Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Malaria has been one of the most lethal infectious diseases throughout history, claiming a high number of human lives. The genomic plasticity of , the causative agent of the most severe and deadly form of malaria, gives the parasite a constant resistance to drugs developed for its control. Despite efforts to control and even eradicate the disease, these have largely been unsuccessful due to the parasite's continuous adaptations. This study aims to examine the key genes involved in parasite resistance and propose a shift in the combat strategy. Gene silencing techniques offer promise in combating malaria, yet further research is needed to harness their potential for disease control fully. Although there is still a long way to go for the implementation of gene silencing-based therapeutic strategies, this review addresses examples of the use of such techniques in various human diseases and how they could be extrapolated for malaria treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575306957240610102626
2024-06-21
2025-01-08
Loading full text...

Full text loading...

References

  1. CoxF.E.G. History of the discovery of the malaria parasites and their vectors.Parasit. Vectors201031510.1186/1756‑3305‑3‑5 20205846
    [Google Scholar]
  2. JoyD.A. FengX. MuJ. FuruyaT. ChotivanichK. KrettliA.U. HoM. WangA. WhiteN.J. SuhE. BeerliP. SuX. Early origin and recent expansion of Plasmodium falciparum.Science2003300561731832110.1126/science.1081449 12690197
    [Google Scholar]
  3. TimmermannA. FriedrichT. Late Pleistocene climate drivers of early human migration.Nature20165387623929510.1038/nature19365 27654920
    [Google Scholar]
  4. World Health OrganizationGlobal Malaria Programme. World malaria report 2021.Available From: https://www.who.int/teams/global-malariaprogramme/reports/world-malaria-report-2021 2021
  5. MilnerD.A.Jr Malaria pathogenesis.Cold Spring Harb. Perspect. Med.201881a02556910.1101/cshperspect.a025569 28533315
    [Google Scholar]
  6. World Health OrganizationThe top 10 causes of death.Available From: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  7. SinkaM.E. BangsM.J. ManguinS. Rubio-PalisY. ChareonviriyaphapT. CoetzeeM. MbogoC.M. HemingwayJ. PatilA.P. TemperleyW.H. GethingP.W. KabariaC.W. BurkotT.R. HarbachR.E. HayS.I. A global map of dominant malaria vectors.Parasit. Vectors2012516910.1186/1756‑3305‑5‑69 22475528
    [Google Scholar]
  8. Molina-CruzA. ZilversmitM.M. NeafseyD.E. HartlD.L. Barillas-MuryC. Mosquito vectors and the globalization of Plasmodium falciparum malaria.Annu. Rev. Genet.201650144746510.1146/annurev‑genet‑120215‑035211 27732796
    [Google Scholar]
  9. AscharM. LeviJ.E. FarinasM.L.R.N. MontebelloS.C. Mendrone-JuniorA. Di SantiS.M. The hidden Plasmodium malariae in blood donors: A risk coming from areas of low transmission of malaria.Rev. Inst. Med. Trop. São Paulo202062e10010.1590/s1678‑9946202062100 33331519
    [Google Scholar]
  10. Del Castillo CalderónJ.G. Cárdenas SilvaA.M. Malaria congénita por Plasmodium falciparum.Rev. Chil. Pediatr.202091574975310.32641/rchped.v91i5.1283 33399640
    [Google Scholar]
  11. MeibalanE. MartiM. Biology of Malaria Transmission.Cold Spring Harb. Perspect. Med.201773a02545210.1101/cshperspect.a025452 27836912
    [Google Scholar]
  12. DornA. VippaguntaS.R. MatileH. JaquetC. VennerstromJ.L. RidleyR.G. An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials.Biochem. Pharmacol.199855672773610.1016/S0006‑2952(97)00510‑8 9586944
    [Google Scholar]
  13. CombrinckJ.M. MabothaT.E. NcokaziK.K. AmbeleM.A. TaylorD. SmithP.J. HoppeH.C. EganT.J. Insights into the role of heme in the mechanism of action of antimalarials.ACS Chem. Biol.20138113313710.1021/cb300454t 23043646
    [Google Scholar]
  14. TangY.Q. YeQ. HuangH. ZhengW.Y. An overview of available antimalarials: Discovery, mode of action and drug resistance.Curr. Mol. Med.202020858359210.2174/1566524020666200207123253 32031068
    [Google Scholar]
  15. HillD.R. RyanE.T. PariseM. MagillA.J. LewisL.S. BairdJ.K. Primaquine: Report from CDC expert meeting on malaria chemoprophylaxis I.Am. J. Trop. Med. Hyg.200675340241510.4269/ajtmh.2006.75.402 16968913
    [Google Scholar]
  16. Bonilla-RamírezL. GalianoS. QuilianoM. AldanaI. PabónA. Primaquine–quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species.Malar. J.201918120110.1186/s12936‑019‑2825‑8 31217011
    [Google Scholar]
  17. EgwuC.O. TsamesidisI. PérioP. AugereauJ.M. Benoit-VicalF. ReybierK. Superoxide: A major role in the mechanism of action of essential antimalarial drugs.Free Radic. Biol. Med.202116727127510.1016/j.freeradbiomed.2021.03.001 33722628
    [Google Scholar]
  18. DembéléL. FranetichJ.F. SoulardV. AmanzougagheneN. TajeriS. BousemaT. van GemertG.J. Le GrandR. Dereuddre-BosquetN. BairdJ.K. MazierD. SnounouG. Chloroquine potentiates primaquine activity against active and latent hepatic plasmodia ex vivo: Potentials and pitfalls.Antimicrob. Agents Chemother.2020651e014162010.1128/AAC.01416‑20 33077656
    [Google Scholar]
  19. RossL.S. FidockD.A. Elucidating mechanisms of drug-resistant Plasmodium falciparum.Cell Host Microbe2019261354710.1016/j.chom.2019.06.001 31295423
    [Google Scholar]
  20. WongW. BaiX.C. SleebsB.E. TrigliaT. BrownA. ThompsonJ.K. JacksonK.E. HanssenE. MarapanaD.S. FernandezI.S. RalphS.A. CowmanA.F. ScheresS.H.W. BaumJ. Mefloquine targets the Plasmodium falciparum 80s ribosome to inhibit protein synthesis.Nat. Microbiol.2017261703110.1038/nmicrobiol.2017.31 28288098
    [Google Scholar]
  21. WindleS.T. LaneK.D. GadallaN.B. LiuA. MuJ. CaleonR.L. RahmanR.S. SáJ.M. WellemsT.E. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross.Int. J. Parasitol. Drugs Drug Resist.20201420821710.1016/j.ijpddr.2020.10.009 33197753
    [Google Scholar]
  22. MeshnickS.R. AlkerA.P. Amodiaquine and combination chemotherapy for malaria.Am. J. Trop. Med. Hyg.200573582182310.4269/ajtmh.2005.73.821 16282286
    [Google Scholar]
  23. Osei-AkotoA. OrtonL.C. Owusu-OforiS. Atovaquone-proguanil for treating uncomplicated malaria.Cochrane Libr.200520054CD00452910.1002/14651858.CD004529.pub2 16235366
    [Google Scholar]
  24. MounkoroP. MichelT. MeunierB. Revisiting the mode of action of the antimalarial proguanil using the yeast model.Biochem. Biophys. Res. Commun.2021534949810.1016/j.bbrc.2020.12.004 33316545
    [Google Scholar]
  25. OlliaroP. Mode of action and mechanisms of resistance for antimalarial drugs.Pharmacol. Ther.200189220721910.1016/S0163‑7258(00)00115‑7 11316521
    [Google Scholar]
  26. DahlE.L. RosenthalP.J. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast.Antimicrob. Agents Chemother.200751103485349010.1128/AAC.00527‑07 17698630
    [Google Scholar]
  27. DhariaN.V. PlouffeD. BoppS.E.R. González-PáezG.E. LucasC. SalasC. SoberonV. BursulayaB. KochelT.J. BaconD.J. WinzelerE.A. Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites.Genome Res.201020111534154410.1101/gr.105163.110 20829224
    [Google Scholar]
  28. MeshnickS.R. Artemisinin: Mechanisms of action, resistance and toxicity.Int. J. Parasitol.200232131655166010.1016/S0020‑7519(02)00194‑7 12435450
    [Google Scholar]
  29. WoodleyC.M. AmadoP.S.M. CristianoM.L.S. O’NeillP.M. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies.Med. Res. Rev.20214163062309510.1002/med.21849 34355414
    [Google Scholar]
  30. HanboonkunupakarnB. WhiteN.J. Advances and roadblocks in the treatment of malaria.Br. J. Clin. Pharmacol.202288237438210.1111/bcp.14474 32656850
    [Google Scholar]
  31. SinhaS. MedhiB. SehgalR. Challenges of drug-resistant malaria.Parasite2014216110.1051/parasite/2014059 25402734
    [Google Scholar]
  32. PloweC.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications.Malar. J.202221110410.1186/s12936‑022‑04115‑8 35331231
    [Google Scholar]
  33. AmeloW. MakonnenE. Efforts made to eliminate drug-resistant malaria and its challenges.BioMed Res. Int.2021202111210.1155/2021/5539544 34497848
    [Google Scholar]
  34. PadmaT.V. Can malaria researchers slow the spread of drug resistance?Nature20236187967S26S2810.1038/d41586‑023‑02052‑3 37380680
    [Google Scholar]
  35. KumarN. ChaG. PinedaF. MacielJ. HaddadD. BhattacharyyaM. NagayasuE. Molecular complexity of sexual development and gene regulation in Plasmodium falciparum.Int. J. Parasitol.20043413-141451145810.1016/j.ijpara.2004.10.013 15582522
    [Google Scholar]
  36. FengX. CarltonJ.M. JoyD.A. MuJ. FuruyaT. SuhB.B. WangY. BarnwellJ.W. SuX.Z. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax.Proc. Natl. Acad. Sci. USA2003100148502850710.1073/pnas.1232502100 12799466
    [Google Scholar]
  37. ZhangX. DeitschK.W. KirkmanL.A. The contribution of extrachromosomal DNA to genome plasticity in malaria parasites.Mol. Microbiol.2021115450350710.1111/mmi.14632 33103309
    [Google Scholar]
  38. CostaG.L. AmaralL.C. FontesC.J.F. CarvalhoL.H. de BritoC.F.A. de SousaT.N. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature.Malar. J.201716115210.1186/s12936‑017‑1806‑z 28420389
    [Google Scholar]
  39. BakhietA.M.A. AbdelraheemM.H. KheirA. OmerS. GismelseedL. Abdel-MuhsinA.M.A. NaiemA. Al HosniA. Al DhuhliA. Al RubkhiM. Al-HamidhiS. GadallaA. MukhtarM. SultanA.A. BabikerH.A. Evolution of Plasmodium falciparum drug resistance genes following artemisinin combination therapy in Sudan.Trans. R. Soc. Trop. Med. Hyg.20191131169370010.1093/trstmh/trz059 31369106
    [Google Scholar]
  40. PriceR.N. UhlemannA.C. BrockmanA. McGreadyR. AshleyE. PhaipunL. PatelR. LaingK. LooareesuwanS. WhiteN.J. NostenF. KrishnaS. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.Lancet2004364943243844710.1016/S0140‑6736(04)16767‑6 15288742
    [Google Scholar]
  41. LimP. AlkerA.P. KhimN. ShahN.K. IncardonaS. DoungS. YiP. BouthD.M. BouchierC. PuijalonO.M. MeshnickS.R. WongsrichanalaiC. FandeurT. Le BrasJ. RingwaldP. ArieyF. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia.Malar. J.2009811110.1186/1475‑2875‑8‑11 19138391
    [Google Scholar]
  42. LiJ. ChenJ. XieD. Monte-NgubaS. EyiJ.U.M. MatesaR.A. ObonoM.M.O. EhapoC.S. YangL. LuD. YangH. YangH.T. LinM. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko island, Equatorial Guinea.Pathog. Glob. Health2014108733934310.1179/2047773214Y.0000000158 25348116
    [Google Scholar]
  43. Lekana-DoukiJ.B. BoutambaS.D.D. ZatraR. EdouS.E.Z. EkomyH. BisvigouU. Toure-NdouoF.S. Increased prevalence of the Plasmodium falciparum Pfmdr1 86N genotype among field isolates from Franceville, Gabon after replacement of chloroquine by artemether–lumefantrine and artesunate–mefloquine.Infect. Genet. Evol.201111251251710.1016/j.meegid.2011.01.003 21251998
    [Google Scholar]
  44. KayodeA.T. AkanoK. AjogbasileF.V. UwanibeJ.N. OluniyiP.E. BankoleB.E. EromonP.J. SowunmiA. FolarinO.A. VolkmanS.K. McInnisB. SabetiP. WirthD.F. HappiC.T. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) in Nigerian children 10 years post-adoption of artemisinin-based combination treatments.Int. J. Parasitol.202151430131010.1016/j.ijpara.2020.10.001 33359205
    [Google Scholar]
  45. WichtK.J. MokS. FidockD.A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria.Annu. Rev. Microbiol.202074143145410.1146/annurev‑micro‑020518‑115546 32905757
    [Google Scholar]
  46. FidockD.A. NomuraT. TalleyA.K. CooperR.A. DzekunovS.M. FerdigM.T. UrsosL.M.B. bir Singh Sidhu, A.; Naudé, B.; Deitsch, K.W.; Su, X.; Wootton, J.C.; Roepe, P.D.; Wellems, T.E. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance.Mol. Cell20006486187110.1016/S1097‑2765(05)00077‑8 11090624
    [Google Scholar]
  47. DhingraS.K. RedhiD. CombrinckJ.M. YeoT. OkomboJ. HenrichP.P. CowellA.N. GuptaP. StegmanM.L. HokeJ.M. CooperR.A. WinzelerE. MokS. EganT.J. FidockD.A. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine.MBio201783e003031710.1128/mBio.00303‑17 28487425
    [Google Scholar]
  48. YuthavongY. KamchonwongpaisanS. LeartsakulpanichU. ChitnumsubP. Folate metabolism as a source of molecular targets for antimalarials.Future Microbiol.20061111312510.2217/17460913.1.1.113 17661690
    [Google Scholar]
  49. KronenbergerT. SchettertI. WrengerC. Targeting the vitamin biosynthesis pathways for the treatment of malaria.Future Med. Chem.20135776977910.4155/fmc.13.43 23651091
    [Google Scholar]
  50. PethrakC. PosayapisitN. PengonJ. SuwanakittiN. SaeungA. ShorumM. AupaleeK. TaaiK. YuthavongY. KamchonwongpaisanS. JupatanakulN. New insights into antimalarial chemopreventive activity of antifolates.Antimicrob. Agents Chemother.2022662e015382110.1128/aac.01538‑21 34930029
    [Google Scholar]
  51. JiangT. ChenJ. FuH. WuK. YaoY. EyiJ.U.M. MatesaR.A. ObonoM.M.O. DuW. TanH. LinM. LiJ. High prevalence of pfdhfr–pfdhps quadruple mutations associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea.Malar. J.201918110110.1186/s12936‑019‑2734‑x 30914041
    [Google Scholar]
  52. YanH. FengJ. YinJ. HuangF. KongX. LinK. ZhangT. FengX. ZhouS. CaoJ. XiaZ. High frequency mutations in pfdhfr and pfdhps of plasmodium falciparum in response to sulfadoxine-pyrimethamine: A cross-sectional survey in returning Chinese migrants from Africa.Front. Cell. Infect. Microbiol.20211167319410.3389/fcimb.2021.673194 34568082
    [Google Scholar]
  53. EsuE. TacoliC. GaiP. Berens-RihaN. PritschM. LoescherT. MeremikwuM. Prevalence of the Pfdhfr and Pfdhps mutations among asymptomatic pregnant women in Southeast Nigeria.Parasitol. Res.2018117380180710.1007/s00436‑018‑5754‑5 29332155
    [Google Scholar]
  54. MadkhaliA.M. Al-MekhlafiH.M. AtrooshW.M. GhzwaniA.H. ZainK.A. AbdulhaqA.A. GhailanK.Y. AnwarA.A. EisaZ.M. Increased prevalence of pfdhfr and pfdhps mutations associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum isolates from Jazan Region, Southwestern Saudi Arabia: Important implications for malaria treatment policy.Malar. J.202019144610.1186/s12936‑020‑03524‑x 33267841
    [Google Scholar]
  55. SrisuthamS. MadmaneeW. KouhathongJ. SutawongK. TripuraR. PetoT.J. van der PluijmR.W. CalleryJ.J. DysoleyL. MayxayM. NewtonP.N. PongvongsaT. HongvanthongB. DayN.P.J. WhiteN.J. DondorpA.M. ImwongM. Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries.PLoS One20221712e027892810.1371/journal.pone.0278928 36525403
    [Google Scholar]
  56. BosiaA. GhigoD. TurriniF. NissaniE. PescarmonaG.P. GinsburgH. Kinetic characterization of Na +/H + antiport of Plasmodium falciparum membrane.J. Cell. Physiol.1993154352753410.1002/jcp.1041540311 8382209
    [Google Scholar]
  57. HenryM. BriolantS. ZettorA. PelleauS. BaragattiM. BaretE. MosnierJ. AmalvictR. FusaiT. RogierC. PradinesB. Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine.Antimicrob. Agents Chemother.20095351926193010.1128/AAC.01243‑08 19273668
    [Google Scholar]
  58. CheruiyotJ. IngasiaL.A. OmondiA.A. JumaD.W. OpotB.H. NdegwaJ.M. MativoJ. CheruiyotA.C. YedaR. OkudoC. MuiruriP. BidiiN.S. ChebonL.J. AngiendaP.O. EyaseF.L. JohnsonJ.D. BulimoW.D. AndagaluB. AkalaH.M. KamauE. Polymorphisms in Pfmdr1, Pfcrt, and Pfnhe1 genes are associated with reduced in vitro activities of quinine in Plasmodium falciparum isolates from western Kenya.Antimicrob. Agents Chemother.20145873737374310.1128/AAC.02472‑14 24752268
    [Google Scholar]
  59. WuK. YaoY. ChenF. XuM. LuG. JiangT. LiuZ. DuW. LiF. LiR. TanH. LiJ. Analysis of Plasmodium falciparum Na+/H+ exchanger (pfnhe1) polymorphisms among imported African malaria parasites isolated in Wuhan, Central China.BMC Infect. Dis.201919135410.1186/s12879‑019‑3921‑7 31035938
    [Google Scholar]
  60. SharmaS. AliM.E. How do the mutations in Pf K13 protein promote anti-malarial drug resistance?J. Biomol. Struct. Dyn.202341157329733810.1080/07391102.2022.2120539 36153000
    [Google Scholar]
  61. SiW. ZhaoY. QinX. HuangY. YuJ. LiuX. LiY. YanX. ZhangQ. SunJ. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence?Parasit. Vectors202316142110.1186/s13071‑023‑06024‑4 37974285
    [Google Scholar]
  62. BirnbaumJ. ScharfS. SchmidtS. JonscherE. HoeijmakersW.A.M. FlemmingS. ToenhakeC.G. SchmittM. SabitzkiR. BergmannB. FröhlkeU. Mesén-RamírezP. Blancke SoaresA. HerrmannH. BártfaiR. SpielmannT.A. Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites.Science20203676473515910.1126/science.aax4735 31896710
    [Google Scholar]
  63. BridgfordJ.L. XieS.C. CobboldS.A. PasajeC.F.A. HerrmannS. YangT. GillettD.L. DickL.R. RalphS.A. DogovskiC. SpillmanN.J. TilleyL. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome.Nat. Commun.201891380110.1038/s41467‑018‑06221‑1 30228310
    [Google Scholar]
  64. LeJ. PerezE. NemzowL. GongF. Role of deubiquitinases in DNA damage response.DNA Repair201976899810.1016/j.dnarep.2019.02.011 30831436
    [Google Scholar]
  65. FengJ. XuD. KongX. LinK. YanH. FengX. TuH. XiaZ. Characterization of pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu in Travelers Returning from Africa with Plasmodium falciparum Infections Reported in China from 2014 to 2018.Antimicrob. Agents Chemother.2021657e027172010.1128/AAC.02717‑20 33903109
    [Google Scholar]
  66. ChengW. WuK. SongX. WangW. DuW. LiJ. Single-nucleotide polymorphisms of artemisinin resistance-related pfubp1 and pfap2mu genes in imported Plasmodium falciparum to Wuhan, China.Infect. Genet. Evol.202210110528610.1016/j.meegid.2022.105286 35470127
    [Google Scholar]
  67. MuJ. MyersR.A. JiangH. LiuS. RicklefsS. WaisbergM. ChotivanichK. WilairatanaP. KrudsoodS. WhiteN.J. UdomsangpetchR. CuiL. HoM. OuF. LiH. SongJ. LiG. WangX. SeilaS. SokuntheaS. SocheatD. SturdevantD.E. PorcellaS.F. FairhurstR.M. WellemsT.E. AwadallaP. SuX. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs.Nat. Genet.201042326827110.1038/ng.528 20101240
    [Google Scholar]
  68. YeR. TianY. HuangY. ZhangY. WangJ. SunX. ZhouH. ZhangD. PanW. Genome-wide analysis of genetic diversity in Plasmodium falciparum isolates from China–Myanmar border.Front. Genet.201910106510.3389/fgene.2019.01065 31737048
    [Google Scholar]
  69. HenriciR.C. van SchalkwykD.A. SutherlandC.J. Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro.Antimicrob. Agents Chemother.2019641e015421910.1128/AAC.01542‑19 31636063
    [Google Scholar]
  70. MatrangaC. TomariY. ShinC. BartelD.P. ZamoreP.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.Cell2005123460762010.1016/j.cell.2005.08.044 16271386
    [Google Scholar]
  71. SettenR.L. RossiJ.J. HanS. The current state and future directions of RNAi-based therapeutics.Nat. Rev. Drug Discov.201918642144610.1038/s41573‑019‑0017‑4 30846871
    [Google Scholar]
  72. Gheibi-HayatS.M. JamialahmadiK. Antisense oligonucleotide (AS‐ODN) technology: Principle, mechanism and challenges.Biotechnol. Appl. Biochem.20216851086109410.1002/bab.2028 32964539
    [Google Scholar]
  73. GavrilovK. SaltzmanW.M. Therapeutic siRNA: Principles, challenges, and strategies.Yale J. Biol. Med.2012852187200 22737048
    [Google Scholar]
  74. KowalskiP.S. RudraA. MiaoL. AndersonD.G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery.Mol. Ther.201927471072810.1016/j.ymthe.2019.02.012 30846391
    [Google Scholar]
  75. AdamsD. Gonzalez-DuarteA. O’RiordanW.D. YangC.C. UedaM. KristenA.V. TournevI. SchmidtH.H. CoelhoT. BerkJ.L. LinK.P. VitaG. AttarianS. Planté-BordeneuveV. MezeiM.M. CampistolJ.M. BuadesJ. BrannaganT.H.III KimB.J. OhJ. ParmanY. SekijimaY. HawkinsP.N. SolomonS.D. PolydefkisM. DyckP.J. GandhiP.J. GoyalS. ChenJ. StrahsA.L. NochurS.V. SweetserM.T. GargP.P. VaishnawA.K. GollobJ.A. SuhrO.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N. Engl. J. Med.20183791112110.1056/NEJMoa1716153 29972753
    [Google Scholar]
  76. BezerraF. SaraivaM.J. AlmeidaM.R. Modulation of the mechanisms driving transthyretin amyloidosis.Front. Mol. Neurosci.20201359264410.3389/fnmol.2020.592644 33362465
    [Google Scholar]
  77. SiJ.B. KimB. KimJ.H. Transthyretin misfolding, a fatal structural pathogenesis mechanism.Int. J. Mol. Sci.2021229442910.3390/ijms22094429 33922648
    [Google Scholar]
  78. UedaM. Transthyretin: Its function and amyloid formation.Neurochem. Int.202215510531310.1016/j.neuint.2022.105313 35218869
    [Google Scholar]
  79. LuigettiM. RomanoA. Di PaolantonioA. BisogniG. SabatelliM. Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: Current perspectives on improving patient care.Ther. Clin. Risk Manag.20201610912310.2147/TCRM.S219979 32110029
    [Google Scholar]
  80. McRobertL. McConkeyG.A. RNA interference (RNAi) inhibits growth of Plasmodium falciparum.Mol. Biochem. Parasitol.2002119227327810.1016/S0166‑6851(01)00429‑7 11814579
    [Google Scholar]
  81. HentzschelF. MitesserV. FraschkaS.A.K. KrzikallaD. CarrilloE.H. BerkhoutB. BártfaiR. MuellerA.K. GrimmD. Gene knockdown in malaria parasites via non-canonical RNAi.Nucleic Acids Res.2019gkz92710.1093/nar/gkz927 31680162
    [Google Scholar]
  82. BaumJ. PapenfussA.T. MairG.R. JanseC.J. VlachouD. WatersA.P. CowmanA.F. CrabbB.S. de Koning-WardT.F. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites.Nucleic Acids Res.200937113788379810.1093/nar/gkp239 19380379
    [Google Scholar]
  83. GarrelfsS.F. FrishbergY. HultonS.A. KorenM.J. O’RiordanW.D. CochatP. DeschênesG. Shasha-LavskyH. SalandJ.M. van’t HoffW.G. FusterD.G. MagenD. MoochhalaS.H. SchalkG. SimkovaE. GroothoffJ.W. SasD.J. MeliambroK.A. LuJ. SweetserM.T. GargP.P. VaishnawA.K. GansnerJ.M. McGregorT.L. LieskeJ.C. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1.N. Engl. J. Med.2021384131216122610.1056/NEJMoa2021712 33789010
    [Google Scholar]
  84. AimoA. CastiglioneV. RapezziC. FranziniM. PanichellaG. VergaroG. GillmoreJ. FontanaM. PassinoC. EmdinM. RNA-targeting and gene editing therapies for transthyretin amyloidosis.Nat. Rev. Cardiol.2022191065566710.1038/s41569‑022‑00683‑z 35322226
    [Google Scholar]
  85. JiangF. DoudnaJ.A. CRISPR–Cas9 structures and mechanisms.Annu. Rev. Biophys.201746150552910.1146/annurev‑biophys‑062215‑010822 28375731
    [Google Scholar]
  86. Torres-RuizR. Rodriguez-PeralesS. CRISPR-Cas9 technology: Applications and human disease modelling.Brief. Funct. Genomics201716141210.1093/bfgp/elw025 27345434
    [Google Scholar]
  87. RosenblumD. GutkinA. KedmiR. RamishettiS. VeigaN. JacobiA.M. SchubertM.S. Friedmann-MorvinskiD. CohenZ.R. BehlkeM.A. LiebermanJ. PeerD. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.Sci. Adv.2020647eabc945010.1126/sciadv.abc9450 33208369
    [Google Scholar]
  88. FooJ. MichorF. Evolution of acquired resistance to anti-cancer therapy.J. Theor. Biol.2014355102010.1016/j.jtbi.2014.02.025 24681298
    [Google Scholar]
  89. ShaikhM.H. ClarkeD.T.W. JohnsonN.W. McMillanN.A.J. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer?Oral Oncol.20176891910.1016/j.oraloncology.2017.02.016 28438299
    [Google Scholar]
  90. ZhaoY. WangF. WangC. ZhangX. JiangC. DingF. ShenL. ZhangQ. Optimization of CRISPR/Cas system for improving genome editing efficiency in Plasmodium falciparum.Front. Microbiol.20211162586210.3389/fmicb.2020.625862 33488567
    [Google Scholar]
  91. SongX. LiuC. WangN. HuangH. HeS. GongC. WeiY. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy.Adv. Drug Deliv. Rev.202116815818010.1016/j.addr.2020.04.010 32360576
    [Google Scholar]
  92. Mirjalili MohannaS.Z. DjaksigulovaD. HillA.M. WagnerP.K. SimpsonE.M. LeavittB.R. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea.J. Control. Release202235040141310.1016/j.jconrel.2022.08.042 36029893
    [Google Scholar]
  93. AzizA. RehmanU. SheikhA. AbourehabM.A.S. KesharwaniP. Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy.J. Biomater. Sci. Polym. Ed.202334339841810.1080/09205063.2022.2121592 36083788
    [Google Scholar]
  94. YuS. WangJ. LuoX. ZhengH. WangL. YangX. WangY. Transmission-blocking strategies against malaria parasites during their mosquito stages.Front. Cell. Infect. Microbiol.20221282065010.3389/fcimb.2022.820650 35252033
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575306957240610102626
Loading
/content/journals/mrmc/10.2174/0113895575306957240610102626
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CRISPR-Cas9; drug resistance; genes; Malaria; Plasmodium falciparum; RNAi
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test