SangZ. WangK. HanX. CaoM. TanZ. LiuW. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease.ACS Chem. Neurosci.20191021008102410.1021/acschemneuro.8b00530 30537804
    [Google Scholar]
  29. SangZ. WangK. BaiP. WuA. ShiJ. LiuW. ZhuG. WangY. LanY. ChenZ. ZhaoY. QiaoZ. WangC. TanZ. Design, synthesis and biological evaluation of novel O-carbamoyl ferulamide derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202019411226510.1016/j.ejmech.2020.112265 32240904
    [Google Scholar]
  30. TripathiA. ChoubeyP.K. SharmaP. SethA. TripathiP.N. TripathiM.K. PrajapatiS.K. KrishnamurthyS. ShrivastavaS.K. Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer’s disease.Eur. J. Med. Chem.201918311170710.1016/j.ejmech.2019.111707 31561043
    [Google Scholar]
  31. ElghazawyN.H. ZaafarD. HassanR.R. MahmoudM.Y. BeddaL. BakrA.F. ArafaR.K. Discovery of new 1,3,4-oxadiazoles with dual activity targeting the cholinergic pathway as effective anti-Alzheimer agents.ACS Chem. Neurosci.20221381187120510.1021/acschemneuro.1c00766 35377601
    [Google Scholar]
  32. TripathiA. ChoubeyP.K. SharmaP. SethA. SarafP. ShrivastavaS.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease.Bioorg. Chem.20209510350610.1016/j.bioorg.2019.103506 31887472
    [Google Scholar]
  33. BubleyA. ErofeevA. GorelkinP. BeloglazkinaE. MajougaA. KrasnovskayaO. Tacrine-based hybrids: Past, present, and future.Int. J. Mol. Sci.2023242171710.3390/ijms24021717 36675233
    [Google Scholar]
  34. Rodríguez-RuizE.R. Herrero-LabradorR. Fernández-FernándezA.P. Serrano-MasaJ. Martínez-MonteroJ.A. González-NietoD. Hana-VaishM. BenchekrounM. IsmailiL. Marco-ContellesJ. Martínez-MurilloR. The proof-of-concept of MBA121, a tacrine–ferulic acid hybrid, for Alzheimer’s disease therapy.Int. J. Mol. Sci.202324151225410.3390/ijms241512254 37569630
    [Google Scholar]
  35. ChenY. ZhuJ. MoJ. YangH. JiangX. LinH. GuK. PeiY. WuL. TanR. HouJ. ChenJ. LvY. BianY. SunH. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833129030210.1080/14756366.2017.1412314 29278947
    [Google Scholar]
  36. SharmaV.K. SinghT.G. SinghS. Cyclic Nucleotides signaling and phosphodiesterase inhibition: Defying Alzheimer’s disease.Curr. Drug Targets202021131371138410.2174/18735592MTA4mNDg03 32718286
    [Google Scholar]
  37. Reyes-IrisarriE. Markerink-Van IttersumM. MengodG. De VenteJ. Expression of the cGMP‐specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains.Eur. J. Neurosci.200725113332333810.1111/j.1460‑9568.2007.05589.x 17553001
    [Google Scholar]
  38. ZhangC. ZhouQ. WuX.N. HuangY.D. ZhouJ. LaiZ. WuY. LuoH.B. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833126027010.1080/14756366.2017.1412315 29271265
    [Google Scholar]
  39. WangX.X. WanR.Z. LiuZ.P. Recent advances in the discovery of potent and selective HDAC6 inhibitors.Eur. J. Med. Chem.20181431406141810.1016/j.ejmech.2017.10.040 29133060
    [Google Scholar]
  40. YuC.W. ChangP.T. HsinL.W. ChernJ.W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease.J. Med. Chem.201356176775679110.1021/jm400564j 23905680
    [Google Scholar]
  41. HeF. ChouC.J. ScheinerM. PoetaE. Yuan ChenN. GuneschS. HoffmannM. SotrifferC. MontiB. MauriceT. DeckerM. Melatonin- and ferulic acid-based HDAC6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological Alzheimer’s disease mouse model.J. Med. Chem.20216473794381210.1021/acs.jmedchem.0c01940 33769811
    [Google Scholar]
  42. ZhuJ. YangH. ChenY. LinH. LiQ. MoJ. BianY. PeiY. SunH. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833149650610.1080/14756366.2018.1430691 29405075
    [Google Scholar]
  43. PavlidisN. KofinasA. PapanikolaouM.G. MirasH.N. DrouzaC. KalampouniasA.G. KabanosT.A. KonstandiM. LeondaritisG. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(II) in in vitro cell models of Alzheimer’s disease.J. Inorg. Biochem.202121711139310.1016/j.jinorgbio.2021.111393 33610031
    [Google Scholar]
  44. MoJ. YangH. ChenT. LiQ. LinH. FengF. LiuW. QuW. GuoQ. ChiH. ChenY. SunH. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors.Bioorg. Chem.20199310331010.1016/j.bioorg.2019.103310 31586704
    [Google Scholar]
  45. WangK. ShiJ. ZhouY. HeY. MiJ. YangJ. LiuS. TangX. LiuW. TanZ. SangZ. Design, synthesis and evaluation of cinnamic acid hybrids as multi-target-directed agents for the treatment of Alzheimer’s disease.Bioorg. Chem.202111210487910.1016/j.bioorg.2021.104879 33915461
    [Google Scholar]
  46. PohlF. Kong Thoo LinP. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials.Molecules20182312328310.3390/molecules23123283 30544977
    [Google Scholar]
  47. BellaviteP. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action.Antioxidants202312228010.3390/antiox12020280 36829840
    [Google Scholar]
  48. HofmannJ. SpatzP. WaltherR. GutmannM. MauriceT. DeckerM. Synthesis and biological evaluation of flavonoid‐cinnamic acid amide hybrids with distinct activity against neurodegeneration in vitro and in vivo.Chemistry20222839e20220078610.1002/chem.202200786 35621167
    [Google Scholar]
  49. GüNTHERM. Flavonoid-phenolic acid hybrids are potent inhibitors of ferroptosis via attenuation of mitochondrial impairment.Antioxidants202313144
    [Google Scholar]
  50. LiuJ. HuiA. WangJ. HuQ. LiS. ChenY. WuZ. ZhangW. Discovery of acylated isoquercitrin derivatives as potent anti-neuroinflammatory agents in vitro and in vivo.Chem. Biol. Interact.202338311067510.1016/j.cbi.2023.110675 37579935
    [Google Scholar]
  51. GuneschS. HoffmannM. KiermeierC. FischerW. PintoA.F.M. MauriceT. MaherP. DeckerM. 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo.Redox Biol.20202910137810.1016/j.redox.2019.101378 31926632
    [Google Scholar]
  52. de CastroP.P. CarpanezA.G. AmaranteG.W. Azlactone reaction developments.Chemistry20162230102941031810.1002/chem.201600071 27245128
    [Google Scholar]
  53. CavasL. TopcamG. Gundogdu-HizliatesC. ErgunY. Neural network modeling of AChE inhibition by new carbazole-bearing oxazolones.Interdiscip. Sci.20191119510710.1007/s12539‑017‑0245‑4 29236214
    [Google Scholar]
  54. Ramírez-RuizA.M. Ávila-CossíoM.E. Estolano-CobiánA. Cornejo-BravoJ.M. MartinezA.L. Córdova-GuerreroI. Cota-RamírezB.R. Carranza-AmbrizK.P. RiveroI.A. Serrano-MedinaA. Inhibitory activity of 4-benzylidene oxazolones derivatives of cinnamic acid on human acetylcholinesterase and cognitive improvements in a mouse model.Molecules20232821739210.3390/molecules28217392 37959813
    [Google Scholar]
  55. Martín-CámaraO. ArribasM. WellsG. Morales-TenorioM. Martín-RequeroÁ. PorrasG. MartínezA. GiorgiG. López-AlvaradoP. Lastres-BeckerI. MenéndezJ.C. Multitarget hybrid fasudil derivatives as a new approach to the potential treatment of amyotrophic lateral sclerosis.J. Med. Chem.20226531867188210.1021/acs.jmedchem.1c01255 34985276
    [Google Scholar]
  56. BenfeitoS. FernandesC. VilarS. RemiãoF. UriarteE. BorgesF. Exploring the multi-target performance of mitochondriotropic antioxidants against the pivotal Alzheimer’s disease Pathophysiological Hallmarks.Molecules202025227610.3390/molecules25020276 31936622
    [Google Scholar]
  57. SinghY.P. TejG.N.V.C. PandeyA. PriyaK. PandeyP. ShankarG. NayakP.K. RaiG. ChittiboyinaA.G. DoerksenR.J. VishwakarmaS. ModiG. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease.Eur. J. Med. Chem.202019811225710.1016/j.ejmech.2020.112257 32375073
    [Google Scholar]
  58. GhafaryS. GhobadianR. MahdaviM. NadriH. MoradiA. AkbarzadehT. NajafiZ. SharifzadehM. EdrakiN. MoghadamF.H. AminiM. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase.Daru202028246347710.1007/s40199‑020‑00346‑9 32372339
    [Google Scholar]
  59. ElkharsawyH. EldomanyR.A. MiraA. SolimanA.F. AmirM. El-sharkawyS. New neuroprotective derivatives of cinnamic acid by biotransformation.Food Funct.20241584323433710.1039/D3FO04802K 38530276
    [Google Scholar]
  60. BazzariF.H. BazzariA.H. BACE1 inhibitors for Alzheimer’s Disease: The past, present and any future?Molecules20222724882310.3390/molecules27248823 36557955
    [Google Scholar]
  61. AminiR. MoradiS. NajafiR. MazdehM. TaherkhaniA. BACE1 inhibition utilizing organic compounds holds promise as a potential treatment for Alzheimer’s and Parkinson’s diseases.Oxid. Med. Cell. Longev.2024202411310.1155/2024/6654606 38425997
    [Google Scholar]
  62. BahramiK. JärvinenJ. LaitinenT. ReinisaloM. HonkakoskiP. PosoA. HuttunenK.M. RautioJ. structural features affecting the interactions and transportability of LAT1-targeted phenylalanine drug conjugates.Mol. Pharm.202320120621810.1021/acs.molpharmaceut.2c00594 36394563
    [Google Scholar]
  63. PurisE. GyntherM. HuttunenJ. L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery.Eur. J. Pharmaceut Sci.201912999109
    [Google Scholar]
  64. MontaserA. HuttunenJ. IbrahimS.A. HuttunenK.M. Astrocyte-targeted transporter-utilizing derivatives of ferulic acid can have multifunctional effects ameliorating inflammation and oxidative stress in the brain.Oxid. Med. Cell. Longev.2019201911310.1155/2019/3528148 31814871
    [Google Scholar]
  65. MegatS. HugelS. JournéeS.H. BohrenY. LacaudA. LelièvreV. DoridotS. VillaP. BourguignonJ.J. SalvatE. SchlichterR. Freund-MercierM.J. YalcinI. BarrotM. Antiallodynic action of phosphodiesterase inhibitors in a mouse model of peripheral nerve injury.Neuropharmacology202220510890910.1016/j.neuropharm.2021.108909 34875284
    [Google Scholar]
  66. PolesskayaO.O. SmithR.F. FryxellK.J. Chronic nicotine doses down-regulate PDE4 isoforms that are targets of antidepressants in adolescent female rats.Biol. Psychiatry2007611566410.1016/j.biopsych.2006.03.038 16814262
    [Google Scholar]
  67. ZhouY. ZhouJ. Tranilast treatment attenuates cerebral ischemia-reperfusion injury in rats through the inhibition of inflammatory responses mediated by NF-κB and PPARs (December, 10.1111/cts.12606, 2018).Cts-Clin Transl Sci202114520852085[J].10.1111/cts.13071
    [Google Scholar]
  68. LuJ.F. Design, Synthesis, and Biological Evaluation of Novel Multifunctional Rolipram-Tranilast Hybrids As Potential Treatment for Traumatic Brain Injury (vol 11, pg 2348, 2020).ACS Chem. Neurosci.202314142582258210.1021/acschemneuro.3c00441 37418676
    [Google Scholar]
  69. GrahamN.S.N. ColeJ.H. BourkeN.J. SchottJ.M. SharpD.J. Distinct patterns of neurodegeneration after TBI and in Alzheimer’s disease.Alzheimers Dement.20231973065307710.1002/alz.12934 36696255
    [Google Scholar]
  70. BasagniF. Di PaoloM.L. CozzaG. Dalla ViaL. FagianiF. LanniC. RosiniM. MinariniA. Double attack to oxidative stress in neurodegenerative disorders: MAO-B and Nrf2 as elected targets.Molecules20232821742410.3390/molecules28217424 37959843
    [Google Scholar]
  71. ShiQ. YangZ.Y. WangY.H. YiB.X. GaoX.H. DingY.J. PengD. ChenY.L. LiuH.R. Discovery of novel cholinesterase inhibitors easily crossing the blood‐brain barrier via Structure‐property relationship investigation: Methylenedioxy‐cinnamicamide containing tertiary amine side chain.Chem. Biodivers.2024217e20240055710.1002/cbdv.202400557 38701359
    [Google Scholar]
  72. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  73. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  74. QureshiT. ChinnathambiS. Histone deacetylase-6 modulates Tau function in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20221869811927510.1016/j.bbamcr.2022.119275 35452751
    [Google Scholar]
  75. ChoiH. KimH.J. KimJ. KimS. YangJ. LeeW. ParkY. HyeonS.J. LeeD.S. RyuH. ChungJ. Mook-JungI. Increased acetylation of Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport.Mol. Neurodegener.20171212310.1186/s13024‑017‑0164‑1 28241840
    [Google Scholar]
  76. GaoH. SunX. RaoY. PROTAC technology: Opportunities and challenges.ACS Med. Chem. Lett.202011323724010.1021/acsmedchemlett.9b00597 32184950
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575330648240819112435
Loading
/content/journals/mrmc/10.2174/0113895575330648240819112435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test