Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Chikungunya is a re-emerging viral infection of worldwide concern, and new antiviral therapeutics are necessary to combat this disease. Inhibitors of the non-structural protein 1 (NsP1), which shows Methyltransferase (MTase) activity and plays a crucial in the Chikungunya virus (ChikV) replication, are exhibiting promising results. This review aimed to describe recent advances in the development of NsP1 inhibitors for the treatment of Chikungunya disease. High-throughput screening of novel ChikV NsP1 inhibitors has been widely performed for the identification of new molecule hits through fluorescence polarization, Western blotting, ELISA-based assay, and capillary electrophoresis assays. Additionally, cell-based assays confirmed that the inhibition of ChikV NsP1 abolishes viral replication. In summary, pyrimidine and pyrimidin-7(6)-one derivatives, GTP and nucleoside analogs have been demonstrated to show inhibitory activity and are considered promising scaffolds that provide useful knowledge for the research and development of new NsP1 inhibitors as potential treatment of Chikungunya re-emerging disease.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575301735240607055839
2024-06-15
2024-11-22
Loading full text...

Full text loading...

References

  1. ChenR. PuriV. FedorovaN. LinD. HariK.L. JainR. RodasJ.D. DasS.R. ShabmanR.S. WeaverS.C. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus.J. Virol.20169023106001061110.1128/JVI.01166‑1627654297
    [Google Scholar]
  2. De Lima CavalcantiT.Y.V. PereiraM.R. de PaulaS.O. FrancaR.F.O. A review on chikungunya virus epidemiology, pathogenesis and current vaccine development.Viruses202214596910.3390/v1405096935632709
    [Google Scholar]
  3. TanakaA. SuzukiY. Genome-wide approaches to unravel the host factors involved in chikungunya virus replication.Front. Microbiol.20221386627110.3389/fmicb.2022.86627135401487
    [Google Scholar]
  4. BartholomeeusenK. DanielM. LaBeaudD.A. GasqueP. PeelingR.W. StephensonK.E. NgL.F.P. AriënK.K. Chikungunya fever.Nat. Rev. Dis. Primers2023911710.1038/s41572‑023‑00429‑237024497
    [Google Scholar]
  5. Vega-RúaA. Lourenço-de-OliveiraR. MoussonL. VazeilleM. FuchsS. YébakimaA. GustaveJ. GirodR. DusfourI. Leparc-GoffartI. VanlandinghamD.L. HuangY.J.S. LounibosL.P. Mohamed AliS. NougairedeA. De LamballerieX. FaillouxA.B. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe.PLoS Negl. Trop. Dis.201595e000378010.1371/journal.pntd.000378025993633
    [Google Scholar]
  6. BurtF.J. ChenW. MinerJ.J. LenschowD.J. MeritsA. SchnettlerE. KohlA. RuddP.A. TaylorA. HerreroL.J. ZaidA. NgL.F.P. MahalingamS. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen.Lancet Infect. Dis.2017174e107e11710.1016/S1473‑3099(16)30385‑128159534
    [Google Scholar]
  7. RussoG. SubissiL. RezzaG. Chikungunya fever in Africa: A systematic review.Pathog. Glob. Health2020114311111910.1080/20477724.2020.174896532308158
    [Google Scholar]
  8. NatrajanM.S. RojasA. WaggonerJ.J. Beyond fever and pain: Diagnostic methods for chikungunya virus.J. Clin. Microbiol.2019576e00350-1910.1128/JCM.00350‑1930995993
    [Google Scholar]
  9. LiuX. WangY. ZhaoX.Q. Dynamics of a climate-based periodic Chikungunya model with incubation period.Appl. Math. Model.20208015116810.1016/j.apm.2019.11.038
    [Google Scholar]
  10. Montalvo Zurbia-FloresG. Reyes-SandovalA. KimY.C. Chikungunya virus: Priority pathogen or passing trend?Vaccines202311356810.3390/vaccines1103056836992153
    [Google Scholar]
  11. GanesanV. DuanB. ReidS. Chikungunya virus: Pathophysiology, mechanism, and modeling.Viruses201791236810.3390/v912036829194359
    [Google Scholar]
  12. MehtaR. GerardinP. de BritoC.A.A. SoaresC.N. FerreiraM.L.B. SolomonT. The neurological complications of chikungunya virus: A systematic review.Rev. Med. Virol.2018283e197810.1002/rmv.197829671914
    [Google Scholar]
  13. World Health Organization (WHO)Chikungunya.2023Available from: https://www.who.int/health-topics/chikungunya#tab=tab_1 (accessed 19 October 2023).
  14. MorrisonT.E. Reemergence of chikungunya virus.J. Virol.20148820116441164710.1128/JVI.01432‑1425078691
    [Google Scholar]
  15. SchraufS. TschismarovR. TauberE. RamsauerK. Current efforts in the development of vaccines for the prevention of Zika and Chikungunya virus infections.Front. Immunol.20201159210.3389/fimmu.2020.0059232373111
    [Google Scholar]
  16. NyamwayaD.K. ThumbiS.M. BejonP. WarimweG.M. MokayaJ. The global burden of Chikungunya fever among children: A systematic literature review and meta-analysis.PLOS glob. Pub. health2022212e0000914
    [Google Scholar]
  17. MohanA. KiranD.N. ManoharC. KumarP. Epidemiology, clinical manifestations, and diagnosis of chikungunya fever: Lessons learned from the re-emerging epidemic.Indian J. Dermatol.2010551546310.4103/0019‑5154.6035520418981
    [Google Scholar]
  18. NyamwayaD.K. OtiendeM. OmuoyoD.O. GithinjiG. KaranjaH.K. GitongaJ.N.R. R de LaurentZ. OtienoJ.R. SangR. KamauE. CheruiyotS. OtienoE. AgotiC.N. BejonP. ThumbiS.M. WarimweG.M. Endemic chikungunya fever in Kenyan children: A prospective cohort study.BMC Infect. Dis.202121118610.1186/s12879‑021‑05875‑533602147
    [Google Scholar]
  19. ChansaenrojJ. WanlapakornN. NgamsaithongC. ThongmeeT. Na nakornN. SiriyasatienP. VongpunsawadS. PoovorawanY. Genome sequences of chikungunya virus isolates from an outbreak in southwest Bangkok in 2018.Arch. Virol.2020165244545010.1007/s00705‑019‑04509‑131834526
    [Google Scholar]
  20. PongsiriP. AuksornkittiV. TheamboonlersA. LuplertlopN. RianthavornP. PoovorawanY. Entire genome characterization of Chikungunya virus from the 2008-2009 outbreaks in Thailand.Trop. Biomed.201027216717620962712
    [Google Scholar]
  21. NarulaA. PandeyR.K. KhatoonN. MishraA. PrajapatiV.K. Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection.Infect. Genet. Evol.20186141510.1016/j.meegid.2018.03.00729535024
    [Google Scholar]
  22. BassettoM. De BurghgraeveT. DelangL. MassarottiA. ColucciaA. ZontaN. GattiV. ColombanoG. SorbaG. SilvestriR. TronG.C. NeytsJ. LeyssenP. BrancaleA. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus.Antiviral Res.2013981121810.1016/j.antiviral.2013.01.00223380636
    [Google Scholar]
  23. AholaT. Merits Okeoma, C.M., Ed.; A. Functions of Chikungunya virus nonstructural proteins Chikungunya VirusSpringer20167598
    [Google Scholar]
  24. da Silva-JúniorE.F. LeonciniG.O. RodriguesÉ.E.S. AquinoT.M. Araújo-JúniorJ.X. The medicinal chemistry of Chikungunya virus.Bioorg. Med. Chem.201725164219424410.1016/j.bmc.2017.06.04928689975
    [Google Scholar]
  25. FrolovI. FrolovaE.I. Molecular virology of chikungunya virus.Curr. Top. Microbiol. Immunol.202243513130599050
    [Google Scholar]
  26. MüllerM. SlivinskiN. ToddE.J.A.A. KhalidH. LiR. KarwatkaM. MeritsA. MankouriJ. TuplinA. Chikungunya virus requires cellular chloride channels for efficient genome replication.PLoS Negl. Trop. Dis.2019139e000770310.1371/journal.pntd.000770331483794
    [Google Scholar]
  27. AsnerS.A. ScienceM.E. TranD. SmiejaM. MerglenA. MertzD. Clinical disease severity of respiratory viral co-infection versus single viral infection: A systematic review and meta-analysis.PLoS One201496e9939210.1371/journal.pone.009939224932493
    [Google Scholar]
  28. ZhuX. GeY. WuT. ZhaoK. ChenY. WuB. ZhuF. ZhuB. CuiL. Co-infection with respiratory pathogens among COVID-2019 cases.Virus Res.202028519800510.1016/j.virusres.2020.19800532408156
    [Google Scholar]
  29. AlterM.J. Epidemiology of viral hepatitis and HIV co-infection.J. Hepatol.2006441Suppl.S6S910.1016/j.jhep.2005.11.00416352363
    [Google Scholar]
  30. SorianoV. VispoE. LabargaP. MedranoJ. BarreiroP. Viral hepatitis and HIV co-infection.Antiviral Res.201085130331510.1016/j.antiviral.2009.10.02119887087
    [Google Scholar]
  31. MandeliaY. ProcopG.W. RichterS.S. WorleyS. LiuW. EsperF. Dynamics and predisposition of respiratory viral co-infections in children and adults.Clin. Microbiol. Infect.2021274631.e1631.e610.1016/j.cmi.2020.05.04232540470
    [Google Scholar]
  32. MachadoL.C. de Morais-SobralM.C. CamposT.L. PereiraM.R. De AlbuquerqueM.F.P.M. GilbertC. FrancaR.F.O. WallauG.L. Genome sequencing reveals coinfection by multiple chikungunya virus genotypes in a recent outbreak in Brazil.PLoS Negl. Trop. Dis.2019135e000733210.1371/journal.pntd.000733231095561
    [Google Scholar]
  33. Rodríguez-MoralesA.J. Paniz-MondolfiA.E. Venezuela: Far from the path to dengue and chikungunya control.J. Clin. Virol.201566606110.1016/j.jcv.2015.02.02025866339
    [Google Scholar]
  34. Prata-BarbosaA. Cleto-YamaneT.L. RobainaJ.R. GuastavinoA.B. De Magalhães-BarbosaM.C. BrindeiroR.M. MedronhoR.A. Da CunhaA.J.L.A. Co-infection with Zika and Chikungunya viruses associated with fetal death-A case report.Int. J. Infect. Dis.201872252710.1016/j.ijid.2018.04.432029738826
    [Google Scholar]
  35. SubudhiB. ChattopadhyayS. MishraP. KumarA. Current strategies for inhibition of Chikungunya infection.Viruses201810523510.3390/v1005023529751486
    [Google Scholar]
  36. Delgado-MaldonadoT. Moreno-HerreraA. PujadasG. Vázquez-JiménezL.K. González-GonzálezA. RiveraG. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika.Eur. J. Med. Chem.202325211529010.1016/j.ejmech.2023.11529036958266
    [Google Scholar]
  37. Centers for Disease Control and Prevention (CDC)Chikungunya Virus.2024Available from: https://www.cdc.gov/chikungunya/index.html (accessed 04 April 2024).
  38. BattistiV. UrbanE. LangerT. Antivirals against the Chikungunya virus.Viruses2021137130710.3390/v1307130734372513
    [Google Scholar]
  39. DeloguI. De LamballerieX. Chikungunya disease and chloroquine treatment.J. Med. Virol.20118361058105910.1002/jmv.2201921503920
    [Google Scholar]
  40. AdarshM.B. SharmaS.K. DwivediP. SinghM.P. DhirV. JainS. Methotrexate in early chikungunya arthritis: A 6 month randomized controlled open-label trial.Curr. Rheumatol. Rev.202016431932310.2174/157339711566619092515414031858912
    [Google Scholar]
  41. RothanH.A. BahraniH. MohamedZ. TeohT.C. ShankarE.M. RahmanN.A. YusofR. A combination of doxycycline and ribavirin alleviated chikungunya infection.PLoS One2015105e012636010.1371/journal.pone.012636025970853
    [Google Scholar]
  42. VuD.M. JungkindD. LaBeaudA.D. Chikungunya virus.Clin. Lab. Med.201737237138210.1016/j.cll.2017.01.00828457355
    [Google Scholar]
  43. DelangL. Segura GuerreroN. TasA. QuératG. PastorinoB. FroeyenM. DallmeierK. JochmansD. HerdewijnP. BelloF. SnijderE.J. De LamballerieX. MartinaB. NeytsJ. van HemertM.J. LeyssenP. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral.J. Antimicrob. Chemother.201469102770278410.1093/jac/dku20924951535
    [Google Scholar]
  44. FrancoE.J. RodriquezJ.L. PomeroyJ.J. HanrahanK.C. BrownA.N. The effectiveness of antiviral agents with broad-spectrum activity against Chikungunya virus varies between host cell lines.Antivir. Chem. Chemother.20182610.1177/204020661880758030354193
    [Google Scholar]
  45. FerreiraA.C. ReisP.A. de FreitasC.S. SacramentoC.Q. Villas Bôas HoelzL. BastosM.M. MattosM. RochaN. Gomes de Azevedo QuintanilhaI. Da Silva Gouveia PedrosaC. Rocha Quintino SouzaL. Correia LoiolaE. TrindadeP. Rangel VieiraY. Barbosa-LimaG. de Castro Faria NetoH.C. BoechatN. RehenS.K. BrüningK. BozzaF.A. BozzaP.T. SouzaT.M.L. Beyond members of the Flaviviridae family, sofosbuvir also inhibits chikungunya virus replication.Antimicrob. Agents Chemother.2019632e01389-1810.1128/AAC.01389‑1830455237
    [Google Scholar]
  46. MarraR.K.F. KümmerleA.E. GuedesG.P. BarrosC.S. GomesR.S.P. Cirne-SantosC.C. PaixãoI.C.N.P. NevesA.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors.Bioorg. Med. Chem. Lett.202030212688110.1016/j.bmcl.2019.12688131843348
    [Google Scholar]
  47. BattiniL. FidalgoD.M. ÁlvarezD.E. BolliniM. Discovery of a potent and selective chikungunya virus envelope protein inhibitor through computer-aided drug design.ACS Infect. Dis.2021761503151810.1021/acsinfecdis.0c0091534048233
    [Google Scholar]
  48. IvanovaL. RausaluK. OšekaM. KananovichD.G. ŽusinaiteE. Tammiku-TaulJ. LoppM. MeritsA. KarelsonM. Novel analogues of the chikungunya virus protease inhibitor: molecular design, synthesis, and biological evaluation.ACS Omega2021616108841089610.1021/acsomega.1c0062534056242
    [Google Scholar]
  49. ZhangS. GarzanA. HaeseN. BostwickR. Martinez-GzegozewskaY. RasmussenL. StreblowD.N. HaiseM.T. PathakA.K. Augelli-SzafranC.E. WuM. Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design.PLoS One2021161e024501310.1371/journal.pone.024501333482665
    [Google Scholar]
  50. PolicastroL. DolciI. GodoyA. Silva JúniorJ. RuizU. SantosI. JardimA. SambyK. BurrowsJ. WellsT. GilL. OlivaG. FernandesR. The antifungal itraconazole is a potent inhibitor of chikungunya virus replication.Viruses2022147135110.3390/v1407135135891332
    [Google Scholar]
  51. PuhlA.C. FernandesR.S. GodoyA.S. GilL.H.V.G. OlivaG. EkinsS. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus.Bioorg. Med. Chem.20238311723910.1016/j.bmc.2023.11723936940609
    [Google Scholar]
  52. SharmaR. FatmaB. SahaA. BajpaiS. SistlaS. DashP.K. ParidaM. KumarP. TomarS. Inhibition of chikungunya virus by picolinate that targets viral capsid protein.Virology201649826527610.1016/j.virol.2016.08.02927614702
    [Google Scholar]
  53. GauravN. TripathiP.K. KumarV. ChughA. SunddM. PatelA.K. Role of nuclear localization signals in the DNA delivery function of Chikungunya virus capsid protein.Arch. Biochem. Biophys.202170210882210.1016/j.abb.2021.10882233722536
    [Google Scholar]
  54. GiganteA. CanelaM.D. DelangL. PriegoE.M. CamarasaM.J. QueratG. NeytsJ. LeyssenP. Pérez-PérezM.J. Identification of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication.J. Med. Chem.201457104000400810.1021/jm401844c24800626
    [Google Scholar]
  55. ZhangN. ZhaoH. ZhangL. Fatty acid synthase promotes the palmitoylation of Chikungunya virus nsP1.J. Virol.2019933e01747-1810.1128/JVI.01747‑1830404808
    [Google Scholar]
  56. LawY.S. UttA. TanY.B. ZhengJ. WangS. ChenM.W. GriffinP.R. MeritsA. LuoD. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase.Proc. Natl. Acad. Sci.2019116199558956710.1073/pnas.190065611631000599
    [Google Scholar]
  57. KumarP. KumarD. GiriR. Targeting the nsp2 cysteine protease of chikungunya virus using FDA approved library and selected cysteine protease inhibitors.Pathogens20198312810.3390/pathogens803012831443266
    [Google Scholar]
  58. LawY.S. WangS. TanY.B. ShihO. UttA. GohW.Y. LianB.J. ChenM.W. JengU.S. MeritsA. LuoD. Inter-domain flexibility of Chikungunya virus nsP2 helicase-protease differentially influences viral RNA replication and infectivity.J. Virol.2021956e01470-2010.1128/JVI.01470‑2033328310
    [Google Scholar]
  59. PuranikN.V. RaniR. SinghV.A. TomarS. PuntambekarH.M. SrivastavaP. Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsp3 protein of Chikungunya virus (CHIKV).ACS Omega2019423203352034510.1021/acsomega.9b0290031815237
    [Google Scholar]
  60. WadaY. OrbaY. SasakiM. KobayashiS. CarrM.J. NoboriH. SatoA. HallW.W. SawaH. Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus.Virology201750510211210.1016/j.virol.2017.02.01428236746
    [Google Scholar]
  61. AlguridiH.I. AlzahraniF. AlmalkiS. ZamzamiM.A. AltaybH.N. Identification and molecular docking of novel chikungunya virus NSP4 inhibitory peptides from camel milk proteins.J. Biomol. Struct. Dyn.2023511610.1080/07391102.2023.225439837668009
    [Google Scholar]
  62. FerronF. DecrolyE. SeliskoB. CanardB. The viral RNA capping machinery as a target for antiviral drugs.Antiviral Res.2012961213110.1016/j.antiviral.2012.07.00722841701
    [Google Scholar]
  63. KovacikovaK. Gorostiola GonzálezM. JonesR. RegueraJ. GiganteA. Pérez-PérezM.J. PürstingerG. MoesslacherJ. LangerT. JeongL.S. DelangL. NeytsJ. SnijderE.J. van WestenG.J.P. Van HemertM.J. Structural insights into the mechanisms of action of functionally distinct classes of chikungunya virus nonstructural protein 1 inhibitors.Antimicrob. Agents Chemother.2021657e02566-2010.1128/AAC.02566‑2033875421
    [Google Scholar]
  64. ZhangK. LawY.S. LawM.C.Y. TanY.B. WirawanM. LuoD. Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1.Cell Host Microbe2021295757764.e310.1016/j.chom.2021.02.01833730549
    [Google Scholar]
  65. ZhangK. LawM.C.Y. NguyenT.M. TanY.B. WirawanM. LawY.S. JeongL.S. LuoD. Molecular basis of specific viral RNA recognition and 5′-end capping by the Chikungunya virus nsP1.Cell Rep.202240411113310.1016/j.celrep.2022.11113335905713
    [Google Scholar]
  66. Bullard-FeibelmanK.M. FullerB.P. GeissB.J. A sensitive and robust high-throughput screening assay for inhibitors of the chikungunya virus nsP1 capping enzyme.PLoS One2016117e015892310.1371/journal.pone.015892327427769
    [Google Scholar]
  67. Pérez-PérezM.J. DelangL. NgL.F.P. PriegoE.M. Chikungunya virus drug discovery: Still a long way to go?Expert Opin. Drug Discov.201914985586610.1080/17460441.2019.162941331177861
    [Google Scholar]
  68. JonesR. HonsM. RabahN. ZamarreñoN. ArranzR. RegueraJ. Structural basis and dynamics of Chikungunya alphavirus RNA capping by nsP1 capping pores.Proc. Natl. Acad. Sci.202312012e221393412010.1073/pnas.221393412036913573
    [Google Scholar]
  69. JonesR. BragagnoloG. ArranzR. RegueraJ. Capping pores of alphavirus nsP1 gate membranous viral replication factories.Nature2021589784361561910.1038/s41586‑020‑3036‑833328629
    [Google Scholar]
  70. DelangL. LiC. TasA. QuératG. AlbulescuI.C. De BurghgraeveT. GuerreroN.A.S. GiganteA. PiorkowskiG. DecrolyE. JochmansD. CanardB. SnijderE.J. Pérez-PérezM.J. van HemertM.J. CoutardB. LeyssenP. NeytsJ. The viral capping enzyme nsP1: A novel target for the inhibition of chikungunya virus infection.Sci. Rep.2016613181910.1038/srep3181927545976
    [Google Scholar]
  71. GiganteA. Gómez-SanJuanA. DelangL. LiC. BuenoO. GamoA.M. PriegoE.M. CamarasaM.J. JochmansD. LeyssenP. DecrolyE. CoutardB. QueratG. NeytsJ. Pérez-PérezM.J. Antiviral activity of [1,2,3]triazolo[4,5- d ]pyrimidin-7(6 H )-ones against Chikungunya virus targeting the viral capping nsP1.Antiviral Res.201714421622210.1016/j.antiviral.2017.06.00328619679
    [Google Scholar]
  72. FeibelmanK.M. FullerB.P. LiL. LaBarberaD.V. GeissB.J. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.Antiviral Res.201815412413110.1016/j.antiviral.2018.03.01329680670
    [Google Scholar]
  73. KaurR. MudgalR. NarwalM. TomarS. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme.Virus Res.201825620921810.1016/j.virusres.2018.06.01329958924
    [Google Scholar]
  74. MudgalR. MahajanS. TomarS. Inhibition of Chikungunya virus by an adenosine analog targeting the SAM‐dependent nsP1 methyltransferase.FEBS Lett.2020594467869410.1002/1873‑3468.1364231623018
    [Google Scholar]
  75. KovacikovaK. MorrenB.M. TasA. AlbulescuI.C. van RijswijkR. JarhadD.B. ShinY.S. JangM.H. KimG. LeeH.W. JeongL.S. SnijderE.J. van HemertM.J. 6′-β-fluoro-homoaristeromycin and 6′-fluoro-homoneplanocin a are potent inhibitors of Chikungunya virus replication through their direct effect on viral nonstructural protein 1.Antimicrob. Agents Chemother.2020644e02532-1910.1128/AAC.02532‑1931964798
    [Google Scholar]
  76. AbdelnabiR. KovacikovaK. MoesslacherJ. DonckersK. BattistiV. LeyssenP. LangerT. PuerstingerG. QuératG. LiC. DecrolyE. TasA. MarchandA. ChaltinP. CoutardB. van HemertM. NeytsJ. DelangL. Novel class of Chikungunya virus small molecule inhibitors that targets the viral capping machinery.Antimicrob. Agents Chemother.2020647e00649-2010.1128/AAC.00649‑2032340991
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575301735240607055839
Loading
/content/journals/mrmc/10.2174/0113895575301735240607055839
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): aedes egypti; antiviral; Chikungunya; guanylyltransferase; inhibitors; methyltransferase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test