Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575303614240527093106
2024-06-07
2024-11-22
Loading full text...

Full text loading...

References

  1. KouzaridesT. Chromatin modifications and their function.Cell2007128469370510.1016/j.cell.2007.02.00517320507
    [Google Scholar]
  2. SmalleyJ.P. CowleyS.M. HodgkinsonJ.T. Bifunctional HDAC therapeutics: One drug to rule them al.Molecules20202519439410.3390/molecules2519439432987782
    [Google Scholar]
  3. LinZ. BishopK.S. SutherlandH. MarlowG. MurrayP. DennyW.A. FergusonL.R. A quinazoline-based HDAC inhibitor affects gene expression pathways involved in cholesterol biosynthesis and mevalonate in prostate cancer cells.Mol. Biosyst.201612383984910.1039/C5MB00554J26759180
    [Google Scholar]
  4. GregorettiI. LeeY.M. GoodsonH.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis.J. Mol. Biol.20043381173110.1016/j.jmb.2004.02.00615050820
    [Google Scholar]
  5. Aldana-MasangkayG.I. SakamotoK.M. The role of HDAC6 in cancer.J. Biomed. Biotechnol.2011201111010.1155/2011/87582421076528
    [Google Scholar]
  6. GlozakM.A. SetoE. Histone deacetylases and cancer.Oncogene200726375420543210.1038/sj.onc.121061017694083
    [Google Scholar]
  7. BieliauskasA.V. PflumM.K.H. Isoform-selective histone deacetylase inhibitors.Chem. Soc. Rev.20083771402141310.1039/b703830p18568166
    [Google Scholar]
  8. HeshamH.M. LasheenD.S. AbouzidK.A.M. Chimeric HDAC inhibitors: Comprehensive review on the HDAC‐based strategies developed to combat cancer.Med. Res. Rev.20183862058210910.1002/med.2150529733427
    [Google Scholar]
  9. BoldenJ.E. PeartM.J. JohnstoneR.W. Anticancer activities of histone deacetylase inhibitors.Nat. Rev. Drug Discov.20065976978410.1038/nrd213316955068
    [Google Scholar]
  10. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.57694633117804
    [Google Scholar]
  11. ZhangQ. LiY. ZhangB. LuB. LiJ. Design, synthesis and biological evaluation of novel histone deacetylase inhibitors incorporating 4-aminoquinazolinyl systems as capping groups.Bioorg. Med. Chem. Lett.201727214885488810.1016/j.bmcl.2017.09.03628947154
    [Google Scholar]
  12. YangZ. WangT. WangF. NiuT. LiuZ. ChenX. LongC. TangM. CaoD. WangX. XiangW. YiY. MaL. YouJ. ChenL. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer.J. Med. Chem.20165941455147010.1021/acs.jmedchem.5b0134226443078
    [Google Scholar]
  13. DhuguruJ. GhoneimO.A. Quinazoline based HDAC dual inhibitors as potential anti-cancer agents.Molecules2022277229410.3390/molecules2707229435408693
    [Google Scholar]
  14. SunL. HanL. ZhangL. ChenC. ZhengC. Design, synthesis, and antitumor activity evaluation of carbazole derivatives with potent HDAC inhibitory activity.Med. Chem. Res.20233281677168910.1007/s00044‑023‑03084‑0
    [Google Scholar]
  15. LiuG. MondalP. SangN. LiZ. DingW. YangL. LiuY. BirarV.C. GommA. TanziR.E. ZhangC. ShenS. WangC. LuX. BaiP. Design, synthesis, and anti-inflammatory activity characterization of novel brain-permeable HDAC6 inhibitors.Eur. J. Med. Chem.202325411532710.1016/j.ejmech.2023.11532737098307
    [Google Scholar]
  16. ZhaoY. YaoZ. RenW. YangX. HouX. CaoS. FangH. Design, synthesis and bioactivity evaluations of 8-substituted-quinoline-2-carboxamide derivatives as novel histone deacetylase (HDAC) inhibitors.Bioorg. Med. Chem.20238511724210.1016/j.bmc.2023.11724237079967
    [Google Scholar]
  17. XiongS. WangX. ZhuM. SongK. LiY. YangJ. LiuX. LiuM. DongH. ChenM. ChenD. XiangH. LuoG. Structural optimization of tetrahydroisoquinoline-hydroxamate hybrids as potent dual ERα degraders and HDAC inhibitors.Bioorg. Chem.202313410645910.1016/j.bioorg.2023.10645936924653
    [Google Scholar]
  18. ZhaoM. YangK. ZhuX. GaoT. YuW. LiuH. YouZ. LiuZ. QiaoX. SongY. Design, synthesis and biological evaluation of dual Topo II/HDAC inhibitors bearing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs.Eur. J. Med. Chem.202325211530310.1016/j.ejmech.2023.11530336996717
    [Google Scholar]
  19. KongS.J. NamG. BogguP.R. ParkG.M. KangJ.E. ParkH.J. JungY.H. Synthesis and biological evaluation of novel N-benzyltriazolyl-hydroxamate derivatives as selective histone deacetylase 6 inhibitors.Bioorg. Med. Chem.20237911715410.1016/j.bmc.2023.11715436645952
    [Google Scholar]
  20. DongJ. ZhuX. YuW. HuX. ZhangY. YangK. YouZ. LiuZ. QiaoX. SongY. Pyrazolo[3,4-d]pyrimidine-based dual HDAC/Topo II inhibitors: Design, synthesis, and biological evaluation as potential antitumor agents.J. Mol. Struct.2023127213422110.1016/j.molstruc.2022.134221
    [Google Scholar]
  21. OmidkhahN. HadizadehF. ZarghiA. GhodsiR. Synthesis, cytotoxicity, Pan-HDAC inhibitory activity and docking study of new N-(2-aminophenyl)-2-methylquinoline-4-carboxamide and (E)-N-(2-aminophenyl)-2-styrylquinoline-4-carboxamide derivatives as anticancer agents.Med. Chem. Res.202332350652410.1007/s00044‑023‑03018‑w
    [Google Scholar]
  22. MoiD. CitarellaA. BonanniD. PinziL. PassarellaD. SilvaniA. GianniniC. RastelliG. Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring.RSC Advances20221218115481155610.1039/D2RA01753A35425078
    [Google Scholar]
  23. BassA.K.A. El-ZoghbiM.S. NageebE.S.M. MohamedM.F.A. BadrM. Abuo-RahmaG.E.D.A. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors.Eur. J. Med. Chem.202120911290410.1016/j.ejmech.2020.11290433077264
    [Google Scholar]
  24. UndheimK. BennecheT. Benneche, pyrimidines and their benzo derivatives. In: Comprehensive Heterocyclic Chemistry II.
    [Google Scholar]
  25. YaoD. LiC. JiangJ. HuangJ. WangJ. HeZ. ZhangJ. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer.Eur. J. Med. Chem.202020511264810.1016/j.ejmech.2020.11264832791401
    [Google Scholar]
  26. ChenJ. SangZ. JiangY. YangC. HeL. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC 1 and HDAC 6 inhibitors for the treatment of cancer.Chem. Biol. Drug Des.201993323224110.1111/cbdd.1340530251407
    [Google Scholar]
  27. HieuD.T. AnhD.T. HaiP.T. HuongL.T.T. ParkE.J. ChoiJ.E. KangJ.S. DungP.T.P. HanS.B. NamN.H. Quinazoline‐based hydroxamic acids: Design, synthesis, and evaluation of histone deacetylase inhibitory effects and cytotoxicity.Chem. Biodivers.2018156e180002710.1002/cbdv.20180002729667768
    [Google Scholar]
  28. HieuD.T. AnhD.T. TuanN.M. HaiP.T. HuongL.T.T. KimJ. KangJ.S. VuT.K. DungP.T.P. HanS.B. NamN.H. HoaN.D. Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H )-ones as histone deacetylase inhibitors and antitumor agents.Bioorg. Chem.20187625826710.1016/j.bioorg.2017.12.00729223029
    [Google Scholar]
  29. AnhD.T. HaiP.T. HuyL.D. NgocH.B. NgocT.T.M. DungD.T.M. ParkE.J. SongI.K. KangJ.S. KwonJ.H. TungT.T. HanS.B. NamN.H. Novel 4-oxoquinazoline-based N -hydroxypropenamides as histone deacetylase inhibitors: Design, synthesis, and biological evaluation.ACS Omega2021674907492010.1021/acsomega.0c0587033644598
    [Google Scholar]
  30. YuC.W. ChangP.T. HsinL.W. ChernJ.W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease.J. Med. Chem.201356176775679110.1021/jm400564j23905680
    [Google Scholar]
  31. YuC.W. HungP.Y. YangH.T. HoY.H. LaiH.Y. ChengY.S. ChernJ.W. Quinazolin-2,4-dione-based hydroxamic acids as selective histone deacetylase-6 inhibitors for treatment of non-small cell lung cancer.J. Med. Chem.201962285787410.1021/acs.jmedchem.8b0159030525585
    [Google Scholar]
  32. DuZ. LovlyC.M. Mechanisms of receptor tyrosine kinase activation in cancer.Mol. Cancer20181715810.1186/s12943‑018‑0782‑429455648
    [Google Scholar]
  33. LohrischC. PiccartM. An overview of HER2.Semin. Oncol.2001286Suppl. 1831110.1016/S0093‑7754(01)90103‑411774200
    [Google Scholar]
  34. WangJ. PursellN.W. SamsonM.E.S. AtoyanR. MaA.W. SelmiA. XuW. CaiX. VoiM. SavagnerP. LaiC.J. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion.Mol. Cancer Ther.201312692593610.1158/1535‑7163.MCT‑12‑104523536719
    [Google Scholar]
  35. GallowayT.J. WirthL.J. ColevasA.D. GilbertJ. BaumanJ.E. SabaN.F. RabenD. MehraR. MaA.W. AtoyanR. WangJ. BurtnessB. JimenoA. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma.Clin. Cancer Res.20152171566157310.1158/1078‑0432.CCR‑14‑282025573383
    [Google Scholar]
  36. HynesN.E. LaneH.A. ERBB receptors and cancer: The complexity of targeted inhibitors.Nat. Rev. Cancer20055534135410.1038/nrc160915864276
    [Google Scholar]
  37. BaliP. PranpatM. SwabyR. FiskusW. YamaguchiH. BalasisM. RochaK. WangH.G. RichonV. BhallaK. Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2.Clin. Cancer Res.200511176382638910.1158/1078‑0432.CCR‑05‑034416144943
    [Google Scholar]
  38. ZhangX. SuM. ChenY. LiJ. LuW. The design and synthesis of a new class of RTK/HDAC dual-targeted inhibitors.Molecules20131866491650310.3390/molecules1806649123736786
    [Google Scholar]
  39. LaBonteM.J. WilsonP.M. FazzoneW. RussellJ. LouieS.G. El-KhoueiryA. LenzH.J. LadnerR.D. The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models.Cancer Res.201171103635364810.1158/0008‑5472.CAN‑10‑243021464044
    [Google Scholar]
  40. PooleR.M. Belinostat: First global approval.Drugs201474131543155410.1007/s40265‑014‑0275‑825134672
    [Google Scholar]
  41. CaiX. ZhaiH.X. WangJ. ForresterJ. QuH. YinL. LaiC.J. BaoR. QianC. Discovery of 7-(4(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer.J. Med. Chem.2010532000200910.1021/jm901453q20143778
    [Google Scholar]
  42. StamosJ. SliwkowskiM.X. EigenbrotC. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor.J. Biol. Chem.200227748462654627210.1074/jbc.M20713520012196540
    [Google Scholar]
  43. WangD.F. HelquistP. WiechN.L. WiestO. Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases.J. Med. Chem.200548226936694710.1021/jm050501116250652
    [Google Scholar]
  44. KériG. OrfiL. ErosD. Hegymegi-BarakonyiB. Szantai-KisC. HorvathZ. WaczekF. MarosfalviJ. SzabadkaiI. PatoJ. GreffZ. HafenbradlD. DaubH. MullerG. KleblB. UllrichA. Signal transduction therapy with rationally designed kinase inhibitors.Curr. Signal Transduct. Ther.200611679510.2174/157436206775269190
    [Google Scholar]
  45. ZhangT. MaD. WeiD. LuT. YuK. ZhangZ. WangW. FangQ. WangJ. CUDC-101 overcomes arsenic trioxide resistance via caspase-dependent promyelocytic leukemia-retinoic acid receptor alpha degradation in acute promyelocytic leukemia.Anticancer Drugs202031215816810.1097/CAD.000000000000084731584454
    [Google Scholar]
  46. DingC. ChenS. ZhangC. HuG. ZhangW. LiL. ChenY.Z. TanC. JiangY. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy.Bioorg. Med. Chem.2017251273710.1016/j.bmc.2016.10.00627769671
    [Google Scholar]
  47. DingC. LiD. WangY.W. HanS.S. GaoC.M. TanC.Y. JiangY.Y. Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285.Chin. Chem. Lett.20172861220122710.1016/j.cclet.2017.01.003
    [Google Scholar]
  48. ZhaoL. FanT. ShiZ. DingC. ZhangC. YuanZ. SunQ. TanC. ChuB. JiangY. Design, synthesis and evaluation of novel ErbB/HDAC multitargeted inhibitors with selectivity in EGFRT790M mutant cell lines.Eur. J. Med. Chem.202121311317310.1016/j.ejmech.2021.11317333493830
    [Google Scholar]
  49. van MeerbeeckJ.P. FennellD.A. De RuysscherD.K.M. Thelancet.Com201137810.1016/S0140
    [Google Scholar]
  50. FerraraN. KerbelR.S. Angiogenesis as a therapeutic target.Nature2005438707096797410.1038/nature0448316355214
    [Google Scholar]
  51. LiottaL.A. SteegP.S. Stetler-StevensonW.G. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation.Cell199164232733610.1016/0092‑8674(91)90642‑C1703045
    [Google Scholar]
  52. KiselyovA. BalakinK.V. TkachenkoS.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis.Expert Opin. Investig. Drugs20071618310710.1517/13543784.16.1.8317155856
    [Google Scholar]
  53. EllisL.M. HicklinD.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity.Nat. Rev. Cancer20088857959110.1038/nrc240318596824
    [Google Scholar]
  54. EllisL.M. HicklinD.J. Pathways mediating resistance to vascular endothelial growth factor-targeted therapy.Clin. Cancer Res.200814206371637510.1158/1078‑0432.CCR‑07‑528718927275
    [Google Scholar]
  55. CurtinM.L. FreyR.R. HeymanH.R. SoniN.B. MarcotteP.A. PeaseL.J. GlaserK.B. MagocT.J. TapangP. AlbertD.H. OsterlingD.J. OlsonA.M. BouskaJ.J. GuanZ. PreusserL.C. PolakowskiJ.S. StewartK.D. TseC. DavidsenS.K. MichaelidesM.R. Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.Bioorg. Med. Chem. Lett.20122293208321210.1016/j.bmcl.2012.03.03522465635
    [Google Scholar]
  56. NakagawaT. MatsushimaT. KawanoS. NakazawaY. KatoY. AdachiY. AbeT. SembaT. YokoiA. MatsuiJ. TsuruokaA. FunahashiY. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway‐induced resistance to vascular endothelial growth factor receptor inhibitor.Cancer Sci.2014105672373010.1111/cas.1240924689876
    [Google Scholar]
  57. ShiL. WuT.T. WangZ. XueJ.Y. XuY.G. Discovery of quinazolin-4-amines bearing benzimidazole fragments as dual inhibitors of c-Met and VEGFR-2.Bioorg. Med. Chem.201422174735474410.1016/j.bmc.2014.07.00825082515
    [Google Scholar]
  58. PengF.W. XuanJ. WuT.T. XueJ.Y. RenZ.W. LiuD.K. WangX.Q. ChenX.H. ZhangJ.W. XuY.G. ShiL. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC.Eur. J. Med. Chem.201610911210.1016/j.ejmech.2015.12.03326741358
    [Google Scholar]
  59. PengF.W. WuT.T. RenZ.W. XueJ.Y. ShiL. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.Bioorg. Med. Chem. Lett.201525225137514110.1016/j.bmcl.2015.10.00626475519
    [Google Scholar]
  60. CommanderH. WhitesideG. PerryC. Vandetanib.Drugs201171101355136510.2165/11595310‑000000000‑0000021770481
    [Google Scholar]
  61. TachibanaM. UedaJ. FukudaM. TakedaN. OhtaT. IwanariH. SakihamaT. KodamaT. HamakuboT. ShinkaiY. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9.Genes Dev.200519781582610.1101/gad.128400515774718
    [Google Scholar]
  62. GreerE.L. ShiY. Histone methylation: A dynamic mark in health, disease and inheritance.Nat. Rev. Genet.201213534335710.1038/nrg317322473383
    [Google Scholar]
  63. HuY. ZhengY. DaiM. WangX. WuJ. YuB. ZhangH. CuiY. KongW. WuH. YuX. G9a and histone deacetylases are crucial for Snail2‐mediated E‐cadherin repression and metastasis in hepatocellular carcinoma.Cancer Sci.2019110113442345210.1111/cas.1417331432592
    [Google Scholar]
  64. ZhengH. DaiQ. YuanZ. FanT. ZhangC. LiuZ. ChuB. SunQ. ChenY. JiangY. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents.Bioorg. Med. Chem.20225311652410.1016/j.bmc.2021.11652434847495
    [Google Scholar]
  65. CantleyL.C. The phosphoinositide 3-kinase pathway.Science200229655731655165710.1126/science.296.5573.165512040186
    [Google Scholar]
  66. VivancoI. SawyersC.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer.Nat. Rev. Cancer20022748950110.1038/nrc83912094235
    [Google Scholar]
  67. LiuP. ChengH. RobertsT.M. ZhaoJ.J. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.20098862764410.1038/nrd292619644473
    [Google Scholar]
  68. MillisS.Z. IkedaS. ReddyS. GatalicaZ. KurzrockR. Landscape of phosphatidylinositol-3-kinase pathway alterations across 19 784 diverse solid tumors.JAMA Oncol.20162121565157310.1001/jamaoncol.2016.089127388585
    [Google Scholar]
  69. YoshiokaT. YogosawaS. YamadaT. KitawakiJ. SakaiT. Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS.Gynecol. Oncol.2013129242543210.1016/j.ygyno.2013.02.00823403163
    [Google Scholar]
  70. YounesA. BerdejaJ.G. PatelM.R. FlinnI. GerecitanoJ.F. NeelapuS.S. KellyK.R. CopelandA.R. AkinsA. ClancyM.S. GongL. WangJ. MaA. VinerJ.L. OkiY. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.Lancet Oncol.201617562263110.1016/S1470‑2045(15)00584‑727049457
    [Google Scholar]
  71. QianC. LaiC.J. BaoR. WangD.G. WangJ. XuG.X. AtoyanR. QuH. YinL. SamsonM. ZifcakB. MaA.W.S. DellaRoccaS. BorekM. ZhaiH.X. CaiX. VoiM. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.Clin. Cancer Res.201218154104411310.1158/1078‑0432.CCR‑12‑005522693356
    [Google Scholar]
  72. ZhangK. LaiF. LinS. JiM. ZhangJ. ZhangY. JinJ. FuR. WuD. TianH. XueN. ShengL. ZouX. LiY. ChenX. XuH. Design, synthesis, and biological evaluation of 4-Methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases.J. Med. Chem.201962156992701410.1021/acs.jmedchem.9b0039031117517
    [Google Scholar]
  73. ThakurA. TawaG.J. HendersonM.J. DanchikC. LiuS. ShahP. WangA.Q. DunnG. KabirM. PadilhaE.C. XuX. SimeonovA. KharbandaS. StoneR. GrewalG. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors.J. Med. Chem.20206384256429210.1021/acs.jmedchem.0c0019332212730
    [Google Scholar]
  74. BosshartH. HeinzelmannM. THP-1 cells as a model for human monocytes.Ann. Transl. Med.201642143810.21037/atm.2016.08.5327942529
    [Google Scholar]
  75. RamachandranR.P. MadhivananS. SundararajanR. Wan-Ying LinC. SankaranarayananK. An in vitro study of electroporation of leukemia and cervical cancer cells.Electroporation-Based Therapies for Cancer: From Basics to Clinical Applications.Elsevier201416118310.1533/9781908818294.161
    [Google Scholar]
  76. BondarevA.D. AttwoodM.M. JonssonJ. ChubarevV.N. TarasovV.V. SchiöthH.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules.Br. J. Clin. Pharmacol.202187124577459710.1111/bcp.1488933971031
    [Google Scholar]
  77. McClureJ.J. LiX. ChouC.J. Advances and challenges of HDAC inhibitors in cancer therapeutics.Adv Cancer Res.Academic Press Inc.201818321110.1016/bs.acr.2018.02.006
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575303614240527093106
Loading
/content/journals/mrmc/10.2174/0113895575303614240527093106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test