Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Background

CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3’UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments.

Methods

A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized.

Results

CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, for glioblastoma, gastric cancer, and colorectal cancer, CPEB1 exhibts two opposing properties of tumorigenesis, either promoting or inhibiting it.

Conclusion

CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575293544240605112838
2024-06-14
2024-11-26
Loading full text...

Full text loading...

References

  1. AfrozT. SkrisovskaL. BellocE. BoixetG.J. MéndezR. AllainF.H.T. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins.Genes Dev.201428131498151410.1101/gad.241133.11424990967
    [Google Scholar]
  2. PoetzF. LebedevaS. SchottJ. LindnerD. OhlerU. StoecklinG. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation.Genome Biol.202223119310.1186/s13059‑022‑02760‑536096941
    [Google Scholar]
  3. HuangY.S. KanM.C. LinC.L. RichterJ.D. CPEB3 and CPEB4 in neurons: Analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA.EMBO J.200625204865487610.1038/sj.emboj.760132217024188
    [Google Scholar]
  4. HakeL.E. RichterJ.D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation.Cell199479461762710.1016/0092‑8674(94)90547‑97954828
    [Google Scholar]
  5. PascualR. MoralesS.C. OmerzuM. BelloraN. BellocE. CastellazziC.L. ReinaO. EyrasE. MauriceM.M. RomeroM.A. MéndezR. mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4.RNA202127329130210.1261/rna.077552.12033323527
    [Google Scholar]
  6. TakahashiN. FranciosiF. DaldelloE.M. LuongX.G. AlthoffP. WangX. ContiM. Author Correction: CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging.Nat. Commun.202314164610.1038/s41467‑023‑36396‑136746956
    [Google Scholar]
  7. AlexandrovI.M. IvshinaM. JungD.Y. FriedlineR. KoH.J. XuM. MurphyO.B. BortellR. HuangY.T. UranoF. KimJ.K. RichterJ.D. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance.PLoS Genet.201281e100245710.1371/journal.pgen.100245722253608
    [Google Scholar]
  8. CalderoneV. GallegoJ. MirandaF.G. PrasG.E. MailloC. BerzigottiA. MejiasM. BavaF.A. UrarteA.A. GrauperaM. NavarroP. BoschJ. FernandezM. MendezR. Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease.Gastroenterology20161504982997.e3010.1053/j.gastro.2015.11.03826627607
    [Google Scholar]
  9. DrisaldiB. ColnaghiL. LevineA. HuangY. SnyderA.M. MetzgerD.J. TheisM. KandelD.B. KandelE.R. FioritiL. Cytoplasmic polyadenylation element binding proteins CPEB1 and CPEB3 regulate the translation of FosB and are required for maintaining addiction-like behaviors induced by cocaine.Front. Cell. Neurosci.20201420710.3389/fncel.2020.0020732742260
    [Google Scholar]
  10. WeiZ. LiuJ. XieH. WangB. WuJ. ZhuZ. MiR-122-5p mitigates inflammation, reactive oxygen species and SH-SY5Y apoptosis by targeting CPEB1 after spinal cord injury via the PI3K/AKT signaling pathway.Neurochem. Res.2021464992100510.1007/s11064‑021‑03232‑133528808
    [Google Scholar]
  11. CuiH.S. LeeY.R. RoY.M. JooS.Y. ChoY.S. KimJ.B. KimD.H. SeoC.H. Knockdown of CPEB1 and CPEB4 inhibits scar formation via modulation of TAK1 and SMAD signaling.Ann. Dermatol.202335429330210.5021/ad.22.21037550230
    [Google Scholar]
  12. ZhangZ. LiuR. ZhouH. LiQ. QuR. WangW. ZhouZ. YuR. ZengY. MuJ. ChenB. GuoX. SangQ. WangL. PATL2 regulates mRNA homeostasis in oocytes by interacting with EIF4E and CPEB1.Development202315012dev20157210.1242/dev.20157237218508
    [Google Scholar]
  13. CasañasJ.J. CorralesG.M. GámezU.J.D. SampaioA.A. MarínT.J.A. MontesinosM.L. CPEB1 is overexpressed in neurons derived from Down syndrome IPSCs and in the hippocampus of the mouse model Ts1Cje.Mol. Cell. Neurosci.201995798510.1016/j.mcn.2019.02.00230763690
    [Google Scholar]
  14. XiaoG. ChenQ. ZhangX. MicroRNA-455–5p/CPEB1 pathway mediates Aβ-related learning and memory deficits in a mouse model of Alzheimer’s disease.Brain Res. Bull.202117728229410.1016/j.brainresbull.2021.10.00834678444
    [Google Scholar]
  15. OeS. HayashiS. TanakaS. KoikeT. HiraharaY. Seki-OmuraR. KakizakiR. SakamotoS. NakanoY. NodaY. YamadaH. KitadaM. Cytoplasmic polyadenylation element-binding protein 1 post-transcriptionally regulates fragile X mental retardation 1 expression through 3′ untranslated region in central nervous system neurons.Front. Cell. Neurosci.20221686939810.3389/fncel.2022.86939835496917
    [Google Scholar]
  16. RichterJ.D. CPEB: A life in translation.Trends Biochem. Sci.200732627928510.1016/j.tibs.2007.04.00417481902
    [Google Scholar]
  17. HuangY.S. MendezR. FernandezM. RichterJ.D. CPEB and translational control by cytoplasmic polyadenylation: Impact on synaptic plasticity, learning, and memory.Mol. Psychiatry20232872728273610.1038/s41380‑023‑02088‑x37131078
    [Google Scholar]
  18. MendezR. RichterJ.D. Translational control by CPEB: A means to the end.Nat. Rev. Mol. Cell Biol.20012752152910.1038/3508008111433366
    [Google Scholar]
  19. WirschingH.G. GalanisE. WellerM. Glioblastoma.Handb. Clin. Neurol.201613438139710.1016/B978‑0‑12‑802997‑8.00023‑226948367
    [Google Scholar]
  20. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  21. Le RhunE. PreusserM. RothP. ReardonD.A. van den BentM. WenP. ReifenbergerG. WellerM. Molecular targeted therapy of glioblastoma.Cancer Treat. Rev.20198010189610.1016/j.ctrv.2019.10189631541850
    [Google Scholar]
  22. BoustaniM.R. MehrabiF. YahaghiE. KhoshnoodR.J. ShahmohammadiM. DarianE.K. GoudarziP.K. Somatic CPEB4 and CPEB1 genes mutations spectrum on the prognostic predictive accuracy in patients with high-grade glioma and their clinical significance.J. Neurol. Sci.2016363808310.1016/j.jns.2016.02.03227000226
    [Google Scholar]
  23. KochanekD.M. WellsD.G. CPEB1 regulates the expression of MTDH/AEG-1 and glioblastoma cell migration.Mol. Cancer Res.201311214916010.1158/1541‑7786.MCR‑12‑049823360795
    [Google Scholar]
  24. HuiX. ZhangS. WangY. miR-454-3p suppresses cell migration and invasion by targeting CPEB1 in human glioblastoma.Mol. Med. Rep.20181843965397210.3892/mmr.2018.938630106109
    [Google Scholar]
  25. XiaopingL. ZhibinY. WenjuanL. ZeyouW. GangX. ZhaohuiL. YingZ. MinghuaW. GuiyuanL. CPEB1, a histone-modified hypomethylated gene, is regulated by miR-101 and involved in cell senescence in glioma.Cell Death Dis.201346e67510.1038/cddis.2013.19723788032
    [Google Scholar]
  26. GalardiS. PetretichM. PinnaG. D’AmicoS. LoreniF. MichienziA. GroismanI. CiafrèS.A. CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27Kip1 mRNA translation.Sci. Rep.2016612521910.1038/srep2521927142352
    [Google Scholar]
  27. KimK.C. OhW.J. KoK.H. ShinC.Y. WellsD.G. Cyclin B1 expression regulated by cytoplasmic polyadenylation element binding protein in astrocytes.J. Neurosci.20113134121181212810.1523/JNEUROSCI.1621‑11.201121865454
    [Google Scholar]
  28. TrayesK.P. CokenakesS.E.H. Breast cancer treatment.Am. Fam. Physician2021104217117834383430
    [Google Scholar]
  29. HoughtonS.C. HankinsonS.E. Cancer progress and priorities: Breast cancer.Cancer Epidemiol. Biomarkers Prev.202130582284410.1158/1055‑9965.EPI‑20‑119333947744
    [Google Scholar]
  30. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. KalbolandiM.S. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  31. NagaokaK. UdagawaT. RichterJ.D. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity.Nat. Commun.20123167510.1038/ncomms167822334078
    [Google Scholar]
  32. NagaokaK. FujiiK. ZhangH. UsudaK. WatanabeG. IvshinaM. RichterJ.D. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis.Oncogene201635222893290110.1038/onc.2015.35026411364
    [Google Scholar]
  33. SovijitW. SovijitW. IshiiY. KambeJ. FujitaT. WatanabeG. YamaguchiH. NagaokaK. Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression.Biochem. Biophys. Res. Commun.202153487187610.1016/j.bbrc.2020.10.08533162033
    [Google Scholar]
  34. NairismägiM-L. VislovukhA. MengQ. KratassioukG. BeldimanC. PetretichM. GroismanR. FüchtbauerE-M. Harel-BellanA. GroismanI. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression.Oncogene201231474960496610.1038/onc.2011.65022266852
    [Google Scholar]
  35. NogalskaG.E. ReedB.C. RhoadsR.E. CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells.J. Cell Sci.2014127Pt 10jcs.14495610.1242/jcs.14495624634508
    [Google Scholar]
  36. JiaY. ZhaoJ. YangJ. ShaoJ. CaiZ. miR-301 regulates the SIRT1/SOX2 pathway via CPEB1 in the breast cancer progression.Mol. Ther. Oncoly.202122132610.1016/j.omto.2021.03.00734377766
    [Google Scholar]
  37. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.10775333259885
    [Google Scholar]
  38. LiY. MaoA.S. SeoB.R. ZhaoX. GuptaS.K. ChenM. HanY.L. ShihT.Y. MooneyD.J. GuoM. Compression-induced dedifferentiation of adipocytes promotes tumor progression.Sci. Adv.202064eaax561110.1126/sciadv.aax561132010780
    [Google Scholar]
  39. PapakonstantinouE. PiperigkouZ. KaramanosN.K. ZolotaV. Altered adipokine expression in tumor microenvironment promotes development of triple negative breast cancer.Cancers20221417413910.3390/cancers1417413936077676
    [Google Scholar]
  40. LeeJ. HongB.S. RyuH.S. LeeH.B. LeeM. ParkI.A. KimJ. HanW. NohD.Y. MoonH.G. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism.PLoS One2017123e017412610.1371/journal.pone.017412628333977
    [Google Scholar]
  41. UrbanoO.M.A. LisónG.C. ZuritaM. del MoralR. ArrabalR.S. CordónA.F. ArrebolaJ.P. GonzálezA.R. LeónJ. MarchalA.J. NúñezM.I. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: A pilot study.J. Cell. Mol. Med.202024113914810.1111/jcmm.1467131568637
    [Google Scholar]
  42. RadiskyE.S. SarmazdehR.M. RadiskyD.C. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer.J. Cell. Biochem.2017118113531354810.1002/jcb.2618528585723
    [Google Scholar]
  43. ReghupatyC.S. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.00133579421
    [Google Scholar]
  44. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.18831431682895
    [Google Scholar]
  45. GanesanP. KulikL.M. Hepatocellular carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.00436400469
    [Google Scholar]
  46. NevolaR. RuoccoR. CriscuoloL. VillaniA. AlfanoM. BecciaD. ImbrianiS. ClaarE. CozzolinoD. SassoF.C. MarroneA. AdinolfiL.E. RinaldiL. Predictors of early and late hepatocellular carcinoma recurrence.World J. Gastroenterol.20232981243126010.3748/wjg.v29.i8.124336925456
    [Google Scholar]
  47. XuM. FangS. SongJ. ChenM. ZhangQ. WengQ. FanX. ChenW. WuX. WuF. TuJ. ZhaoZ. JiJ. CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance.Cell Death Dis.201891095710.1038/s41419‑018‑0974‑230237545
    [Google Scholar]
  48. XiongH. NiZ. HeJ. JiangS. LiX. HeJ. GongW. ZhengL. ChenS. LiB. ZhangN. LyuX. HuangG. ChenB. ZhangY. HeF. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells.Oncogene201736253528354010.1038/onc.2016.52128166203
    [Google Scholar]
  49. LiuH. ZhengJ. YangS. ZongQ. WangZ. LiaoX. Mir-454-3p induced WTX deficiency promotes hepatocellular carcinoma progressions through regulating TGF-β signaling pathway.J. Cancer20221361820182910.7150/jca.6747835399726
    [Google Scholar]
  50. LiY. JiaoY. FuZ. LuoZ. SuJ. LiY. High miR-454-3p expression predicts poor prognosis in hepatocellular carcinoma.Cancer Manag. Res.2019112795280210.2147/CMAR.S19665531114333
    [Google Scholar]
  51. ZhongF. WangY. YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.Biochem. Biophys. Res. Commun.20236799810910.1016/j.bbrc.2023.08.05637677983
    [Google Scholar]
  52. AnsteeQ.M. ReevesH.L. KotsilitiE. GovaereO. HeikenwalderM. From NASH to HCC: Current concepts and future challenges.Nat. Rev. Gastroenterol. Hepatol.201916741142810.1038/s41575‑019‑0145‑731028350
    [Google Scholar]
  53. JinX. GaoJ. ZhengR. YuM. RenY. YanT. HuangY. LiY. Antagonizing circRNA_002581–miR-122–CPEB1 axis alleviates NASH through restoring PTEN–AMPK–mTOR pathway regulated autophagy.Cell Death Dis.202011212310.1038/s41419‑020‑2293‑732054840
    [Google Scholar]
  54. LiD. ChenJ. YunC. LiX. HuangZ. MiR-122–5p regulates the pathogenesis of childhood obesity by targeting CPEB1.Obes. Res. Clin. Pract.202216320621310.1016/j.orcp.2022.05.00635680520
    [Google Scholar]
  55. RöckenC. Predictive biomarkers in gastric cancer.J. Cancer Res. Clin. Oncol.2023149146748110.1007/s00432‑022‑04408‑036260159
    [Google Scholar]
  56. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  57. MalyshevB.S. NetesovaN.A. SmetannikovaN.A. AbdurashitovM.A. AkishevA.G. DubininE.V. AzanovA.Z. VihlyanovI.V. NikitinM.K. KarpovA.B. DegtyarevS.K. GLAD-PCR assay of R(5mC)GY sites in the regulatory region of tumor-suppressor genes associated with gastric cancer.Acta Nat.202012312413310.32607/actanaturae.1107033173602
    [Google Scholar]
  58. CaldeiraJ. CorreiaS.J. ParedesJ. PintoM.T. SousaS. CorsoG. MarrelliD. RovielloF. PereiraP.S. WeilD. OliveiraC. CasaresF. SerucaR. CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach.Gut20126181115112310.1136/gutjnl‑2011‑30042722052064
    [Google Scholar]
  59. CaoJ.Z. NiuD.D. HuangZ.P. HongY.G. WangZ.G. YangL. ZhaoB.L. QiaoG.L. OuyangL. Low CPEB1 levels may predict the benefit of 5-fluorouracil treatment in patients with colon or stomach adenocarcinoma.J. Gastrointest. Oncol.20221341761177110.21037/jgo‑22‑56136092352
    [Google Scholar]
  60. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  61. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  62. RochetteL. DogonG. RigalE. ZellerM. CottinY. VergelyC. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis.Int. J. Mol. Sci.202224144910.3390/ijms2401044936613888
    [Google Scholar]
  63. WangJ. WangT. ZhangY. LiuJ. SongJ. HanY. WangL. YangS. ZhuL. GengR. LiW. YuX. CPEB1 enhances erastin‐induced ferroptosis in gastric cancer cells by suppressing twist1 expression.IUBMB Life20217391180119010.1002/iub.252534184391
    [Google Scholar]
  64. WangN. ZengG.Z. YinJ.L. BianZ.X. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma.Biochem. Biophys. Res. Commun.2019519353353910.1016/j.bbrc.2019.09.02331537387
    [Google Scholar]
  65. KumarR. HarilalS. CarradoriS. MathewB. A comprehensive overview of colon cancer- a grim reaper of the 21st century.Curr. Med. Chem.202128142657269610.2174/092986732766620102614375733106132
    [Google Scholar]
  66. BrennerH. KloorM. PoxC.P. Colorectal cancer.Lancet201438399271490150210.1016/S0140‑6736(13)61649‑924225001
    [Google Scholar]
  67. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑031631858
    [Google Scholar]
  68. CiardielloF. CiardielloD. MartiniG. NapolitanoS. TaberneroJ. CervantesA. Clinical management of metastatic colorectal cancer in the era of precision medicine.CA Cancer J. Clin.202272437240110.3322/caac.2172835472088
    [Google Scholar]
  69. ShaoK. PuW. ZhangJ. GuoS. QianF. GlurichI. JinQ. MaY. JuS. ZhangZ. DingW. DNA hypermethylation contributes to colorectal cancer metastasis by regulating the binding of CEBPB and TFCP2 to the CPEB1 promoter.Clin. Epigenet.20211318910.1186/s13148‑021‑01071‑z33892791
    [Google Scholar]
  70. ShehataS.A. ToraihE.A. IsmailE.A. HagrasA.M. ElmorsyE. FawzyM.S. Vaping, environmental toxicants exposure, and lung cancer risk.Cancers20231518452510.3390/cancers1518452537760496
    [Google Scholar]
  71. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  72. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  73. WangG. JiX. LiP. WangW. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1.Regen. Ther.20222010711610.1016/j.reth.2022.03.00735582707
    [Google Scholar]
  74. ZhouJ. YangZ. ChengS. YuJ. HuangC.J. FengQ. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis.BMC Pulm. Med.202020122310.1186/s12890‑020‑01261‑032838785
    [Google Scholar]
  75. JiangL. GeW. GengJ. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer.Pathol. Res. Pract.20192151215270510.1016/j.prp.2019.15270531685299
    [Google Scholar]
  76. GandagliaG. LeniR. BrayF. FleshnerN. FreedlandS.J. KibelA. StattinP. Van PoppelH. La VecchiaC. Epidemiology and prevention of prostate cancer.Eur. Urol. Oncol.20214687789210.1016/j.euo.2021.09.00634716119
    [Google Scholar]
  77. WangG. ZhaoD. SpringD.J. DePinhoR.A. Genetics and biology of prostate cancer.Genes Dev.20183217-181105114010.1101/gad.315739.11830181359
    [Google Scholar]
  78. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  79. AchardV. PutoraP.M. OmlinA. ZilliT. FischerS. Metastatic prostate cancer: Treatment options.Oncology20221001485910.1159/00051986134781285
    [Google Scholar]
  80. TeoM.Y. RathkopfD.E. KantoffP. Treatment of advanced prostate cancer.Annu. Rev. Med.201970147949910.1146/annurev‑med‑051517‑01194730691365
    [Google Scholar]
  81. RajabiF. Liu-BordesW.Y. PinskayaM. DominikaF. KratassioukG. PinnaG. NanniS. FarsettiA. GespachC. VallejoL.A. GroismanI. CPEB1 orchestrates a fine-tuning of miR-145-5p tumor-suppressive activity on TWIST1 translation in prostate cancer cells.Oncotarget202011454155416810.18632/oncotarget.2780633227047
    [Google Scholar]
  82. ChengG.Z. ZhangW. WangL.H. Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay.Cancer Res.200868495796010.1158/0008‑5472.CAN‑07‑506718281467
    [Google Scholar]
  83. LuoB. YuanY. ZhuY. LiangS. DongR. HouJ. LiP. XingY. LuZ. LoR. KuangG.M. microRNA-145-5p inhibits prostate cancer bone metastatic by modulating the epithelial-mesenchymal transition.Front. Oncol.20221298879410.3389/fonc.2022.98879436147907
    [Google Scholar]
  84. SunJ. DengL. GongY. MiR-145-5p inhibits the invasion of prostate cancer and induces apoptosis by inhibiting WIP1.J. Oncol.2021202111210.1155/2021/441270534899906
    [Google Scholar]
  85. ArnoldM. SinghD. LaversanneM. VignatJ. VaccarellaS. MeheusF. CustA.E. de VriesE. WhitemanD.C. BrayF. Global burden of cutaneous melanoma in 2020 and projections to 2040.JAMA Dermatol.2022158549550310.1001/jamadermatol.2022.016035353115
    [Google Scholar]
  86. PavriS.N. CluneJ. AriyanS. NarayanD. Malignant melanoma: Beyond the basics.Plast. Reconstr. Surg.20161382330e340e10.1097/PRS.000000000000236727465194
    [Google Scholar]
  87. NamikawaK. YamazakiN. Targeted therapy and immunotherapy for melanoma in Japan.Curr. Treat. Options Oncol.2019201710.1007/s11864‑019‑0607‑830675668
    [Google Scholar]
  88. SeedorR.S. OrloffM. Treatment of metastatic melanoma in the elderly.Curr. Oncol. Rep.202224782583310.1007/s11912‑022‑01257‑535316844
    [Google Scholar]
  89. LimY. LeeD.Y. Identification of genetic mutations related to invasion and metastasis of acral melanoma via whole‐exome sequencing.J. Dermatol.2021487999100610.1111/1346‑8138.1584133890690
    [Google Scholar]
  90. ShoshanE. MobleyA.K. BraeuerR.R. KamiyaT. HuangL. VasquezM.E. SalamehA. LeeH.J. KimS.J. IvanC. Velazquez-TorresG. NipK.M. ZhuK. BrooksD. JonesS.J.M. BirolI. MosquedaM. WenY. EterovicA.K. SoodA.K. HwuP. GershenwaldJ.E. Gordon RobertsonA. CalinG.A. MarkelG. FidlerI.J. Bar-EliM. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis.Nat. Cell Biol.201517331132110.1038/ncb311025686251
    [Google Scholar]
  91. YuM. ZhangS. MaZ. QiangJ. WeiJ. SunL. KocherT.D. WangD. TaoW. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus).Int. J. Biol. Macromol.2024260Pt 212963210.1016/j.ijbiomac.2024.12963238253139
    [Google Scholar]
  92. ChenR. YeB. XieH. HuangY. WuZ. WuH. WangX. MiaoH. LiangW. miR-129-3p alleviates chondrocyte apoptosis in knee joint fracture-induced osteoarthritis through CPEB1.J. Orthop. Surg. Res.202015155210.1186/s13018‑020‑02070‑133228708
    [Google Scholar]
  93. IvshinaM.P. van ’t SpijkerH.M. JungS. PonnyS.R. SchaferD.P. RichterJ.D. CPEB1 regulates the inflammatory immune response, phagocytosis, and alternative polyadenylation in microglia.Glia202270101850186310.1002/glia.2422235635122
    [Google Scholar]
  94. CuiH.S. JooS.Y. ChoY.S. KimJ.B. SeoC.H. CPEB1 or CPEB4 knockdown suppresses the TAK1 and Smad signalings in THP-1 macrophage-like cells and dermal fibroblasts.Arch. Biochem. Biophys.202068310832210.1016/j.abb.2020.10832232113875
    [Google Scholar]
  95. HuQ. MuJ. LiuY. YangY. LiuY. PanY. ZhangY. LiL. LiuD. ChenJ. ZhangF. JinL. Obesity-induced miR-455 upregulation promotes adaptive pancreatic β-cell proliferation through the CPEB1/CDKN1B pathway.Diabetes202271339441110.2337/db21‑013435029277
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575293544240605112838
Loading
/content/journals/mrmc/10.2174/0113895575293544240605112838
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 3’UTR; cancers; CPEB1; mechanism; mRNAs; RNA-binding domain; signaling; tumorigenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test