Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6-Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575318854241014101928
2024-10-23
2025-06-26
Loading full text...

Full text loading...

References

  1. McKinnonC. NandhabalanM. MurrayS.A. PlahaP. Glioblastoma: Clinical presentation, diagnosis, and management.BMJ2021374n156010.1136/bmj.n156034261630
    [Google Scholar]
  2. GrochansS. CybulskaA.M. SimińskaD. KorbeckiJ. KojderK. ChlubekD. Baranowska-BosiackaI. Epidemiology of glioblastoma multiforme–literature review.Cancers (Basel)20221410241210.3390/cancers1410241235626018
    [Google Scholar]
  3. NaimA. ouazzani, H.; Rafii, S.; Azhari, A.; Badou, A. Epidemiology, treatment, and evolution of glioblastoma in a low-income country: Moroccan experience.J. Cancer Sci. Clin. Ther.202371162010.26502/jcsct.5079187
    [Google Scholar]
  4. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac. J. Cancer Prev.20171813928239999
    [Google Scholar]
  5. SinghN. MinerA. HennisL. MittalS. Mechanisms of temozolomide resistance in glioblastoma - A comprehensive review.Cancer Drug Resist.2021411710.20517/cdr.2020.7934337348
    [Google Scholar]
  6. Delello Di FilippoL. Hofstätter AzambujaJ. Paes DutraJ.A. Tavares LuizM. Lobato DuarteJ. NicoletiL.R. Olalla SaadS.T. ChorilliM. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers.Eur. J. Pharm. Biopharm.2021168768910.1016/j.ejpb.2021.08.01134461214
    [Google Scholar]
  7. TeraiyaM. PerreaultH. ChenV.C. An overview of glioblastoma multiforme and temozolomide resistance: Can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance?Front. Oncol.202313116620710.3389/fonc.2023.116620737182181
    [Google Scholar]
  8. BishtP. KumarV.U. PandeyR. VelayuthamR. KumarN. Role of PARP inhibitors in glioblastoma and perceiving challenges as well as strategies for successful clinical development.Front. Pharmacol.20221393957010.3389/fphar.2022.93957035873570
    [Google Scholar]
  9. CurtinN.J. PARP inhibitors for cancer therapy.Expert Rev. Mol. Med.20057412010.1017/S146239940500904X15836799
    [Google Scholar]
  10. ZhangJ. StevensM.F.G. BradshawT.D. Temozolomide: Mechanisms of action, repair and resistance.Curr. Mol. Pharmacol.20125110211410.2174/187446721120501010222122467
    [Google Scholar]
  11. SimH.W. GalanisE. KhasrawM. PARP inhibitors in glioma: A review of therapeutic opportunities.Cancers (Basel)2022144100310.3390/cancers1404100335205750
    [Google Scholar]
  12. MontaldiA. LimaS. GodoyP. XavierD. Sakamoto-HojoE. PARP 1 inhibition sensitizes temozolomide treated glioblastoma cell lines and decreases drug resistance independent of MGMT activity and PTEN proficiency.Oncol. Rep.20204452275228710.3892/or.2020.775632901889
    [Google Scholar]
  13. SilpaN. Qiu-XuT. JagadishK. JingquanW. YehudaG.A. CharlesR.A.J. Zhe-ShengC. Poly (ADP-ribose) polymerase (PARP) inhibitors as chemosensitizing compounds for the treatment of drug resistant cancers.J. Mol. Clin. Med.201923556710.31083/j.jmcm.2019.03.0303
    [Google Scholar]
  14. ChristT.N. Olaparib: A tale of two dosage forms.Semin. Oncol.201941610010110.1053/j.seminoncol.2018.11.00330583807
    [Google Scholar]
  15. DeeksE.D. Olaparib: First global approval.Drugs201575223124010.1007/s40265‑015‑0345‑625616434
    [Google Scholar]
  16. ThorsellA.G. EkbladT. KarlbergT. LöwM. PintoA.F. TrésauguesL. MocheM. CohenM.S. SchülerH. Structural basis for potency and promiscuity in poly (ADP-ribose) polymerase (PARP) and tankyrase inhibitors.J. Med. Chem.20176041262127110.1021/acs.jmedchem.6b0099028001384
    [Google Scholar]
  17. FriedlanderM. GebskiV. GibbsE. DaviesL. BloomfieldR. HilpertF. WenzelL.B. EekD. RodriguesM. ClampA. PensonR.T. ProvencherD. KorachJ. HuzarskiT. VidalL. SalutariV. ScottC. NicolettoM.O. TamuraK. EspinozaD. JolyF. Pujade-LauraineE. Health-related quality of life and patient-centred outcomes with olaparib maintenance after chemotherapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT Ov-21): A placebo-controlled, phase 3 randomised trial.Lancet Oncol.20181981126113410.1016/S1470‑2045(18)30343‑730026002
    [Google Scholar]
  18. RolfoC. de Vos-GeelenJ. IsambertN. MolifeL.R. SchellensJ.H.M. De GrèveJ. DirixL. Grundtvig-SørensenP. JerusalemG. LeunenK. Mau-SørensenM. PlummerR. LearoydM. BannisterW. FieldingA. RavaudA. Pharmacokinetics and safety of olaparib in patients with advanced solid tumours and renal impairment.Clin. Pharmacokinet.20195891165117410.1007/s40262‑019‑00754‑430877569
    [Google Scholar]
  19. LedermannJ.A. Pujade-LauraineE. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer.Ther. Adv. Med. Oncol.20191110.1177/175883591984975331205507
    [Google Scholar]
  20. Pujade-LauraineE. LedermannJ.A. SelleF. GebskiV. PensonR.T. OzaA.M. KorachJ. HuzarskiT. PovedaA. PignataS. FriedlanderM. ColomboN. HarterP. FujiwaraK. Ray-CoquardI. BanerjeeS. LiuJ. LoweE.S. BloomfieldR. PautierP. KorachJ. HuzarskiT. ByrskiT. PautierP. FriedlanderM. HarterP. ColomboN. PignataS. ScambiaG. NicolettoM. NusseyF. ClampA. PensonR. OzaA. Poveda VelascoA. RodriguesM. LotzJ-P. SelleF. Ray-CoquardI. ProvencherD. Prat AparicioA. Vidal BoixaderL. ScottC. TamuraK. YunokawaM. LisyanskayaA. MedioniJ. PécuchetN. DubotC. de la Motte RougeT. KaminskyM-C. WeberB. LortholaryA. ParkinsonC. LedermannJ. WilliamsS. BanerjeeS. CosinJ. HoffmanJ. PensonR. PlanteM. CovensA. SonkeG. JolyF. FloquetA. BanerjeeS. HirteH. AmitA. Park-SimonT-W. MatsumotoK. TjulandinS. KimJ.H. GladieffL. SabbatiniR. O’MalleyD. TimminsP. KredentserD. Laínez MilagroN. Barretina GinestaM.P. Tibau MartorellA. Gómez de Liaño ListaA. Ojeda GonzálezB. MileshkinL. MandaiM. BoereI. OttevangerP. NamJ-H. FilhoE. HamiziS. CognettiF. WarshalD. Dickson-MichelsonE. KamelleS. McKenzieN. RodriguezG. ArmstrongD. ChalasE. CelanoP. BehbakhtK. DavidsonS. WelchS. HelpmanL. FishmanA. BruchimI. SikorskaM. SłowińskaA. RogowskiW. BidzińskiM. ŚpiewankiewiczB. Casado HerraezA. Mendiola FernándezC. Gropp-MeierM. SaitoT. TakeharaK. EnomotoT. WatariH. ChoiC.H. KimB-G. KimJ.W. HeggR. VergoteI. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Oncol.20171891274128410.1016/S1470‑2045(17)30469‑228754483
    [Google Scholar]
  21. BochumS. BergerS. MartensU.M. Olaparib.Small Molecules in OncologySpringerCham MartensU. 201821723310.1007/978‑3‑319‑91442‑8_15
    [Google Scholar]
  22. LeeS.Y. Temozolomide resistance in glioblastoma multiforme.Genes Dis.20163319821010.1016/j.gendis.2016.04.00730258889
    [Google Scholar]
  23. TomarM.S. KumarA. SrivastavaC. ShrivastavaA. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance.Biochim. Biophys. Acta Rev. Cancer20211876218861610.1016/j.bbcan.2021.18861634419533
    [Google Scholar]
  24. YoshimotoK. MizoguchiM. HataN. MurataH. HataeR. AmanoT. NakamizoA. SasakiT. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma.Front. Oncol.2012218610.3389/fonc.2012.0018623227453
    [Google Scholar]
  25. KitangeG.J. CarlsonB.L. SchroederM.A. GroganP.T. LamontJ.D. DeckerP.A. WuW. JamesC.D. SarkariaJ.N. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts.Neuro-oncol.200911328129110.1215/15228517‑2008‑09018952979
    [Google Scholar]
  26. CropperJ.D. AlimbetovD.S. BrownK.T.G. LikhotvorikR.I. RoblesA.J. GuerraJ.T. HeB. ChenY. KwonY. KurmashevaR.T. PARP1-MGMT complex underpins pathway crosstalk in O6-methylguanine repair.J. Hematol. Oncol.202215114610.1186/s13045‑022‑01367‑436242092
    [Google Scholar]
  27. ParsonsJ.L. EdmondsM.J. The base excision repair pathway.Encyclopedia of Cell Biology. BradshawR.A. StahlP.D. 201644245010.1016/B978‑0‑12‑394447‑4.10046‑X
    [Google Scholar]
  28. TangJ. SvilarD. TrivediR.N. WangX. GoellnerE.M. MooreB. HamiltonR.L. BanzeL.A. BrownA.R. SobolR.W. N-methylpurine DNA glycosylase and DNA polymerase β modulate BER inhibitor potentiation of glioma cells to temozolomide.Neuro-oncol.201113547148610.1093/neuonc/nor01121377995
    [Google Scholar]
  29. MessaoudiK. ClavreulA. LagarceF. Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide.Drug Discov. Today201520789990510.1016/j.drudis.2015.02.01125744176
    [Google Scholar]
  30. KamaletdinovaT. Fanaei-KahraniZ. WangZ.Q. The enigmatic function of PARP1: From parylation activity to PAR readers.Cells2019812162510.3390/cells812162531842403
    [Google Scholar]
  31. RouleauM. PatelA. HendzelM.J. KaufmannS.H. PoirierG.G. PARP inhibition: PARP1 and beyond.Nat. Rev. Cancer201010429330110.1038/nrc281220200537
    [Google Scholar]
  32. ZhangJ. ZhangJ. LiH. ChenL. YaoD. Dual-target inhibitors of PARP1 in cancer therapy: A drug discovery perspective.Drug Discov. Today202328710360710.1016/j.drudis.2023.10360737146962
    [Google Scholar]
  33. WuS. LiX. GaoF. de GrootJ.F. KoulD. YungW.K.A. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma.Neuro-oncol.202123692093110.1093/neuonc/noab00333433610
    [Google Scholar]
  34. RobsonM. ImS.A. SenkusE. XuB. DomchekS.M. MasudaN. DelalogeS. LiW. TungN. ArmstrongA. WuW. GoesslC. RunswickS. ConteP. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.N. Engl. J. Med.2017377652353310.1056/NEJMoa170645028578601
    [Google Scholar]
  35. ChenY. ZhangL. HaoQ. Olaparib: A promising PARP inhibitor in ovarian cancer therapy.Arch. Gynecol. Obstet.2013288236737410.1007/s00404‑013‑2856‑223619942
    [Google Scholar]
  36. KimG. IsonG. McKeeA.E. ZhangH. TangS. GwiseT. SridharaR. LeeE. TzouA. PhilipR. ChiuH.J. RicksT.K. PalmbyT. RussellA.M. LadouceurG. PfumaE. LiH. ZhaoL. LiuQ. VenugopalR. IbrahimA. PazdurR. FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy.Clin. Cancer Res.201521194257426110.1158/1078‑0432.CCR‑15‑088726187614
    [Google Scholar]
  37. BixelK. HaysJ. Olaparib in the management of ovarian cancer.Pharm. Genomics Pers. Med.2015812713510.2147/PGPM.S6280926309417
    [Google Scholar]
  38. YangY.G. CortesU. PatnaikS. JasinM. WangZ.Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks.Oncogene200423213872388210.1038/sj.onc.120749115021907
    [Google Scholar]
  39. MateoJ. CarreiraS. SandhuS. MirandaS. MossopH. Perez-LopezR. Nava RodriguesD. RobinsonD. OmlinA. TunariuN. BoysenG. PortaN. FlohrP. GillmanA. FigueiredoI. PauldingC. SeedG. JainS. RalphC. ProtheroeA. HussainS. JonesR. ElliottT. McGovernU. BianchiniD. GoodallJ. ZafeiriouZ. WilliamsonC.T. FerraldeschiR. RiisnaesR. EbbsB. FowlerG. RodaD. YuanW. WuY.M. CaoX. BroughR. PembertonH. A’HernR. SwainA. KunjuL.P. EelesR. AttardG. LordC.J. AshworthA. RubinM.A. KnudsenK.E. FengF.Y. ChinnaiyanA.M. HallE. de BonoJ.S. DNA-repair defects and olaparib in metastatic prostate cancer.N. Engl. J. Med.2015373181697170810.1056/NEJMoa150685926510020
    [Google Scholar]
  40. HwangK. LeeJ-H. KimS.H. GoK-O. JiS.Y. HanJ.H. KimC-Y. The combination PARP inhibitor olaparib with temozolomide in an experimental glioblastoma model.In Vivo20213542015202310.21873/invivo.12470
    [Google Scholar]
  41. ValiakhmetovaA. GorelyshevS. KonovalovA. TruninY. SavateevA. KramD.E. SeversonE. HemmerichA. EdgerlyC. DuncanD. BrittN. HuangR.S.P. ElvinJ. MillerV. RossJ.S. GayL. McCorkleJ. RankinA. ErlichR.L. ChudnovskyY. RamkissoonS.H. Treatment of pediatric glioblastoma with combination olaparib and temozolomide demonstrates 2‐year durable response.Oncologist2020252e198e20210.1634/theoncologist.2019‑060332043779
    [Google Scholar]
  42. DungeyF.A. LöserD.A. ChalmersA.J. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: Mechanisms and therapeutic potential.Int. J. Radiat. Oncol. Biol. Phys.20087241188119710.1016/j.ijrobp.2008.07.03118954712
    [Google Scholar]
  43. van VuurdenD.G. HullemanE. MeijerO.L.M. WedekindL.E. KoolM. WittH. VandertopW.P. WürdingerT. NoskeD.P. KaspersG.J.L. CloosJ. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation.Oncotarget201121298499610.18632/oncotarget.36222184287
    [Google Scholar]
  44. Karpel-MasslerG. ParejaF. AiméP. ShuC. ChauL. WesthoffM.A. HalatschM.E. CraryJ.F. CanollP. SiegelinM.D. PARP inhibition restores extrinsic apoptotic sensitivity in glioblastoma.PLoS One2014912e11458310.1371/journal.pone.011458325531448
    [Google Scholar]
  45. HannaC. KurianK.M. WilliamsK. WattsC. JacksonA. CarruthersR. StrathdeeK. CruickshankG. DunnL. ErridgeS. GodfreyL. JefferiesS. McBainC. SleighR. McCormickA. PittmanM. HalfordS. ChalmersA.J. Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: Results of the phase I OPARATIC trial.Neuro-oncol.202022121840185010.1093/neuonc/noaa10432347934
    [Google Scholar]
  46. Navarro-CarrascoE. LazoP.A. VRK1 depletion facilitates the synthetic lethality of temozolomide and olaparib in glioblastoma cells.Front. Cell Dev. Biol.2021968303810.3389/fcell.2021.68303834195200
    [Google Scholar]
  47. ChalmersA.J. Phase I clinical trials evaluating olaparib in combination with radiotherapy (RT) and/or temozolomide (TMZ) in glioblastoma patients: Results of OPARATIC and PARADIGM phase I and early results of PARADIGM-2.J. Clin. Oncol.201836Suppl 1510.1200/JCO.2018.36.15_suppl.2018
    [Google Scholar]
  48. RottenbergS. JaspersJ.E. KersbergenA. van der BurgE. NygrenA.O.H. ZanderS.A.L. DerksenP.W.B. de BruinM. ZevenhovenJ. LauA. BoulterR. CranstonA. O’ConnorM.J. MartinN.M.B. BorstP. JonkersJ. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs.Proc. Natl. Acad. Sci. USA200810544170791708410.1073/pnas.080609210518971340
    [Google Scholar]
  49. LiH. LiuZ.Y. WuN. ChenY.C. ChengQ. WangJ. PARP inhibitor resistance: The underlying mechanisms and clinical implications.Mol. Cancer202019110710.1186/s12943‑020‑01227‑032563252
    [Google Scholar]
  50. ItoS. MurphyC.G. DoubrovinaE. JasinM. MoynahanM.E. PARP inhibitors in clinical use induce genomic instability in normal human cells.PLoS One2016117e015934110.1371/journal.pone.015934127428646
    [Google Scholar]
  51. AgarwalS. MittapalliR.K. ZellmerD.M. GallardoJ.L. DonelsonR. SeilerC. DeckerS.A. SantaCruzK.S. PokornyJ.L. SarkariaJ.N. ElmquistW.F. OhlfestJ.R. Active efflux of Dasatinib from the brain limits efficacy against murine glioblastoma: Broad implications for the clinical use of molecularly targeted agents.Mol. Cancer Ther.201211102183219210.1158/1535‑7163.MCT‑12‑055222891038
    [Google Scholar]
  52. GuptaS.K. SmithE.J. MladekA.C. TianS. DeckerP.A. KizilbashS.H. KitangeG.J. SarkariaJ.N. PARP inhibitors for sensitization of alkylation chemotherapy in glioblastoma: Impact of blood-brain barrier and molecular heterogeneity.Front. Oncol.2019867010.3389/fonc.2018.0067030723695
    [Google Scholar]
  53. SaranF. JamesA. McBainC. JefferiesS. HarrisF. CsehA. PembertonK. SchaibleJ. BenderS. BradaM. ACTR-38. A phase I trial of afatinib and radiotherapy (rt) with or without temozolomide (tmz) in patients with newly diagnosed glioblastoma (GBM).Neuro-oncol.201820Suppl. 6vi2010.1093/neuonc/noy148.071
    [Google Scholar]
  54. BerensM.E. GieseA. “...those left behind.” Biology and oncology of invasive glioma cells.Neoplasia19991320821910.1038/sj.neo.790003410935475
    [Google Scholar]
  55. PitzM.W. DesaiA. GrossmanS.A. BlakeleyJ.O. Tissue concentration of systemically administered antineoplastic agents in human brain tumors.J. Neurooncol.2011104362963810.1007/s11060‑011‑0564‑y21400119
    [Google Scholar]
  56. LevinV.A. PatlakC.S. LandahlH.D. Heuristic modeling of drug delivery to malignant brain tumors.J. Pharmacokinet. Biopharm.19808325729610.1007/BF010596467420270
    [Google Scholar]
  57. BlakeleyJ.O. OlsonJ. GrossmanS.A. HeX. WeingartJ. SupkoJ.G. Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: A microdialysis study.J. Neurooncol.2009911515810.1007/s11060‑008‑9678‑218787762
    [Google Scholar]
  58. GuptaS.K. MladekA.C. CarlsonB.L. Boakye-AgyemanF. BakkenK.K. KizilbashS.H. SchroederM.A. ReidJ. SarkariaJ.N. Discordant in vitro and in vivo chemopotentiating effects of the PARP inhibitor veliparib in temozolomide-sensitive versus -resistant glioblastoma multiforme xenografts.Clin. Cancer Res.201420143730374110.1158/1078‑0432.CCR‑13‑344624838527
    [Google Scholar]
  59. KizilbashS.H. GuptaS.K. ChangK. KawashimaR. ParrishK.E. CarlsonB.L. BakkenK.K. MladekA.C. SchroederM.A. DeckerP.A. KitangeG.J. ShenY. FengY. ProtterA.A. ElmquistW.F. SarkariaJ.N. Restricted delivery of talazoparib across the blood–brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma.Mol. Cancer Ther.201716122735274610.1158/1535‑7163.MCT‑17‑036528947502
    [Google Scholar]
  60. ParrishK.E. CenL. MurrayJ. CalligarisD. KizilbashS. MittapalliR.K. CarlsonB.L. SchroederM.A. SluddenJ. BoddyA.V. AgarN.Y.R. CurtinN.J. ElmquistW.F. SarkariaJ.N. Efficacy of PARP inhibitor rucaparib in orthotopic glioblastoma xenografts is limited by ineffective drug penetration into the central nervous system.Mol. Cancer Ther.201514122735274310.1158/1535‑7163.MCT‑15‑055326438157
    [Google Scholar]
  61. GuptaS.K. KizilbashS.H. CarlsonB.L. MladekA.C. Boakye-AgyemanF. BakkenK.K. PokornyJ.L. SchroederM.A. DeckerP.A. CenL. Eckel-PassowJ.E. SarkarG. BallmanK.V. ReidJ.M. JenkinsR.B. VerhaakR.G. SulmanE.P. KitangeG.J. SarkariaJ.N. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma.J. Natl. Cancer Inst.20151085djv36910.1093/jnci/djv36926615020
    [Google Scholar]
  62. SargaziS. MukhtarM. RahdarA. BaraniM. PandeyS. Díez-PascualA. Active targeted nanoparticles for delivery of poly (ADP-ribose) polymerase (PARP) inhibitors: A preliminary review.Int. J. Mol. Sci.202122191031910.3390/ijms22191031934638660
    [Google Scholar]
  63. MensahL.B. MortonS.W. LiJ. XiaoH. QuadirM.A. EliasK.M. PennE. RichsonA.K. GhoroghchianP.P. LiuJ. HammondP.T. Layer‐by‐layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum‐based drug resistance therapy in ovarian cancer.Bioeng. Transl. Med.201942e1013110.1002/btm2.1013131249881
    [Google Scholar]
  64. BaldwinP. TangutooriS. SridharS. In vitro analysis of PARP inhibitor nanoformulations.Int. J. Nanomedicine201813Suppl.596110.2147/IJN.S12499229593397
    [Google Scholar]
  65. ZhangD. BaldwinP. LealA.S. CarapellucciS. SridharS. LibyK.T. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice.Theranostics20199216224623810.7150/thno.3628131534547
    [Google Scholar]
  66. PatelP. Combined nanoparticle delivery of PARP and DNA-PK inhibition for multiple myeloma.Blood20171301809
    [Google Scholar]
  67. BaldwinP. OhmanA.W. TangutooriS. DinulescuD.M. SridharS. Intraperitoneal delivery of NanoOlaparib for disseminated late-stage cancer treatment.Int. J. Nanomedicine2018138063807410.2147/IJN.S18688130555227
    [Google Scholar]
  68. PathadeA.D. KommineniN. BulbakeU. ThummarM.M. SamanthulaG. KhanW. Preparation and comparison of oral bioavailability for different nanoformulations of olaparib.AAPS PharmSciTech201920727610.1208/s12249‑019‑1468‑y31388783
    [Google Scholar]
  69. McCrorieP. MistryJ. TarescoV. LovatoT. FayM. WardI. RitchieA.A. ClarkeP.A. SmithS.J. MarlowM. RahmanR. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours.Eur. J. Pharm. Biopharm.202015710812010.1016/j.ejpb.2020.10.00533068736
    [Google Scholar]
  70. FultonB. ShortS.C. JamesA. NowickiS. McBainC. JefferiesS. KellyC. StoboJ. MorrisA. WilliamsonA. ChalmersA.J. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status.Clin. Transl. Radiat. Oncol.20188121610.1016/j.ctro.2017.11.00329594237
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575318854241014101928
Loading
/content/journals/mrmc/10.2174/0113895575318854241014101928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test