Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Green tea (GT) is rich in phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggests that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like . Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transfersomal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrates significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575331878240924035332
2024-10-04
2025-03-07
Loading full text...

Full text loading...

References

  1. PrasanthM.I. SivamaruthiB.S. ChaiyasutC. TencomnaoT.A. Review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and Autophagy.Nutrients201911247410.3390/nu1102047430813433
    [Google Scholar]
  2. PanS.Y. NieQ. TaiH.C. SongX.L. TongY.F. ZhangL.J.F. WuX.W. LinZ.H. ZhangY.Y. YeD.Y. ZhangY. WangX.Y. ZhuP.L. ChuZ.S. YuZ.L. LiangC. Tea and tea drinking: China’s outstanding contributions to the mankind.Chin. Med.20221712710.1186/s13020‑022‑00571‑135193642
    [Google Scholar]
  3. YangC. WangH. Cancer preventive activities of tea catechins.Molecules20162112167910.3390/molecules2112167927941682
    [Google Scholar]
  4. SuzukiT. PervinM. GotoS. IsemuraM. NakamuraY. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity.Molecules20162110130510.3390/molecules2110130527689985
    [Google Scholar]
  5. IsemuraM. MiyoshiN. PervinM. SuzukiT. UnnoK. NakamuraY. Green tea catechins for well-being and therapy: Prospects and opportunities.Botanics20155859610.2147/BTAT.S91784
    [Google Scholar]
  6. PervinM. UnnoK. OhishiT. TanabeH. MiyoshiN. NakamuraY. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases.Molecules2018236129710.3390/molecules2306129729843466
    [Google Scholar]
  7. UnnoK. NakamuraY. Green tea suppresses brain aging.Molecules20212616489710.3390/molecules2616489734443485
    [Google Scholar]
  8. TaylorS. TEA | Types, Production, and Trade. Encyclopedia of Food Sciences and Nutrition2nd edTrugo, L.; Finglas, P.M., Eds.; Academic Press: Cambridge, Massachusetts20035737574310.1016/B0‑12‑227055‑X/01181‑0
    [Google Scholar]
  9. ZhangL. HoC.T. ZhouJ. SantosJ.S. ArmstrongL. GranatoD. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review.Compr. Rev. Food Sci. Food Saf.20191851474149510.1111/1541‑4337.1247933336903
    [Google Scholar]
  10. GuiA. GaoS. ZhengP. FengZ. LiuP. YeF. WangS. XueJ. XiangJ. NiD. YinJ. Dynamic changes in non-volatile components during steamed green tea manufacturing based on widely targeted metabolomic analysis.Foods2023127155110.3390/foods1207155137048372
    [Google Scholar]
  11. ChackoS.M. ThambiP.T. KuttanR. NishigakiI. Beneficial effects of green tea: A literature review.Chin. Med.2010511310.1186/1749‑8546‑5‑1320370896
    [Google Scholar]
  12. SinghV. VermaD. SinghA. Processing technology and health benefits of green tea.Popular Kheti2014212330
    [Google Scholar]
  13. SongF. WuJ. LiuB. JiangJ. LiZ. SongC. LiJ. JinG. Intelligent green tea fixation with sensor fusion technology.J. Food Eng.202231711084610.1016/j.jfoodeng.2021.110846
    [Google Scholar]
  14. WangJ.Q. FuY.Q. ChenJ.X. WangF. FengZ.H. YinJ.F. ZengL. XuY.Q. Effects of baking treatment on the sensory quality and physicochemical properties of green tea with different processing methods.Food Chem.202238013221710.1016/j.foodchem.2022.13221735101788
    [Google Scholar]
  15. LinS.D. YangJ.H. HsiehY.J. LiuE.H. MauJ.L. Effect of different brewing methods on quality of green tea.J. Food Process. Preserv.20143831234124310.1111/jfpp.12084
    [Google Scholar]
  16. HanZ.X. RanaM.M. LiuG.F. GaoM.J. LiD.X. WuF.G. LiX.B. WanX.C. WeiS. Green tea flavour determinants and their changes over manufacturing processes.Food Chem.201621273974810.1016/j.foodchem.2016.06.04927374591
    [Google Scholar]
  17. Global Japanese Tea association Sencha (煎茶).2024Available From: https://gjtea.org/sencha/
  18. WangH. TaoM. ZhangH. ChengS. ZhangL. LiuZ. The mechanism on decreasing the microbiological contamination of superfine green tea powder by ball milling.Lebensm. Wiss. Technol.202013410996610.1016/j.lwt.2020.109966
    [Google Scholar]
  19. YeJ.H. FangQ.T. ZengL. LiuR.Y. LuL. DongJ.J. YinJ.F. LiangY.R. XuY.Q. LiuZ.H. A comprehensive review of matcha: Production, food application, potential health benefits, and gastrointestinal fate of main phenolics.Crit. Rev. Food Sci. Nutr.2023202312210.1080/10408398.2023.219441937009832
    [Google Scholar]
  20. XiaoY. WuY. ZhongK. GaoH. Comprehensive evaluation of the composition of Mingshan Laochuancha green tea and demonstration of hypolipidemic activity in a zebrafish obesity model.RSC Advances2019970412694127910.1039/C9RA07655G35540089
    [Google Scholar]
  21. ZhaoT. LiC. WangS. SongX. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology.Molecules20222712390910.3390/molecules2712390935745040
    [Google Scholar]
  22. SaadA.F. SelimY.A. HamadaM. ElywaM. Green Synthesis of Titanium Dioxide Nanoparticles Using Ethanolic Extract of Green Tea and Their Antioxidant Activities.J. Appl. Spectrosc.20239051142114810.1007/s10812‑023‑01644‑1
    [Google Scholar]
  23. PiroS.J. HamadS.M. BarzinjyA.A. AbdullahB.J. OmarM.S. ShaikhahD. Green tea extract mediated biosynthesis of lead oxide nanoparticles: Characterization, and catalytical activity.Bioresour. Technol. Rep.20232410161210.1016/j.biteb.2023.101612
    [Google Scholar]
  24. MeyerB.R. WhiteH.M. McCormackJ.D. NiemeyerE.D. Catechin composition, phenolic content, and antioxidant properties of commercially-available bagged, gunpowder, and matcha green teas.Plant Foods Hum. Nutr.202378466266910.1007/s11130‑023‑01121‑237923855
    [Google Scholar]
  25. WHO. Maternal, newborn, child and adolescent health and ageing.2019Available From: https://platform.who.int/data/maternal-newborn-child-adolescent-ageing/ageing-data/ageing---demographics
  26. SohnI. ShinC. BaikI. Associations of green tea, coffee, and soft drink consumption with longitudinal changes in leukocyte telomere length.Sci. Rep.202313149210.1038/s41598‑022‑26186‑y36627320
    [Google Scholar]
  27. WisuitiprotW. IngkaninanK. JonesS. WaranuchN. Effect of green tea extract loaded chitosan microparticles on facial skin: A split‐face, double‐blind, randomized placebo‐controlled study.J. Cosmet. Dermatol.20222194001400810.1111/jocd.1470734965006
    [Google Scholar]
  28. NaumovskiN. FoscolouA. D’CunhaN.M. TyrovolasS. ChrysohoouC. SidossisL.S. RallidisL. MatalasA.L. PolychronopoulosE. PitsavosC. PanagiotakosD. The association between green and black tea consumption on successful aging: A combined analysis of the ATTICA and MEDiterranean ISlands (MEDIS) Epidemiological Studies.Molecules20192410186210.3390/molecules2410186231096548
    [Google Scholar]
  29. AugusteS. YanB. GuoM. Induction of mitophagy by green tea extracts and tea polyphenols: A potential anti-aging mechanism of tea.Food Biosci.20235510298310.1016/j.fbio.2023.102983
    [Google Scholar]
  30. AhnJ.W. KimS. KoS. KimY.H. JeongJ.H. ChungS. Modified (−)-gallocatechin gallate-enriched green tea extract rescues age-related cognitive deficits by restoring hippocampal synaptic plasticity.Biochem. Biophys. Rep.20222910120110.1016/j.bbrep.2022.10120135198737
    [Google Scholar]
  31. UnnoK. PervinM. TaguchiK. KonishiT. NakamuraY. Green tea catechins trigger immediate-early genes in the hippocampus and prevent cognitive decline and lifespan shortening.Molecules2020257148410.3390/molecules2507148432218277
    [Google Scholar]
  32. ZhangS. OtsukaR. NishitaY. NakamuraA. KatoT. IwataK. TangeC. TomidaM. AndoF. ShimokataH. AraiH. Green tea consumption is associated with annual changes in hippocampal volumes: A longitudinal study in community-dwelling middle-aged and older Japanese individuals.Arch. Gerontol. Geriatr.20219610445410.1016/j.archger.2021.10445434119808
    [Google Scholar]
  33. ShiraiY. KurikiK. OtsukaR. KatoY. NishitaY. TangeC. TomidaM. ImaiT. AndoF. ShimokataH. Green tea and coffee intake and risk of cognitive decline in older adults: The National Institute for Longevity Sciences, Longitudinal Study of Aging.Public Health Nutr.20202361049105710.1017/S136898001900265931544736
    [Google Scholar]
  34. XiangY. XuH. ChenH. TangD. HuangZ. ZhangY. WangZ. WangZ. Yangla; Han, M.; Yin, J.; Xiao, X.; Zhao, X. Tea consumption and attenuation of biological aging: A longitudinal analysis from two cohort studies.Lancet Reg. Health West. Pac.20244210095510.1016/j.lanwpc.2023.10095538075587
    [Google Scholar]
  35. Kharabi MasoolehA. AhmadikhahA. SaidiA. Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.).IET Nanobiotechnol.201913218318810.1049/iet‑nbt.2018.514131051449
    [Google Scholar]
  36. SayutiN. KamarudinA. SaadN. Ab. RazakN. Mohd Esa, N. Optimized green extraction conditions of matcha green tea (Camellia sinensis) using central composite design for maximal polyphenol and antioxidant contents.BioResources2021162325510.15376/biores.16.2.3255‑3271
    [Google Scholar]
  37. XuJ. ZhangY. HuC. YuB. WanC. ChenB. LuL. YuanL. WuZ. ChenH. The flavor substances changes in Fuliang green tea during storage monitoring by GC–MS and GC-IMS.Food Chem. X20242110104710.1016/j.fochx.2023.10104738187940
    [Google Scholar]
  38. YangH. ShenL. LiY. WuS. ZhangX. YangX. Non‐targeted metabolomic analysis reveals the mechanism of quality formation of citrus flower‐green tea.J. Sci. Food Agric.2024104105807581510.1002/jsfa.1340538380915
    [Google Scholar]
  39. WangJ. LiZ. Effects of processing technology on tea quality analyzed using high-resolution mass spectrometry-based metabolomics.Food Chem.202444313854810.1016/j.foodchem.2024.13854838277939
    [Google Scholar]
  40. KazimierczakR. HallmannE. RusaczonekA. RembiałkowskaE. Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production.Renew. Agric. Food Syst.201530326326910.1017/S1742170513000513
    [Google Scholar]
  41. XuC. LiangL. LiY. YangT. FanY. MaoX. WangY. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity.Lebensm. Wiss. Technol.202114211105510.1016/j.lwt.2021.111055
    [Google Scholar]
  42. CardosoR.R. NetoR.O. dos Santos D’AlmeidaC.T. do NascimentoT.P. PresseteC.G. AzevedoL. MartinoH.S.D. CameronL.C. FerreiraM.S.L. BarrosF.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities.Food Res. Int.202012810878210.1016/j.foodres.2019.10878231955755
    [Google Scholar]
  43. MinW. YangL. JieH.Y. ZhenH.L. XingZ.Y. PengW.C. XiL.M. Suitability of green tea processed by different varieties in Wuyuan area.Food Res. Dev.20183912610
    [Google Scholar]
  44. MiyoshiN. PervinM. SuzukiT. UnnoK. IsemuraM. NakamuraY. Green tea catechins for well-being and therapy: Prospects and opportunities.Botanics Targets Ther.2015201518510.2147/BTAT.S91784
    [Google Scholar]
  45. DebG. ShankarE. ThakurV.S. PonskyL.E. BodnerD.R. FuP. GuptaS. Green tea–induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinase‐3 suppresses prostate cancer progression through histone‐modifying enzymes.Mol. Carcinog.20195871194120710.1002/mc.2300330854739
    [Google Scholar]
  46. BarreiraS. MoutinhoC. SilvaA.M.N. NevesJ. SeoE.J. HegazyM.E.F. EfferthT. GomesL.R. Phytochemical characterization and biological activities of green tea (Camellia sinensis) produced in the Azores, Portugal.Phytomed. Plus20211110000110.1016/j.phyplu.2020.100001
    [Google Scholar]
  47. KrsticM. StojadinovicM. SmiljanicK. Stanic-VucinicD. Cirkovic VelickovicT. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols.RSC Advances2015553260326810.1039/C4RA13230K
    [Google Scholar]
  48. SouzaN.C. de Oliveira NascimentoE.N. de OliveiraI.B. OliveiraH.M.L. SantosE.G.P. Moreira Cavalcanti MataM.E.R. GelainD.P. MoreiraJ.C.F. DalmolinR.J.S. de Bittencourt PasqualiM.A. Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages.Biomed. Pharmacother.202012811027710.1016/j.biopha.2020.110277
    [Google Scholar]
  49. ShahrampourD. RazaviS.M.A. SadeghiA. Evaluation of green tea extract incorporated antimicrobial/antioxidant/biodegradable films based on polycaprolactone/polylactic acid and its application in cocktail sausage preservation.J. Food Meas. Charact.20231711058106710.1007/s11694‑022‑01670‑1
    [Google Scholar]
  50. JosephJ. KarthikaT. DasV.R.A. RajV.S. The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction.Curr. Pharm. Biotechnol.20222381118112910.2174/138920102266621081011171634375189
    [Google Scholar]
  51. LiP. HuangS. XiaoS. XuY. WeiX. XiaoJ. GuoZ. YuQ. LiuM. Antiviral activities of green tea components against grouper iridovirus infection in vitro and in vivo.Viruses2022146122710.3390/v1406122735746698
    [Google Scholar]
  52. ChengY. LiuM. YuQ. HuangS. HanS. ShiJ. WeiH. ZouJ. LiP. Effect of EGCG Extracted from green tea against largemouth bass virus infection.Viruses202315115110.3390/v1501015136680191
    [Google Scholar]
  53. ByunK. LeeD. KimH. LeeD.H. XuY. KwonY. HaN.C. EGCG inhibits cystathionine gamma-lyase MccB from Staphylococcus aureus by making a hemiacetal compound with pyridoxal phosphate.Food Biosci.20245710356010.1016/j.fbio.2023.103560
    [Google Scholar]
  54. Ibrahim AlghamdiA. Antibacterial activity of green tea leaves extracts against specific bacterial strains.J. King Saud Univ. Sci.202335510265010.1016/j.jksus.2023.102650
    [Google Scholar]
  55. CakirM. KaratasT. YildirimS. Protective effects of green tea (Camellia sinensis) extract against cypermethrin-induced neurotoxicity in rainbow trout (Oncorhynchus mykiss) brain tissues.Czech J. Anim. Sci.2024691293710.17221/110/2023‑CJAS
    [Google Scholar]
  56. OkelloE.J. LeylabiR. McDougallG.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites.Food Funct.20123665166110.1039/c2fo10174b22418730
    [Google Scholar]
  57. De la Fuente-MuñozM. De la Fuente-FernándezM. Román-CarmenaM. AmorS. Iglesias-de la CruzM.C. García-LaínezG. LlopisS. MartorellP. VerdúD. SernaE. García-VillalónÁ.L. GuileraS.I. Inarejos-GarcíaA.M. GranadoM. Supplementation with a new standardized extract of green and black tea exerts antiadipogenic effects and prevents insulin resistance in mice with metabolic syndrome.Int. J. Mol. Sci.20232410852110.3390/ijms2410852137239868
    [Google Scholar]
  58. ChungJ.O. YooS.H. LeeY.E. ShinK.S. YooS.J. ParkS.H. ParkT.S. ShimS.M. Hypoglycemic potential of whole green tea: Water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch.Food Funct.201910274675310.1039/C8FO01936C30667442
    [Google Scholar]
  59. ShahrahmaniH. KarimanN. JannesariS. Rafieian-KopaeiM. MirzaeiM. GhalandariS. ShahrahmaniN. MardaniG. The effect of green tea ointment on episiotomy pain and wound healing in primiparous women: A randomized, double‐blind, placebo‐controlled clinical trial.Phytother. Res.201832352253010.1002/ptr.599929235159
    [Google Scholar]
  60. AbosabaaS.A. ArafaM.G. ElMeshadA.N. Hybrid chitosan-lipid nanoparticles of green tea extract as natural anti-cellulite agent with superior in vivo potency: Full synthesis and analysis.Drug Deliv.20212812160217610.1080/10717544.2021.198908834623203
    [Google Scholar]
  61. SajadiF. ShokrizadehM. SharifiM. AftabiR. Evaluating the Effects of Camellia sinensis (Green Tea) and teucrium polium extracts on salivary streptococcus mutans levels in children.J. Dent. (Shiraz)2023241192710.30476/DENTJODS.2021.92379.164036864990
    [Google Scholar]
  62. FengX. LiY. CuiZ. TangR. Sodium alginate/carboxymethyl cellulose films embedded with liposomes encapsulated green tea extract: Characterization, controlled release, application.RSC Advances202414124525410.1039/D3RA05196J38173599
    [Google Scholar]
  63. ChaikulP. SripisutT. ChanpiromS. DitthawutthikulN. Anti-skin aging activities of green tea (Camelliasinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts.Eur. J. Integr. Med.20204010121210.1016/j.eujim.2020.101212
    [Google Scholar]
  64. ChoiJ. KimE.M. KoB.J. LeeU.J. SeoJ.H. KimB.G. Production of theasinensin a using laccase as antioxidant and antiaging agent.Biotechnol. Bioprocess Eng.; BBE202227225326110.1007/s12257‑021‑0145‑7
    [Google Scholar]
  65. JiaY. MaoQ. YangJ. DuN. ZhuY. MinW. (–)-Epigallocatechin-3-Gallate protects human skin fibroblasts from ultraviolet a induced photoaging.Clin. Cosmet. Investig. Dermatol.20231614915910.2147/CCID.S39854736704608
    [Google Scholar]
  66. WangL. LeeW. CuiY. R. AhnG. JeonY. J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways.Environ. Poll.2019252Part B1318132410.1016/j.envpol.2019.06.029
    [Google Scholar]
  67. WanC.C. HuX. LiM. RengasamyK.R.R. CaiY. LiuZ. Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging.J. Funct. Foods202310410550610.1016/j.jff.2023.105506
    [Google Scholar]
  68. BrownM. EvansJ. LuoY. Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans.Pharmacol. Biochem. Behav.200685362062810.1016/j.pbb.2006.10.01717156833
    [Google Scholar]
  69. ZhangL. JieG. ZhangJ. ZhaoB. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress.Free Radic. Biol. Med.200946341442110.1016/j.freeradbiomed.2008.10.04119061950
    [Google Scholar]
  70. ZarseK. JabinS. RistowM. l-Theanine extends lifespan of adult Caenorhabditis elegans.Eur. J. Nutr.201251676576810.1007/s00394‑012‑0341‑522422488
    [Google Scholar]
  71. KeJ.P. YuJ.Y. GaoB. HuF.L. XuF.Q. YaoG. BaoG.H. Two new catechins from Zijuan green tea enhance the fitness and lifespan of Caenorhabditis elegans via insulin-like signaling pathways.Food Funct.202213189299931010.1039/D2FO01795D35968754
    [Google Scholar]
  72. XiongL.G. ChenY.J. TongJ.W. GongY.S. HuangJ.A. LiuZ.H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans.Redox Biol.20181430531510.1016/j.redox.2017.09.01928992589
    [Google Scholar]
  73. TianJ. GeissC. ZarseK. Madreiter-SokolowskiC.T. RistowM. Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition.Aging (Albany NY)20211319226292264810.18632/aging.20359734607977
    [Google Scholar]
  74. FeiT. FeiJ. HuangF. XieT. XuJ. ZhouY. YangP. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans.Exp. Gerontol.201797899610.1016/j.exger.2017.07.01528750751
    [Google Scholar]
  75. LopezT. SchrinerS.E. OkoroM. LuD. ChiangB.T. HueyJ. JafariM. Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness.J. Med. Food201417121314132110.1089/jmf.2013.019025058464
    [Google Scholar]
  76. HuangY. LiuL. Anti-aging and anti-osteoporosis effects of green teen polyphenol in a premature aging model of Bmi-1 knockout mice.Int. J. Clin. Exp. Pathol.201710337653777
    [Google Scholar]
  77. KitaniK. OsawaT. YokozawaT. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice.Biogerontology20078556757310.1007/s10522‑007‑9100‑z17516143
    [Google Scholar]
  78. XiaoX. HeS. WuN. LinX. ZhaoJ. TianC. Green tea polyphenols prevent early vascular aging induced by high-fat diet via promoting autophagy in young adult rats.Curr. Med. Sci.202242598199010.1007/s11596‑022‑2604‑635896932
    [Google Scholar]
  79. LiQ. ZhaoH. ZhaoM. ZhangZ. LiY. Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice.Brain Res.20101353283510.1016/j.brainres.2010.07.07420682303
    [Google Scholar]
  80. UnnoK. TakabayashiF. YoshidaH. ChobaD. FukutomiR. KikunagaN. KishidoT. OkuN. HoshinoM. Daily consumption of green tea catechin delays memory regression in aged mice.Biogerontology200782899510.1007/s10522‑006‑9036‑816957869
    [Google Scholar]
  81. RamisM.R. SarubboF. TejadaS. JiménezM. EstebanS. MirallesA. MorantaD. Chronic Polyphenon-60 or catechin treatments increase brain monoamines syntheses and hippocampal SIRT1 LEVELS improving cognition in aged rats.Nutrients202012232610.3390/nu1202032631991916
    [Google Scholar]
  82. WasaiM. NonakaH. MurataM. KitamuraR. SatoY. TachibanaH. Long-term dietary supplementation with the green tea cultivar Sunrouge prevents age-related cognitive decline in the senescence-accelerated mouse Prone8.Biosci. Biotechnol. Biochem.201983233934710.1080/09168451.2018.153009330295144
    [Google Scholar]
  83. OnishiS. IshinoM. KitazawaH. YotoA. ShimbaY. MochizukiY. UnnoK. MeguroS. TokimitsuI. MiuraS. Green tea extracts ameliorate high-fat diet–induced muscle atrophy in senescence-accelerated mouse prone-8 mice.PLoS One2018134e019575310.1371/journal.pone.019575329630667
    [Google Scholar]
  84. FlôresM.F. MartinsA. SchimidtH.L. SantosF.W. IzquierdoI. Mello-CarpesP.B. CarpesF.P. Effects of green tea and physical exercise on memory impairments associated with aging.Neurochem. Int.201478536010.1016/j.neuint.2014.08.00825195719
    [Google Scholar]
  85. AssunçãoM. Santos-MarquesM.J. CarvalhoF. LukoyanovN.V. AndradeJ.P. Chronic green tea consumption prevents age-related changes in rat hippocampal formation.Neurobiol. Aging201132470771710.1016/j.neurobiolaging.2009.03.01619411127
    [Google Scholar]
  86. GrasS. BlascoA. Mòdol-CaballeroG. TarabalO. CasanovasA. PiedrafitaL. BarrancoA. DasT. RuedaR. PereiraS.L. NavarroX. EsquerdaJ.E. CalderóJ. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system.Aging (Albany NY)20211314180511809310.18632/aging.20333634319911
    [Google Scholar]
  87. HsuY.W. ChenW.K. TsaiC.F. Senescence-mediated redox imbalance in liver and kidney: Antioxidant rejuvenating potential of green tea extract.Int. J. Environ. Res. Public Health202119126010.3390/ijerph1901026035010518
    [Google Scholar]
  88. LeeK.O. KimS.N. KimY.C. Anti-wrinkle Effects of Water Extracts of Teas in Hairless Mouse.Toxicol. Res.201430428328910.5487/TR.2014.30.4.28325584148
    [Google Scholar]
  89. LimJ.Y. KimO.K. LeeJ. LeeM.J. KangN. HwangJ.K. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice.Nutr. Res. Pract.20148439840310.4162/nrp.2014.8.4.39825110559
    [Google Scholar]
  90. VayalilP.K. MittalA. HaraY. ElmetsC.A. KatiyarS.K. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin.J. Invest. Dermatol.200412261480148710.1111/j.0022‑202X.2004.22622.x15175040
    [Google Scholar]
  91. RutterK. SellD.R. FraserN. ObrenovichM. ZitoM. Starke-ReedP. MonnierV.M. Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice.Int. J. Vitam. Nutr. Res.200373645346010.1024/0300‑9831.73.6.45314743550
    [Google Scholar]
  92. ChengH.C. ChanC.M. TsayH.S. LiangH.J. LiangY.C. LiuD.Z. Improving effects of epigallocatechin-3-gallate on hemorheological abnormalities of aging Guinea pigs.Circ. J.200771459760310.1253/circj.71.59717384465
    [Google Scholar]
  93. SrividhyaR. ZarkovicK. StroserM. WaegG. ZarkovicN. KalaiselviP. Mitochondrial alterations in aging rat brain: Effective role of (−)‐epigallo catechin gallate.Int. J. Dev. Neurosci.200927322323110.1016/j.ijdevneu.2009.01.00319429387
    [Google Scholar]
  94. HongY.H. JungE.Y. ShinK.S. YuK.W. ChangU.J. SuhH.J. Tannase‐converted green tea catechins and their anti‐wrinkle activity in humans.J. Cosmet. Dermatol.201312213714310.1111/jocd.1203823725307
    [Google Scholar]
  95. JagdeoJ. KurttiA. HernandezS. AkersN. PetersonS. Novel Vitamin C and E and green tea polyphenols combination serum improves photoaged facial skin.J. Drugs Dermatol.2021209996100310.36849/JDD.581834491027
    [Google Scholar]
  96. FengL. GweeX. KuaE.H. NgT.P. Cognitive function and tea consumption in community dwelling older Chinese in Singapore.J. Nutr. Health Aging201014643343810.1007/s12603‑010‑0095‑920617284
    [Google Scholar]
  97. NgT.P. GaoQ. GweeX. ChuaD.Q.L. Tea consumption and depression from follow up in the Singapore longitudinal ageing study.J. Nutr. Health Aging202125329530110.1007/s12603‑020‑1526‑x33575719
    [Google Scholar]
  98. Esmaeilpour-BandboniM. SeyedpourchafiZ. KahnehE. The effect of green tea drinking on the depression of elderly people.J. Nurse Pract.202117898398710.1016/j.nurpra.2021.06.007
    [Google Scholar]
  99. PanC.W. MaQ. SunH.P. XuY. LuoN. WangP. Tea consumption and health-related quality of life in older adults.J. Nutr. Health Aging201721548048610.1007/s12603‑016‑0784‑028448076
    [Google Scholar]
  100. WonH.R. LeeP. OhS. KimY.M. Epigallocatechin-3-Gallate suppresses the expression of TNF-α-Induced MMP-1 via MAPK/ERK signaling pathways in human dermal fibroblasts.Biol. Pharm. Bull.2021441182410.1248/bpb.b20‑0030433390545
    [Google Scholar]
  101. ChangY.C. LiuH.W. ChanY.C. HuS.H. LiuM.Y. ChangS.J. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin.Arch. Biochem. Biophys.202069210851110.1016/j.abb.2020.10851132710883
    [Google Scholar]
  102. KumarS. MeenaR. RajamaniP. Fabrication of BSA–green tea polyphenols–chitosan nanoparticles and their role in radioprotection: A molecular and biochemical approach.J. Agric. Food Chem.201664306024603410.1021/acs.jafc.6b0206827389300
    [Google Scholar]
  103. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.122871828155509
    [Google Scholar]
  104. El-SayedM. GinskiM. RhodesC. GhandehariH. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers.J. Control. Release200281335536510.1016/S0168‑3659(02)00087‑112044574
    [Google Scholar]
  105. VandammeT.F. BrobeckL. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.J. Control. Release20051021233810.1016/j.jconrel.2004.09.01515653131
    [Google Scholar]
  106. BaiS. AhsanF. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin.Pharm. Res.200926353954810.1007/s11095‑008‑9769‑y19034631
    [Google Scholar]
  107. MenjogeA.R. NavathR.S. AsadA. KannanS. KimC.J. RomeroR. KannanR.M. Transport and biodistribution of dendrimers across human fetal membranes: Implications for intravaginal administration of dendrimer-drug conjugates.Biomaterials201031185007502110.1016/j.biomaterials.2010.02.07520346497
    [Google Scholar]
  108. ShettyP.K. ManikkathJ. TupallyK. KokilG. HegdeA.R. RautS.Y. ParekhH.S. MutalikS. Skin Delivery of EGCG and Silibinin: Potential of peptide dendrimers for enhanced skin permeation and deposition.AAPS PharmSciTech20171862346235710.1208/s12249‑017‑0718‑028124212
    [Google Scholar]
  109. LiD. MartiniN. WuZ. ChenS. FalconerJ.R. LockeM. ZhangZ. WenJ. Niosomal nanocarriers for enhanced dermal delivery of epigallocatechin gallate for protection against oxidative stress of the skin.Pharmaceutics202214472610.3390/pharmaceutics1404072635456560
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575331878240924035332
Loading
/content/journals/mrmc/10.2174/0113895575331878240924035332
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test