Skip to content
2000
image of Exploring the Therapeutic Potential of Green Tea (Camellia sinensis L.) in Anti-Aging: A Comprehensive Review of Mechanisms and Findings

Abstract

Green tea (GT) is rich in Phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggested that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like . Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transpersonal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrated significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575331878240924035332
2024-10-04
2024-10-20
Loading full text...

Full text loading...

References

  1. Prasanth M.I. Sivamaruthi B.S. Chaiyasut C. Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019 11 2 474 10.3390/nu11020474
    [Google Scholar]
  2. Pan S.Y. Nie Q. Tai H.C. Song X.L. Tong Y.F. Zhang L.J.F. Wu X.W. Lin Z.H. Zhang Y.Y. Ye D.Y. Zhang Y. Wang X.Y. Zhu P.L. Chu Z.S. Yu Z.L. Liang C. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin. Med. 2022 17 1 27 10.1186/s13020‑022‑00571‑1 35193642
    [Google Scholar]
  3. Yang C.S. Wang H. Cancer Preventive Activities of Tea Catechins. Molecules 2016 21 12 1679 10.3390/molecules21121679
    [Google Scholar]
  4. Suzuki T. Pervin M. Goto S. Isemura M. Nakamura Y. Beneficial Effects of Tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity. Molecules 2016 21 10 1305 10.3390/molecules21101305
    [Google Scholar]
  5. Miyoshi N. Pervin M. Suzuki T. Unno K. Isemura M. Nakamura Y. Green tea catechins for well-being and therapy: Prospects and opportunities. Botanics 2015 5 85 96 10.2147/BTAT.S91784
    [Google Scholar]
  6. Pervin M. Unno K. Ohishi T. Tanabe H. Miyoshi N. Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 2018 23 6 1297 10.3390/molecules23061297
    [Google Scholar]
  7. Unno K. Nakamura Y. Green Tea Suppresses Brain Aging. Molecules 2021 26 16 4897 10.3390/molecules26164897
    [Google Scholar]
  8. Xiao Y. Wu Y. Zhong K. Gao H. Comprehensive evaluation of the composition of Mingshan Laochuancha green tea and demonstration of hypolipidemic activity in a zebrafish obesity model. RSC Advances 2019 9 70 41269 41279 10.1039/c9ra07655g
    [Google Scholar]
  9. Zhao T. Li C. Wang S. Song X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022 27 12 3909 10.3390/molecules27123909
    [Google Scholar]
  10. Saad A.F. Selim Y.A. Hamada M. Elywa M. Green Synthesis of Titanium Dioxide Nanoparticles Using Ethanolic Extract of Green Tea and Their Antioxidant Activities. J. Appl. Spectrosc. 2023 90 5 1142 1148 10.1007/s10812‑023‑01644‑1
    [Google Scholar]
  11. Piro S.J. Hamad S.M. Barzinjy A.A. Abdullah B.J. Omar M.S. Shaikhah D. Green tea extract mediated biosynthesis of lead oxide nanoparticles: characterization, and catalytical activity. Bioresour. Technol. Rep. 2023 24 101612
    [Google Scholar]
  12. Meyer B.R. White H.M. McCormack J.D. Niemeyer E.D. Catechin Composition, Phenolic Content, and Antioxidant Properties of Commercially-Available Bagged, Gunpowder, and Matcha Green Teas. Plant Foods Hum. Nutr. 2023 78 4 662 669 10.1007/s11130‑023‑01121‑2
    [Google Scholar]
  13. WHO Maternal, newborn, child and adolescent health and ageing. 2019 Available From: https://platform.who.int/data/maternal-newborn-child-adolescent-ageing/ageing-data/ageing---demographics (Accessed on 4 March 2024).
  14. Sohn I. Shin C. Baik I. Associations of green tea, coffee, and soft drink consumption with longitudinal changes in leukocyte telomere length. Sci. Rep. 2023 13 1 492 10.1038/s41598‑022‑26186‑y
    [Google Scholar]
  15. Wisuitiprot W. Ingkaninan K. Jones S. Waranuch N. Effect of green tea extract loaded chitosan microparticles on facial skin: A split-face, double-blind, randomized placebo-controlled study. J. Cosmet. Dermatol. 2022 21 9 4001 4008 10.1111/jocd.14707
    [Google Scholar]
  16. Naumovski N. Foscolou A. D’Cunha N.M. Tyrovolas S. Chrysohoou C. Sidossis L.S. Rallidis L. Matalas A.L. Polychronopoulos E. Pitsavos C. Panagiotakos D. The Association between Green and Black Tea Consumption on Successful Aging: A Combined Analysis of the ATTICA and MEDiterranean ISlands (MEDIS) Epidemiological Studies. Molecules 2019 24 10 1862 10.3390/molecules24101862 31096548
    [Google Scholar]
  17. Auguste S. Yan B. Guo M. Induction of mitophagy by green tea extracts and tea polyphenols: A potential anti-aging mechanism of tea. Food Biosci. 2023 55 102983 10.1016/j.fbio.2023.102983
    [Google Scholar]
  18. Ahn J.W. Kim S. Ko S. Kim Y.H. Jeong J.H. Chung S. Modified (-)-gallocatechin gallate-enriched green tea extract rescues age-related cognitive deficits by restoring hippocampal synaptic plasticity. Biochem. Biophys. Rep. 2022 29 101201 10.1016/j.bbrep.2022.101201
    [Google Scholar]
  19. Unno K. Pervin M. Taguchi K. Konishi T. Nakamura Y. Green Tea Catechins Trigger Immediate-Early Genes in the Hippocampus and Prevent Cognitive Decline and Lifespan Shortening. Molecules 2020 25 7 1484 10.3390/molecules25071484
    [Google Scholar]
  20. Zhang S. Otsuka R. Nishita Y. Nakamura A. Kato T. Iwata K. Tange C. Tomida M. Ando F. Shimokata H. Arai H. Green tea consumption is associated with annual changes in hippocampal volumes: A longitudinal study in community-dwelling middle-aged and older Japanese individuals. Arch. Gerontol. Geriatr. 2021 96 104454 10.1016/j.archger.2021.104454 34119808
    [Google Scholar]
  21. Shirai Y. Kuriki K. Otsuka R. Kato Y. Nishita Y. Tange C. Tomida M. Imai T. Ando F. Shimokata H. Green tea and coffee intake and risk of cognitive decline in older adults: The National Institute for Longevity Sciences, Longitudinal Study of Aging. Public Health Nutr. 2020 23 6 1049 1057 10.1017/S1368980019002659 31544736
    [Google Scholar]
  22. Xiang Y. Xu H. Chen H. Tang D. Huang Z. Zhang Y. Wang Z. Wang Z. Yangla Han M. Yin J. Xiao X. Zhao X. Tea consumption and attenuation of biological aging: A longitudinal analysis from two cohort studies. Lancet Reg. Health West. Pac. 2024 42 100955 10.1016/j.lanwpc.2023.100955
    [Google Scholar]
  23. Barzinjy A.A. Hamad S.M. Abdulrahman A.F. Biro S.J. Ghafor A.A. Biosynthesis, Characterization and Mechanism of Formation of ZnO Nanoparticles Using Petroselinum Crispum Leaf Extract. Curr. Org. Synth. 2020 17 7 558 566 10.2174/1570179417666200628140547
    [Google Scholar]
  24. Kharabi Masooleh A. Ahmadikhah A. Saidi A. Green synthesis of stable silver nanoparticles by the main reduction component of green tea ( Camellia sinensis L.). IET Nanobiotechnol. 2019 13 2 183 188 10.1049/iet‑nbt.2018.5141 31051449
    [Google Scholar]
  25. Sayuti N. Kamarudin A. Saad N. Ab. Razak N. Mohd Esa N. Optimized green extraction conditions of matcha green tea (Camellia sinensis) using central composite design for maximal polyphenol and antioxidant contents. BioResources 2021 16 2 3255
    [Google Scholar]
  26. Xu J. Zhang Y. Hu C. Yu B. Wan C. Chen B. Lu L. Yuan L. Wu Z. Chen H. The flavor substances changes in Fuliang green tea during storage monitoring by GC–MS and GC-IMS. Food Chem. X 2024 21 101047 10.1016/j.fochx.2023.101047 38187940
    [Google Scholar]
  27. Yang H. Shen L. Li Y. Wu S. Zhang X. Yang X. Non‐targeted metabolomic analysis reveals the mechanism of quality formation of citrus flower‐green tea. J. Sci. Food Agric. 2024 104 10 5807 5815 10.1002/jsfa.13405
    [Google Scholar]
  28. Wang J. Li Z. Effects of processing technology on tea quality analyzed using high-resolution mass spectrometry-based metabolomics. Food Chem. 2024 443 138548 10.1016/j.foodchem.2024.138548
    [Google Scholar]
  29. Kazimierczak R. Hallmann E. Rusaczonek A. Rembiałkowska E. Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production. Renew. Agric. Food Syst. 2015 30 3 263 269 10.1017/S1742170513000513
    [Google Scholar]
  30. Xu C. Liang L. Li Y. Yang T. Fan Y. Mao X. Wang Y. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. Lebensm. Wiss. Technol. 2021 142 111055 10.1016/j.lwt.2021.111055
    [Google Scholar]
  31. Cardoso R.R. Neto R.O. dos Santos D’Almeida C.T. do Nascimento T.P. Pressete C.G. Azevedo L. Martino H.S.D. Cameron L.C. Ferreira M.S.L. Barros F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020 128 108782 10.1016/j.foodres.2019.108782 31955755
    [Google Scholar]
  32. Min W. Yang L. Jie H.Y. Zhen H.L. Xing Z.Y. Peng W.C. Xi L.M. Suitability of green tea processed by different varieties in Wuyuan area. Food Research and Development 2018 39 12 6 10
    [Google Scholar]
  33. Miyoshi N. Pervin M. Suzuki T. Unno K. Isemura M. Nakamura Y. Green tea catechins for well-being and therapy: Prospects and opportunities. Botanics Targets Ther. 2015 2015 1 85 10.2147/BTAT.S91784
    [Google Scholar]
  34. Deb G. Shankar E. Thakur V.S. Ponsky L.E. Bodner D.R. Fu P. Gupta S. Green tea-induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinase-3 suppresses prostate cancer progression through histone-modifying enzymes. Mol. Carcinog. 2019 58 7 1194 1207 10.1002/mc.23003
    [Google Scholar]
  35. Barreira S. Moutinho C. Silva A.M. Neves J. Seo E. Hegazy M. F. Efferth T. Gomes L.R. Phytochemical characterization and biological activities of green tea (Camellia sinensis) produced in the Azores, Portugal. Phytomed. Plus 2021 1 1 100001 10.1016/j.phyplu.2020.100001
    [Google Scholar]
  36. Krstic M. Stojadinovic M. Smiljanic K. Stanic-Vucinic D. Velickovic T.C. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols. RSC Advances 2015 5 5 3260 3268 10.1039/C4RA13230K
    [Google Scholar]
  37. Souza N. C. de Oliveira Nascimento E. N. de Oliveira I. B. Oliveira H. M. L. Santos E. G. P. Moreira Cavalcanti Mata M. E. R. Gelain D. P. Moreira J. C. F. Dalmolin R. J. S. de Bittencourt Pasquali M. A. Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomed. Pharmacother. 2020 128 110277 10.1016/j.biopha.2020.110277
    [Google Scholar]
  38. Shahrampour D. Razavi S.M. Sadeghi A. Evaluation of green tea extract incorporated antimicrobial/antioxidant/biodegradable films based on polycaprolactone/polylactic acid and its application in cocktail sausage preservation. J. Food Meas. Charact. 2023 17 1 1058 1067
    [Google Scholar]
  39. Joseph J. Karthika T. Das V.R.A. Raj V.S. The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction. Curr. Pharm. Biotechnol. 2022 23 8 1118 1129 10.2174/1389201022666210810111716
    [Google Scholar]
  40. Li P. Huang S. Xiao S. Xu Y. Wei X. Xiao J. Guo Z. Yu Q. Liu M. Antiviral Activities of Green Tea Components against Grouper Iridovirus Infection In vitro and In vivo. Viruses 2022 14 6 1227 10.3390/v14061227
    [Google Scholar]
  41. Cheng Y. Liu M. Yu Q. Huang S. Han S. Shi J. Wei H. Zou J. Li P. Effect of EGCG Extracted from Green Tea against Largemouth Bass Virus Infection. Viruses 2023 15 1 151 10.3390/v15010151
    [Google Scholar]
  42. Byun K. Lee D. Kim H. Lee D.H. Xu Y. Kwom Y. Ha N.C. EGCG inhibits cystathionine gamma-lyase MccB from Staphylococcus aureus by making a hemiacetal compound with pyridoxal phosphate. Food Biosci. 2024 57 103560 10.1016/j.fbio.2023.103560
    [Google Scholar]
  43. Alghamdi A.I. Antibacterial activity of green tea leaves extracts against specific bacterial strains. J. King Saud Univ. Sci. 2023 35 5 102650 10.1016/j.jksus.2023.102650
    [Google Scholar]
  44. Cakir M. Karatas T. Yildirim S. Protective effects of á green tea (Camellia sinensis) extract against cypermethrin-induced neurotoxicity in á rainbow trout (Oncorhynchus mykiss) brain tissues. Czech J. Anim. Sci. 2024 69 1 29 37
    [Google Scholar]
  45. Okello E.J. Leylabi R. McDougall G.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012 3 651 661 10.1039/c2fo10174b
    [Google Scholar]
  46. De la Fuente-Muñoz M. De la Fuente-Fernández M. Román-Carmena M. Amor S. Iglesias-de la Cruz M.C. García-Laínez G. Llopis S. Martorell P. Verdú D. Serna E. García-Villalón Á.L. Guilera S.I. Inarejos-García A.M. Granado M. Supplementation with a New Standardized Extract of Green and Black Tea Exerts Antiadipogenic Effects and Prevents Insulin Resistance in Mice with Metabolic Syndrome. Int. J. Mol. Sci. 2023 24 10 8521 10.3390/ijms24108521
    [Google Scholar]
  47. Chung J.O. Yoo S.H. Lee Y.E. Shin H.S. Yoo S.J. Park S.H. Park T.S. Shim S.M. Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch. Food Funct. 2019 10 746 753 10.1039/c8fo01936c
    [Google Scholar]
  48. Shahrahmani H. Kariman N. Jannesari S. Rafieian-Kopaei M. Mirzaei M. Ghalandari S. Shahrahmani N. Mardani G. The effect of green tea ointment on episiotomy pain and wound healing in primiparous women: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2018 32 3 522 530 10.1002/ptr.5999
    [Google Scholar]
  49. Abosabaa S.A. Arafa M.G. ElMeshad A.N. Hybrid chitosan-lipid nanoparticles of green tea extract as natural anti-cellulite agent with superior in vivo potency: full synthesis and analysis. Drug Deliv. 2021 28 1 2160 2176 10.1080/10717544.2021.1989088
    [Google Scholar]
  50. Sajadi F. Shokrizadeh M. Sharifi M. Aftabi R. Evaluating the Effects of Camellia Sinensis (Green Tea) and Teucrium Polium Extracts on Salivary Streptococcus Mutans Levels in Children. J. Dent. (Shiraz) 2023 24 1 19 27 10.30476/DENTJODS.2021.92379.1640
    [Google Scholar]
  51. Feng X. Li Y. Cui Z. Tang R. Sodium alginate/carboxymethyl cellulose films embedded with liposomes encapsulated green tea extract: characterization, controlled release, application. RSC Advances 2024 14 1 245 254 10.1039/d3ra05196j
    [Google Scholar]
  52. Chaikul P. Sripisut T. Chanpirom S. Ditthawutthikul N. Anti-skin aging activities of green tea (Camellia sinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts. Eur. J. Integr. Med. 2020 40 101212
    [Google Scholar]
  53. Choi J. Kim E. Ko B.J. Lee U.J. Seo J.H. Kim B.G. Production of Theasinensin A Using Laccase as Antioxidant and Antiaging Agent. Biotechnol. Bioprocess Eng.; BBE 2022 27 253 261
    [Google Scholar]
  54. Jia Y. Mao Q. Yang J. Du N. Zhu Y. Min W. (-)-Epigallocatechin-3-Gallate Protects Human Skin Fibroblasts from Ultraviolet a Induced Photoaging. Clin. Cosmet. Investig. Dermatol. 2023 16 149 159 10.2147/CCID.S398547
    [Google Scholar]
  55. Wang L. Lee W. Cui Y. R. Ahn G. Jeon Y. J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. Environ. Poll. 2019 252 Part B 1318 1324 10.1016/j.envpol.2019.06.029
    [Google Scholar]
  56. Wan C. Hu X. Li M. Rengasamy K.R.R. Cai Y. Liu Z. Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging. J. Funct. Foods 2023 104 105506
    [Google Scholar]
  57. Brown M.K. Evans J.L. Luo Y. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol. Biochem. Behav. 2006 85 3 620 628 10.1016/j.pbb.2006.10.017
    [Google Scholar]
  58. Zhang L. Jie G. Zhang J. Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic. Biol. Med. 2009 46 3 414 421 10.1016/j.freeradbiomed.2008.10.041
    [Google Scholar]
  59. Zarse K. Jabin S. Ristow M. L-Theanine extends lifespan of adult Caenorhabditis elegans. Eur. J. Nutr. 2012 51 6 765 768 10.1007/s00394‑012‑0341‑5
    [Google Scholar]
  60. Ke J.P. Yu J.Y. Gao B. Hu F.L. Xu F.Q. Yao G. Bao G.H. Two new catechins from Zijuan green tea enhance the fitness and lifespan of Caenorhabditis elegans via insulin-like signaling pathways. Food Funct. 2022 13 18 9299 9310 10.1039/d2fo01795d
    [Google Scholar]
  61. Xiong L.G. Chen Y.J. Tong J.W. Gong Y.S. Huang J.A. Liu Z.H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol. 2018 14 305 315 10.1016/j.redox.2017.09.019
    [Google Scholar]
  62. Tian J. Geiss C. Zarse K. Madreiter-Sokolowski C.T. Ristow M. Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition. Aging (Albany NY) 2021 13 19 22629 22648 10.18632/aging.203597
    [Google Scholar]
  63. Fei T. Fei J. Huang F. Xie T. Xu J. Zhou Y. Yang P. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Exp. Gerontol. 2017 97 89 96 10.1016/j.exger.2017.07.015
    [Google Scholar]
  64. Flôres M.F. Martins A. Schimidt H.L. Santos F.W. Izquierdo I. Mello-Carpes P.B. Carpes F.P. Effects of green tea and physical exercise on memory impairments associated with aging. Neurochem. Int. 2014 78 53 60 10.1016/j.neuint.2014.08.008
    [Google Scholar]
  65. Gras S. Blasco A. Mòdol-Caballero G. Tarabal O. Casanovas A. Piedrafita L. Barranco A. Das T. Rueda R. Pereira S.L. Navarro X. Esquerda J.E. Calderó J. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging (Albany NY) 2021 13 14 18051 18093 10.18632/aging.203336
    [Google Scholar]
  66. Assunção M. Santos-Marques M.J. Carvalho F. Lukoyanov N.V. Andrade J.P. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol. Aging 2011 32 4 707 717 10.1016/j.neurobiolaging.2009.03.016
    [Google Scholar]
  67. Hsu Y.W. Chen W.K. Tsai C.F. Senescence-Mediated Redox Imbalance in Liver and Kidney: Antioxidant Rejuvenating Potential of Green Tea Extract. Int. J. Environ. Res. Public Health 2021 19 1 260 10.3390/ijerph19010260
    [Google Scholar]
  68. Huang Y. Liu L. Anti-aging and anti-osteoporosis effects of green teen polyphenol in a premature aging model of Bmi-1 knockout mice. Int. J. Clin. Exp. Pathol. 2017 10 3 3765 3777
    [Google Scholar]
  69. Kitani K. Osawa T. Yokozawa T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology 2007 8 5 567 573 10.1007/s10522‑007‑9100‑z
    [Google Scholar]
  70. Lee K.O. Kim S.N. Kim Y.C. Anti-wrinkle Effects of Water Extracts of Teas in Hairless Mouse. Toxicol. Res. 2014 30 4 283 289 10.5487/TR.2014.30.4.283
    [Google Scholar]
  71. Lim J.Y. Kim O.K. Lee J. Lee M.J. Kang N. Hwang J.K. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice. Nutr. Res. Pract. 2014 8 4 398 403 10.4162/nrp.2014.8.4.398
    [Google Scholar]
  72. Vayalil P.K. Mittal A. Hara Y. Elmets C.A. Katiyar S.K. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J. Invest. Dermatol. 2004 122 6 1480 1487 10.1111/j.0022‑202X.2004.22622.x
    [Google Scholar]
  73. Li Q. Zhao H. Zhao M. Zhang Z. Li Y. Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice. Brain Res. 2010 1353 28 35 10.1016/j.brainres.2010.07.074
    [Google Scholar]
  74. Lopez T. Schriner S.E. Okoro M. Lu D. Chiang B.T. Huey J. Jafari M. Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness. J. Med. Food 2014 17 12 1314 1321 10.1089/jmf.2013.0190
    [Google Scholar]
  75. Xiao X.T. He S.Q. Wu N.N. Lin X.C. Zhao J. Tian C. Green Tea Polyphenols Prevent Early Vascular Aging Induced by High-Fat Diet via Promoting Autophagy in Young Adult Rats. Curr. Med. Sci. 2022 42 5 981 990 10.1007/s11596‑022‑2604‑6
    [Google Scholar]
  76. Onishi S. Ishino M. Kitazawa H. Yoto A. Shimba Y. Mochizuki Y. Unno K. Meguro S. Tokimitsu I. Miura S. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice. PLoS One 2018 13 4 e0195753 10.1371/journal.pone.0195753
    [Google Scholar]
  77. Wasai M. Nonaka H. Murata M. Kitamura R. Sato Y. Tachibana H. Long-term dietary supplementation with the green tea cultivar Sunrouge prevents age-related cognitive decline in the senescence-accelerated mouse Prone8. Biosci. Biotechnol. Biochem. 2019 83 2 339 347 10.1080/09168451.2018.1530093
    [Google Scholar]
  78. Unno K. Takabayashi F. Yoshida H. Choba D. Fukutomi R. Kikunaga N. Kishido T. Oku N. Hoshino M. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 2007 8 2 89 95 10.1007/s10522‑006‑9036‑8
    [Google Scholar]
  79. Ramis M.R. Sarubbo F. Tejada S. Jiménez M. Esteban S. Miralles A. Moranta D. Chronic Polyphenon-60 or Catechin Treatments Increase Brain Monoamines Syntheses and Hippocampal SIRT1 Levels Improving Cognition in Aged Rats. Nutrients 2020 12 2 326 10.3390/nu12020326
    [Google Scholar]
  80. Rutter K. Sell D.R. Fraser N. Obrenovich M. Zito M. Starke-Reed P. Monnier V.M. Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int. J. Vitam. Nutr. Res. 2003 73 6 453 460 10.1024/0300‑9831.73.6.453
    [Google Scholar]
  81. Cheng H.C. Chan C.M. Tsay H.S. Liang H.J. Liang Y.C. Liu D.Z. Improving effects of epigallocatechin-3-gallate on hemorheological abnormalities of aging Guinea pigs. Circ. J. 2007 71 4 597 603 10.1253/circj.71.597
    [Google Scholar]
  82. Srividhya R. Zarkovic K. Stroser M. Waeg G. Zarkovic N. Kalaiselvi P. Mitochondrial alterations in aging rat brain: effective role of (-)-epigallo catechin gallate. Int. J. Dev. Neurosci. 2009 27 3 223 231 10.1016/j.ijdevneu.2009.01.003
    [Google Scholar]
  83. Esmaeilpour-Bandboni M. Seyedpourchafi Z. Kahneh E. The Effect of Green Tea Drinking on the Depression of Elderly People. J. Nurse Pract. 2021 17 8 983 987
    [Google Scholar]
  84. Hong Y.H. Jung E.Y. Shin K.S. Yu K.W. Chang U.J. Suh H.J. Tannase-converted green tea catechins and their anti-wrinkle activity in humans. J. Cosmet. Dermatol. 2013 12 2 137 143 10.1111/jocd.12038
    [Google Scholar]
  85. Jagdeo J. Kurtti A. Hernandez S. Akers N. Peterson S. Novel Vitamin C and E and Green Tea Polyphenols Combination Serum Improves Photoaged Facial Skin. J. Drugs Dermatol. 2021 20 9 996 1003 10.36849/jdd.5818
    [Google Scholar]
  86. Feng L. Gwee X. Kua E.H. Ng T.P. Cognitive function and tea consumption in community dwelling older Chinese in Singapore. J. Nutr. Health Aging 2010 14 6 433 438 10.1007/s12603‑010‑0095‑9
    [Google Scholar]
  87. Ng T.P. Gao Q. Gwee X. Chua D.Q.L. Tea Consumption and Depression from Follow Up in the Singapore Longitudinal Ageing Study. J. Nutr. Health Aging 2021 25 3 295 301 10.1007/s12603‑020‑1526‑x
    [Google Scholar]
  88. Pan C.W. Ma Q. Sun H.P. Xu Y. Luo N. Wang P. Tea Consumption and Health-Related Quality of Life in Older Adults. J. Nutr. Health Aging 2017 21 5 480 486 10.1007/s12603‑016‑0784‑0
    [Google Scholar]
  89. Won H.R. Lee P. Oh S.R. Kim Y.M. Epigallocatechin-3-Gallate Suppresses the Expression of TNF-α-Induced MMP-1 via MAPK/ERK Signaling Pathways in Human Dermal Fibroblasts. Biol. Pharm. Bull. 2021 44 1 18 24 10.1248/bpb.b20‑00304
    [Google Scholar]
  90. Chang Y.C. Liu H.W. Chan Y.C. Hu S.H. Liu M.Y. Chang S.J. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch. Biochem. Biophys. 2020 692 108511 10.1016/j.abb.2020.108511
    [Google Scholar]
  91. Kumar S. Tiku A.B. Biochemical and Molecular Mechanisms of Radioprotective Effects of Naringenin, a Phytochemical from Citrus Fruits. J. Agric. Food Chem. 2016 64 8 1676 1685 10.1021/acs.jafc.5b05067
    [Google Scholar]
  92. Kumar S. Meena R. Rajamani P. Fabrication of BSA-Green Tea Polyphenols-Chitosan Nanoparticles and Their Role in Radioprotection: A Molecular and Biochemical Approach. J. Agric. Food Chem. 2016 64 30 6024 6034 10.1021/acs.jafc.6b02068
    [Google Scholar]
  93. Avadhani K.S. Manikkath J. Tiwari M. Chandrasekhar M. Godavarthi A. Vidya S.M. Hariharapura R.C. Kalthur G. Udupa N. Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017 24 1 61 74 10.1080/10717544.2016.1228718
    [Google Scholar]
  94. El-Sayed M. Ginski M. Rhodes C. Ghandehari H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release 2002 81 3 355 365 10.1016/s0168‑3659(02)00087‑1
    [Google Scholar]
  95. Vandamme T.F. Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release 2005 102 1 23 38 10.1016/j.jconrel.2004.09.015
    [Google Scholar]
  96. Bai S. Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm. Res. 2009 26 3 539 548 10.1007/s11095‑008‑9769‑y
    [Google Scholar]
  97. Menjoge A.R. Navath R.S. Asad A. Kannan S. Kim C.J. Romero R. Kannan R.M. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials 2010 31 18 5007 5021 10.1016/j.biomaterials.2010.02.075
    [Google Scholar]
  98. Shetty P.K. Manikkath J. Tupally K. Kokil G. Hegde A.R. Raut S.Y. Parekh H.S. Mutalik S. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition. AAPS PharmSciTech 2017 18 6 2346 2357 10.1208/s12249‑017‑0718‑0
    [Google Scholar]
  99. Li D. Martini N. Wu Z. Chen S. Falconer J.R. Locke M. Zhang Z. Wen J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics 2022 14 4 726 10.3390/pharmaceutics14040726
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575331878240924035332
Loading
/content/journals/mrmc/10.2174/0113895575331878240924035332
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test