Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The statistical data related to cancer in recent years has shown a great increase in the number of cases and is likely to further increase in the future. Even after seeking thorough knowledge on the aetiology of cancer and related disorders and attempting to cure it by various methods like gene therapy, T cell therapy, chemotherapy, surgery, hormone therapy, and photodynamic therapy, there has always been disappointment concerning the survival rate. Hence, there is still a great urge for the discovery of novel drugs for the treatment of cancer. Chemotherapy being one of the widely used methods, several drug entities possessing anticancer properties are already in the market but none of them is known to show good efficacy which necessitates researchers to design newer drugs for the treatment of cancer. The urge to synthesize novel anticancer entities directed researchers towards molecular hybridization as one of the novel methods for designing newer drugs. Literature reveals wide research carried out on quinolin-2-one hybrids, possessing anticancer properties through different mechanisms. Tipifarnib and Dovitinib are quinolin-2-one hybrids used to treat cancer, possessing imidazole and benzimidazole heterocyclic rings. Different heterocyclic scaffolds such as pyrone, pyrrole, pyrimidine, pyridine, thiazole, and pyrazole in combination with heterocyclic quinolin-2-one have shown high potential to become lead for newer anticancer agents with better and wider therapeutic properties and lesser side effects. The current review presents information on the different quinolin-2-one hybrids and their effect on different cancer cell lines. It also imparts knowledge of the structural requirements for designing novel anticancer agents.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575305597240912192037
2025-03-01
2025-07-03
Loading full text...

Full text loading...

References

  1. HarveyL. ArnoldB. LawrenceZ.S. PaulM. DavidB. JamesD. Molecular Cell biology.4th edNew YorkW. H. Freeman2000
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  4. GuptaM. DahiyaJ. Kumar MarwahaR. DurejaH. BabaS. NathM. Therapies in cancer treatment: An overview.Int. J. Pharm. Pharm. Sci.20157419
    [Google Scholar]
  5. WangX. YangT. ShiS. XuC. WangF. DaiD. GuanG. ZhangY. WangS. WangJ. ZhangB. LiuP. BaiX. JinY. LiX. ZhuC. ChenD. XuQ. GuoY. Heterogeneity‐induced NGF‐NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti‐tumor immunotherapy with PD ‐1 MAB in hepatocellular carcinoma.Cancer Med.2024133e673610.1002/cam4.673638204220
    [Google Scholar]
  6. HanX. ZhaoC. WangS. PanZ. JiangZ. TangX. Multifunctional TiO2/C nanosheets derived from 3D metal–organic frameworks for mild-temperature-photothermal-sonodynamic-chemodynamic therapy under photoacoustic image guidance.J. Colloid Interface Sci.202262136037310.1016/j.jcis.2022.04.07735462177
    [Google Scholar]
  7. ChakrabortyS. RahmanT. The difficulties in cancer treatment.Ecancermedicalscience20126ed.16
    [Google Scholar]
  8. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  9. GargA. KaityS. ThakurM. DatusaliaA. KumarA. Therapeutic nanocarriers in cancer treatment: Challenges and future perspective.Sharjah, U.A.E.Bentham Science Publishers202338239410.2174/9789815080506123010016
    [Google Scholar]
  10. FuD.J. ZhangS.Y. LiuY.C. YueX.X. LiuJ.J. SongJ. ZhaoR-H. LiF. SunH-H. ZhangY-B. LiuH-M. Design, synthesis and antiproliferative activity studies of 1,2,3-triazole–chalcones.MedChemComm2016781664167110.1039/C6MD00169F
    [Google Scholar]
  11. BaiL. PhuaF. LimW. JanaA. LuoZ. ThamP. Nanoscale covalent organic frameworks as smart carriers for drug delivery.Chem. Commun. (Camb.)202157124171243534734601
    [Google Scholar]
  12. NepaliK. SharmaS. SharmaM. BediP.M.S. DharK.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids.Eur. J. Med. Chem.20147742248710.1016/j.ejmech.2014.03.01824685980
    [Google Scholar]
  13. Abd El-LateefH.M. ElmaatyA.A. Abdel GhanyL.M.A. Abdel-AzizM.S. ZakiI. RyadN. Design and synthesis of 2-(4-bromophenyl)quinoline-4-carbohydrazide derivatives via molecular hybridization as novel microbial DNA-gyrase inhibitors.ACS Omega2023820179481796510.1021/acsomega.3c0115637251193
    [Google Scholar]
  14. GattrellW. JohnstoneC. PatelS. SmithC.S. ScheelA. SchindlerM. Designed multiple ligands in metabolic disease research: From concept to platform.Drug Discov. Today20131815-1669269610.1016/j.drudis.2013.02.00623454344
    [Google Scholar]
  15. HulsmanN. MedemaJ.P. BosC. JongejanA. LeursR. SmitM.J. de EschI.J.P. RichelD. WijtmansM. Chemical insights in the concept of hybrid drugs: The antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin.J. Med. Chem.200750102424243110.1021/jm061371e17441704
    [Google Scholar]
  16. AliI. LoneM. Al-OthmanZ. Al-WarthanA. SanagiM. Sanagi Mohd. Heterocyclic scaffolds: Centrality in anticancer drug development.Curr. Drug Targets201516771173410.2174/138945011666615030911592225751009
    [Google Scholar]
  17. PearceS. The importance of heterocyclic compounds in anti-cancer drug design.Drug Discov. World201726670
    [Google Scholar]
  18. FeitelsonM.A. ArzumanyanA. KulathinalR.J. BlainS.W. HolcombeR.F. MahajnaJ. MarinoM. Martinez-ChantarM.L. NawrothR. Sanchez-GarciaI. SharmaD. SaxenaN.K. SinghN. VlachostergiosP.J. GuoS. HonokiK. FujiiH. GeorgakilasA.G. BilslandA. AmedeiA. NiccolaiE. AminA. AshrafS.S. BoosaniC.S. GuhaG. CirioloM.R. AquilanoK. ChenS. MohammedS.I. AzmiA.S. BhaktaD. HalickaD. KeithW.N. NowsheenS. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets.Semin. Cancer Biol.201535Suppl.S25S5410.1016/j.semcancer.2015.02.00625892662
    [Google Scholar]
  19. IlakiyalakshmiM. Arumugam NapoleonA. Review on recent development of quinoline for anticancer activities.Arab. J. Chem.2022151110416810.1016/j.arabjc.2022.104168
    [Google Scholar]
  20. OmarA.M. SalehN.M. Abdel-RahmanA.A.H. El-AdlK. Review article; Anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulphur heteroatoms.J. Pharm. Sci.2020623953
    [Google Scholar]
  21. IbrahimT.S. HawwasM.M. MalebariA.M. TaherE.S. OmarA.M. NeamatallahT. Abdel-SamiiZ.K. SafoM.K. ElshaierY.A.M.M. Discovery of novel quinoline-based analogues of combretastatin A-4 as tubulin polymerisation inhibitors with apoptosis inducing activity and potent anticancer effect.J. Enzyme Inhib. Med. Chem.202136180281810.1080/14756366.2021.189916833730937
    [Google Scholar]
  22. LauriaA. La MonicaG. BonoA. MartoranaA. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets.Eur. J. Med. Chem.202122011355510.1016/j.ejmech.2021.11355534052677
    [Google Scholar]
  23. JayashreeB.S. KaurM. PaiA. Synthesis, characterisation, antioxidant and anticancer evaluation of novel schiff’s bases of 2-quinolones.Elixir Org Chem.2012521131711322
    [Google Scholar]
  24. ChenY.F. LinY.C. Morris-NatschkeS.L. WeiC.F. ShenT.C. LinH.Y. HsuM.H. ChouL.C. ZhaoY. KuoS.C. LeeK.H. HuangL.J. Synthesis and SAR studies of novel 6,7,8‐substituted 4‐substituted benzyloxyquinolin‐2(1H)‐one derivatives for anticancer activity.Br. J. Pharmacol.201517251195122110.1111/bph.1299225363404
    [Google Scholar]
  25. AbdouM.M. Chemistry of 4-Hydroxy-2(1)-quinolone. Part 1: Synthesis and reactions.Arab. J. Chem.201710S3324S333710.1016/j.arabjc.2014.01.012
    [Google Scholar]
  26. AlyA.A. El-SherefE.M. MouradA.F.E. BakheetM.E.M. BräseS. 4-Hydroxy-2-quinolones: Syntheses, reactions and fused heterocycles.Mol. Divers.202024247752410.1007/s11030‑019‑09952‑531030378
    [Google Scholar]
  27. HongW.P. ShinI. LimH.N. recent advances in one-pot modular synthesis of 2-quinolones.Molecules20202522545010.3390/molecules2522545033233747
    [Google Scholar]
  28. JainS. ChandraV. Kumar JainP. PathakK. PathakD. VaidyaA. Comprehensive review on current developments of quinoline-based anticancer agents.Arab. J. Chem.20191284920494610.1016/j.arabjc.2016.10.009
    [Google Scholar]
  29. Abdel-RahmanM.H. YangY. SalemM.M. MeadowsS. MassengillJ.B. LiP.K. DavidorfF.H. Investigation of the potential utility of a linomide analogue for treatment of choroidal neovascularization.Exp. Eye Res.201091683784310.1016/j.exer.2010.10.01321055400
    [Google Scholar]
  30. SparanoJ.A. MoulderS. KaziA. CoppolaD. NegassaA. VahdatL. Phase II trial of the farnesyl transferase inhibitor tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer.Clin. Cancer Res.2009158294210.1158/1078‑0432.CCR‑08‑265819351752
    [Google Scholar]
  31. TrudelS. LiZ.H. WeiE. WiesmannM. ChangH. ChenC. ReeceD. HeiseC. StewartA.K. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma.Blood200510572941294810.1182/blood‑2004‑10‑391315598814
    [Google Scholar]
  32. BajajP. DesaiS.M. DigheP. NaikS. BiradarB. Synthesis of 4-hydroxy-3-(1-hydroxy-2-(substitutedamino)ethyl)-1-phenyl/methylquinolin-2(1H)-one as anticancer agents.Asian J. Pharm. Clin. Res.201710822522810.22159/ajpcr.2017.v10i8.18836
    [Google Scholar]
  33. ReisM. Mamle DesaiS. NaikS. FernandesJ. TariP. Synthesis and evaluation of 2-(4-methoxy-2-oxo-1-phenyl/methyl-1,2-dihydroquinolin-3-yl)-2-methyl-3-(phenyl/substitutedphenylamino)thiazolidin-4-one as antibacterial and anticancer agents.Indian J. Chem.201655B12541258
    [Google Scholar]
  34. Borges e SoaresG.A. BhattacharyaT. MamledesaiS. AiZ. HasanA.M. CavaluS. Identification of linomide derivatives as potential anticancer therapeutics using molecular docking studies.Front. Pharmacol.202213June89291410.3389/fphar.2022.89291435784702
    [Google Scholar]
  35. DesaiS.N.M. PriolkarR.N.S. KarmaliH.A.N. AmbeP.D. BiradarB.S. Synthesis, characterization and evaluation of 4-hydroxy-1-phenyl/methyl-3-(3-substituted-1-(substitutedimino)propyl)quinoline-2(1H)-one derivatives and 4-hydroxy-1-phenyl/methyl-3-(1-(substituedimino)ethyl)quinoline-2(1H)-one derivatives as possible anticancer agents.Int. J. Pharm. Pharm. Sci.201791024010.22159/ijpps.2017v9i10.20184
    [Google Scholar]
  36. AlyA.A. RamadanM. Abuo-RahmaG.E.D.A. ElshaierY.A.M.M. ElbastawesyM.A.I. BrownA.B. BräseS. Quinolones as prospective drugs: Their syntheses and biological applications.Adv. Heterocycl. Chem.202113514719610.1016/bs.aihch.2020.08.001
    [Google Scholar]
  37. ProislK. KafkaS. KosmrljJ. Chemistry and applications of 4-hydroxyquinolin-2-one and quinoline-2,4-dione based compounds.Curr. Org. Chem.201721192710.2174/1385272821666170711155631
    [Google Scholar]
  38. SinghA.K. KumarA. SinghH. SonawaneP. PaliwalH. TharejaS. PathakP. GrishinaM. JaremkoM. EmwasA.H. YadavJ.P. VermaA. KhalilullahH. KumarP. Concept of hybrid drugs and recent advancements in anticancer hybrids.Pharmaceuticals (Basel)2022159107110.3390/ph1509107136145292
    [Google Scholar]
  39. SzumilakM. Wiktorowska-OwczarekA. StanczakA. Hybrid drugs—A strategy for overcoming anticancer drug resistance?Molecules2021269260110.3390/molecules2609260133946916
    [Google Scholar]
  40. MarchesiE. PerroneD. NavacchiaM.L. Molecular hybridization as a strategy for developing artemisinin-derived anticancer candidates.Pharmaceutics2023159218510.3390/pharmaceutics1509218537765156
    [Google Scholar]
  41. AlkhzemA.H. WoodmanT.J. BlagbroughI.S. Design and synthesis of hybrid compounds as novel drugs and medicines.RSC Advances20221230194701948410.1039/D2RA03281C35865575
    [Google Scholar]
  42. SoltanO.M. ShomanM.E. Abdel-AzizS.A. NarumiA. KonnoH. Abdel-AzizM. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy.Eur. J. Med. Chem.202122511376810.1016/j.ejmech.2021.11376834450497
    [Google Scholar]
  43. Abu AlmaatyA.H. ElgrahyN.A. FayadE. Abu AliO.A. MahdyA.R.E. BarakatL.A.A. El BeheryM. Design, synthesis and anticancer evaluation of substituted cinnamic acid bearing 2-quinolone hybrid derivatives.Molecules20212616472410.3390/molecules2616472434443308
    [Google Scholar]
  44. LaioloJ. LanzaP.A. ParraviciniO. BarbieriC. InsuastyD. CoboJ. VeraD.M.A. EnrizR.D. CarpinellaM.C. Structure activity relationships and the binding mode of quinolinone-pyrimidine hybrids as reversal agents of multidrug resistance mediated by P-gp.Sci. Rep.20211111685610.1038/s41598‑021‑96226‑634413359
    [Google Scholar]
  45. OuyangY. LiJ. ChenX. FuX. SunS. WuQ. Chalcone derivatives: Role in anticancer therapy.Biomolecules202111689410.3390/biom1106089434208562
    [Google Scholar]
  46. KarthikeyanC. Narayana MoorthyN.S.H. RamasamyS. VanamU. ManivannanE. KarunagaranD. TrivediP. Advances in chalcones with anticancer activities.Recent Patents Anticancer Drug Discov.20141019711510.2174/157489280966614081915390225138130
    [Google Scholar]
  47. AboniaR. InsuastyD. CastilloJ. InsuastyB. QuirogaJ. NoguerasM. CoboJ. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity.Eur. J. Med. Chem.201257294010.1016/j.ejmech.2012.08.03923043766
    [Google Scholar]
  48. ElkanziN.A.A. HrichiH. AlolayanR.A. DerafaW. ZahouF.M. BakrR.B. Synthesis of chalcones derivatives and their biological activities: A review.ACS Omega2022732277692778610.1021/acsomega.2c0177935990442
    [Google Scholar]
  49. ConstantinescuT. LunguC.N. Anticancer activity of natural and synthetic chalcones.Int. J. Mol. Sci.202122211130610.3390/ijms22211130634768736
    [Google Scholar]
  50. MohamedM.F.A. Abuo-RahmaG.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: Literature review.RSC Advances20201052311393115510.1039/D0RA05594H35520674
    [Google Scholar]
  51. PragathiY.J. VeronicaD. AnithaK. RaoM.V.B. RajuR.R. Synthesis and biological evaluation of chalcone derivatives of 1,2,4-thiadiazol-benzo[d]imidazol-2-yl)quinolin-2(1H)-one as anticancer agents.Chem Data Collect.202030100556
    [Google Scholar]
  52. ShaliniK.V. KumarV. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on?Expert Opin. Drug Discov.202116433536310.1080/17460441.2021.185068633305635
    [Google Scholar]
  53. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective.Pharmaceuticals202316229910.3390/ph1602029937259442
    [Google Scholar]
  54. MahapatraA. PrasadT. SharmaT. Pyrimidine: A review on anticancer activity with key emphasis on SAR.Future J. Pharm. Sci.20217112310.1186/s43094‑021‑00274‑8
    [Google Scholar]
  55. ToanD.N. ThanhN.D. TruongM.X. VanD.T. Quinoline-pyrimidine hybrid compounds from 3-acetyl-4-hydroxy-1-methylquinolin-2(1H)-one: Study on synthesis, cytotoxicity, ADMET and molecular docking.Arab. J. Chem.202013117860787410.1016/j.arabjc.2020.09.018
    [Google Scholar]
  56. KalitaS.J. DekaD.C. A molecular hybridization approach for simple and expeditious synthesis of novel spiro[oxindoline-3,4′-isoxazolo[5,4-b]pyrazolo[4, 3-e]pyridines] in water.ChemistrySelect20183277862786610.1002/slct.201801545
    [Google Scholar]
  57. AlyA.A. SayedS.M. AbdelhafezE.S.M.N. AbdelhafezS.M.N. AbdelzaherW.Y. RaslanM.A. AhmedA.E. ThabetK. El-ReedyA.A.M. BrownA.B. BräseS. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay.Bioorg. Chem.20209410334810.1016/j.bioorg.2019.10334831699387
    [Google Scholar]
  58. GaberA. AlsanieW.F. AlhomraniM. AlamriA.S. El-DeenI.M. RefatM.S. Synthesis of 1-[(Aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic acid derivatives and their breast anticancer activity.Crystals (Basel)202111557110.3390/cryst11050571
    [Google Scholar]
  59. ElbastawesyM.A.I. AlyA.A. RamadanM. ElshaierY.A.M.M. YoussifB.G.M. BrownA.B. El-Din A Abuo-RahmaG. Novel Pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors.Bioorg. Chem.20199010304510.1016/j.bioorg.2019.10304531212178
    [Google Scholar]
  60. KemnitzerW. DreweJ. JiangS. ZhangH. WangY. ZhaoJ. JiaS. HerichJ. LabrequeD. StorerR. MeerovitchK. BouffardD. RejR. DenisR. BlaisC. LamotheS. AttardoG. GourdeauH. TsengB. KasibhatlaS. CaiS.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group.J. Med. Chem.200447256299631010.1021/jm049640t15566300
    [Google Scholar]
  61. UpadhyayK.D. DodiaN.M. KhuntR.C. ChaniaraR.S. ShahA.K. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents.ACS Med. Chem. Lett.20189328328810.1021/acsmedchemlett.7b0054529541375
    [Google Scholar]
  62. YangZ.Y. XiaY. XiaP. TachibanaY. BastowK.F. LeeK.H. Antitumor agents 1871: Synthesis and cytotoxicity of substituted 8,8-dimethyl-2H,8H-pyrano[6,5-h]quinoline-2-one and related compounds.Bioorg. Med. Chem. Lett.19999571371610.1016/S0960‑894X(99)00065‑710201834
    [Google Scholar]
  63. KornienkoA. Pyrano[3,2-c] agents, pyridones and related heterocyclic compounds as pharmaceutical for treating disorders responsive to apoptosis, antiproliferation or vascular disruption, and the use thereof.US Patent 8349864B22018
    [Google Scholar]
  64. SaeedA.M. AlNeyadiS.S. AbdouI.M. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione.Heterocycl. Commun.202026119220510.1515/hc‑2020‑0116
    [Google Scholar]
  65. SaeedA.M. AbdouI.M. SalemA.A. GhattasM.A. AtatrehN. AlNeyadiS.S. Anti-cancer activity and molecular docking of some pyrano[3,2-c]quinoline analogues.Open J. Med. Chem.202010111410.4236/ojmc.2020.101001
    [Google Scholar]
  66. IslanG.A. Rodenak-KladniewB. NoaccoN. DuranN. CastroG.R. Prodigiosin: A promising biomolecule with many potential biomedical applications.Bioengineered2022136142271425810.1080/21655979.2022.208449835734783
    [Google Scholar]
  67. MateevE. GeorgievaM. ZlatkovA. Pyrrole as an important scaffold of anticancer drugs: Recent advances.J. Pharm. Pharm. Sci.202225244010.18433/jpps3241734995473
    [Google Scholar]
  68. GaneshB.H. RajA.G. AruchamyB. NanjanP. DragoC. RamaniP. Pyrrole: A decisive scaffold for the development of therapeutic agents and structure-activity relationship.ChemMedChem202419120230044710.1002/cmdc.20230044737926686
    [Google Scholar]
  69. OhashiT. OguroY. TanakaT. ShiokawaZ. ShibataS. SatoY. YamakawaH. HattoriH. YamamotoY. KondoS. MiyamotoM. TojoH. BabaA. SasakiS. Discovery of pyrrolo[3,2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors.Bioorg. Med. Chem.201220185496550610.1016/j.bmc.2012.07.03922910224
    [Google Scholar]
  70. ShrivastavaN. NaimM.J. AlamM.J. NawazF. AhmedS. AlamO. Benzimidazole scaffold as an anticancer agent: Synthetic approaches and structure-activity relationship.Arch. Pharm. (Weinheim)20173506e20170004010.1002/ardp.20170004028544162
    [Google Scholar]
  71. ShimomuraI. YokoiA. KohamaI. KumazakiM. TadaY. TatsumiK. OchiyaT. YamamotoY. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer.Cancer Lett.2019451112210.1016/j.canlet.2019.03.00230862488
    [Google Scholar]
  72. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.01036873180
    [Google Scholar]
  73. SatijaG. SharmaB. MadanA. IqubalA. ShaquiquzzamanM. AkhterM. ParvezS. KhanM.A. AlamM.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets.J. Heterocycl. Chem.2022591226610.1002/jhet.4355
    [Google Scholar]
  74. El RashedyA.A. Aboul-EneinH.Y. Benzimidazole derivatives as potential anticancer agents.Mini Rev. Med. Chem.201313339940723190032
    [Google Scholar]
  75. AboniaR. CastilloJ. CuervoP. InsuastyB. QuirogaJ. OrtízA. NoguerasM. CoboJ. A simple one-pot synthesis of new imidazol-2-yl-lH-quinolin-2-ones from the direct reaction of 2-chloroquinolin-3-carbaldehyde with aromatic o-diamines.Eur. J. Org. Chem.20102010231732510.1002/ejoc.200901014
    [Google Scholar]
  76. KuangW.B. HuangR.Z. QinJ.L. LuX. QinQ.P. ZouB.Q. ChenZ.F. LiangH. ZhangY. Design, synthesis and pharmacological evaluation of new 3-(1H-benzimidazol-2-yl)quinolin-2(1H)-one derivatives as potential antitumor agents.Eur. J. Med. Chem.201815713915010.1016/j.ejmech.2018.07.06630092368
    [Google Scholar]
  77. YanX. WenJ. ZhouL. FanL. WangX. XuZ. Current scenario of 1,3-oxazole derivatives for anticancer activity.Curr. Top. Med. Chem.2020202119161937
    [Google Scholar]
  78. AyatiA. EmamiS. MoghimiS. ForoumadiA. Thiazole in the targeted anticancer drug discovery.Future Med. Chem.201911151929195210.4155/fmc‑2018‑041631313595
    [Google Scholar]
  79. AmewuR.K. SakyiP.O. Osei-SafoD. Addae-MensahI. Synthetic and naturally occurring heterocyclic anticancer compounds with multiple biological targets.Molecules20212623713410.3390/molecules2623713434885716
    [Google Scholar]
  80. FangY. WuZ. XiaoM. WeiL. LiK. TangY. Design, synthesis, and evaluation of new 2-oxoquinolinearylaminothiazole derivatives as potential anticancer agents.Bioorg. Chem.20212021106
    [Google Scholar]
  81. AlyA.A. MohamedA.H. RamadanM. Synthesis and colon anticancer activity of some novel thiazole/-2-quinolone derivatives.J. Mol. Struct.2020120712779810.1016/j.molstruc.2020.127798
    [Google Scholar]
  82. GaddameediJ.D. YedlaP. KuchukullaR.R. ChavvaK. PillalamarriS.R. GauthamS.K. ChityalG.K. BandaN. Synthesis and anticancer activity of novel N-trisazole/isoxazole alkyl functionalized quinolin-2(1H)-one derivatives.J. Heterocycl. Chem.201754119420510.1002/jhet.2566
    [Google Scholar]
  83. BakareS.B. Synthesis and biological evaluation of some hybrid 2-quinolinone derivatives containing cinnamic acid as anti-breast cancer drugs.Bull. Chem. Soc. Ethiop.202135355156410.4314/bcse.v35i3.7
    [Google Scholar]
  84. KumarA. Design and synthesis of quinoline and quinazolinone derivatives through transition metal catalysed cascade protocols.2019Available From: http://hdl.handle.net/10603/292570
  85. KadamA.M. DesaiS.N.M. Prabhu TendulkarC. Synthesis and characterization of quinolin-2-one derivatives as possible cytotoxic agents.Eur. J. Biomed. Pharm.201851900905
    [Google Scholar]
  86. SabbahD.A. SimmsN.A. WangW. DongY. EzellE.L. BrattainM.G. VennerstromJ.L. ZhongH.A. N-Phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα).Bioorg. Med. Chem.201220247175718310.1016/j.bmc.2012.09.05923121722
    [Google Scholar]
  87. VettorazziM. InsuastyD. LimaS. GutiérrezL. NoguerasM. MarchalA. AboniaR. AndújarS. SpiegelS. CoboJ. EnrizR.D. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors.Bioorg. Chem.20209410341410.1016/j.bioorg.2019.10341431757412
    [Google Scholar]
  88. ChenI.L. ChangK.M. MiawC.L. LiaoC.H. ChenJ.J. WangT.C. Synthesis, antiproliferative, and antiplatelet activities of oxime- and amide-containing quinolin-2(1H)-one derivatives.Bioorg. Med. Chem.200715206527653410.1016/j.bmc.2007.07.00717689252
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575305597240912192037
Loading
/content/journals/mrmc/10.2174/0113895575305597240912192037
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; chalcone; heterocyclic; hybridization; linomide; Quinolin-2-one
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test