Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti-HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575309800240526180356
2024-06-06
2024-11-22
Loading full text...

Full text loading...

References

  1. SharmaA. SheyiR. de la TorreB.G. El-FahamA. AlbericioF. s-Triazine: A privileged structure for drug discovery and bioconjugation.Molecules202126486410.3390/molecules2604086433562072
    [Google Scholar]
  2. MaliszewskiD. DrozdowskaD. Recent advances in the biological activity of s-triazine core compounds.Pharmaceuticals202215222110.3390/ph1502022135215333
    [Google Scholar]
  3. LiaoL. LiM. YinY. ChenJ. ZhongQ. DuR. LiuS. HeY. FuW. ZengF. Advances in the synthesis of covalent triazine frameworks.ACS Omega2023854527454210.1021/acsomega.2c0696136777586
    [Google Scholar]
  4. WangX. XiaoH. WangJ. HuangZ. PengG. XieW. BianX. LiuH. ShiC. YangT. LiX. GaoJ. MengY. JiangQ. ChenW. HuF. WeiN. WangX. ZhangL. WangK. SunQ. Synthesis and biological evaluation of novel triazine derivatives as positive allosteric modulators of α7 nicotinic acetylcholine receptors.J. Med. Chem.20216416123791239610.1021/acs.jmedchem.1c0105834374537
    [Google Scholar]
  5. JunaidA. LimF.P. TiekinkE.R. DolzhenkoA.V. A New one-pot three-component synthesis of 4-Aryl-6-cycloamino-1, 3, 5-triazin-2-amines under microwave irradiation.RSC Advances20201043255172552810.1039/D0RA04970K35518627
    [Google Scholar]
  6. JunaidA. LimF.P.L. ZhouY.P. ChuiW.K. DolzhenkoA.V. Fused heterocyclic systems with an s-triazine ring. 34. Development of a Practical Approach for the Synthesis of 5-Aza-isoguanines.Molecules2019248145310.3390/molecules2408145331013786
    [Google Scholar]
  7. AlelaimatM.A. Al-Sha’erM.A. BasheerH.A. Novel sulfonamide–triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents.ACS Omega2023815142471426310.1021/acsomega.3c0127337091406
    [Google Scholar]
  8. KatritzkyA.R. Advances in heterocyclic chemistryAcademic press1997
    [Google Scholar]
  9. JainS. SharmaA. AgrawalM. SharmaS. DwivediJ. KishoreD. Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole.J. Chem.201320131910.1155/2013/925439
    [Google Scholar]
  10. LiuH. LongS. RakeshK.P. ZhaG.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents.Eur. J. Med. Chem.202018511180410.1016/j.ejmech.2019.11180431675510
    [Google Scholar]
  11. DhallE. SainS. JainS. DwivediJ. Synthesis of triazole derivatives manifesting antimicrobial and anti-tubercular activities.Mini Rev. Org. Chem.201815429131410.2174/1570193X15666180108152302
    [Google Scholar]
  12. JainS. DwivediJ. JainP. KishoreD. Use of 2,4,6-trichloro-1,3,5-triazine (TCT) as organic catalyst in organic synthesis.Synth. Commun.201646141155117410.1080/00397911.2016.1192651
    [Google Scholar]
  13. OudahK.H. NajmM.A.A. SamirN. SeryaR.A.T. AbouzidK.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors.Bioorg. Chem.20199210323910.1016/j.bioorg.2019.10323931513938
    [Google Scholar]
  14. YanM. MaR. ChenR. WangL. WangZ. MaY. Synthesis of 1,2-dihydro-1,3,5-triazine derivatives via Cu( ii )-catalyzed C(sp 3 )–H activation of N, N -dimethylethanolamine with amidines.Chem. Commun. (Camb.)20205674109461094910.1039/D0CC03820B32940285
    [Google Scholar]
  15. BigdeliM.A. HeraviM.M. MahdaviniaG.H. Wet 2,4,6-trichloro[1,3,5]triazine (TCT) an efficient catalyst for synthesis of α, α′-bis (substituted-benzylidene) cycloalkanones under solvent-free conditions.Catal. Commun.200781595159810.1016/j.catcom.2007.01.007
    [Google Scholar]
  16. BlotnyG. Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis.Tetrahedron200662419507952210.1016/j.tet.2006.07.039
    [Google Scholar]
  17. YeL. ZhengY. KhanN.A. NiX. ZhangK.A. ShenY. HuangN. KongX.Y. Emerging covalent triazine frameworks-based nanomaterials for electrochemical energy storage and conversion.Chem. Comm.20234263146334
    [Google Scholar]
  18. GilavaV.P. PatelP.K. Synthesis characterization and biological evaluation of 2,4,6-trisubstituted 1,3,5-triazine derivatives.Int. J. Adv. Sci. Res.20231411713
    [Google Scholar]
  19. BandgarB.P. JoshiN.S. KambleV.T. 2,4,6-Trichloro-1,3,5-triazine catalyzed synthesis of thiiranes from oxiranes under solvent-free and mild conditions.Tetrahedron Lett.200647274775477710.1016/j.tetlet.2006.03.171
    [Google Scholar]
  20. ScrivenE.F. RamsdenC.A. Advances in heterocyclic chemistry.Elsevier2024
    [Google Scholar]
  21. Van der PlasH.C. KatritzkyA.R. Advances in Heterocyclic Chemistry.Elsevier1999
    [Google Scholar]
  22. TangR. WenJ. StoteR.E. SunY. Cyanuric chloride-based reactive dyes for use in the antimicrobial treatments of polymeric materials.ACS Appl. Mater. Interfaces20211311524153410.1021/acsami.0c1861333378153
    [Google Scholar]
  23. DasA. GhoshS.K. BhatH.R. KalitaJ. KashyapA. AdhikariN. Docking, synthesis and antimalarial evaluation of hybrid phenyl thiazole 1, 3, 5-triazine derivatives.Curr. Bioact. Compd.202016563965310.2174/1573407215666190308154139
    [Google Scholar]
  24. AryaK. DandiaA. Synthesis and cytotoxic activity of trisubstituted-1,3,5-triazines.Bioorg. Med. Chem. Lett.200717123298330410.1016/j.bmcl.2007.04.00717449247
    [Google Scholar]
  25. MelatoS. CoghiP. BasilicoN. ProsperiD. MontiD. Novel 4‐aminoquinolines through microwave‐assisted reactions: A practical route to antimalarial agents.Eur. J. Org. Chem.20072007366118612310.1002/ejoc.200700612
    [Google Scholar]
  26. XiongY.Z. ChenF.E. BalzariniJ. De ClercqE. PannecouqueC. Non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 11: Structural modulations of diaryltriazines with potent anti-HIV activity.Eur. J. Med. Chem.20084361230123610.1016/j.ejmech.2007.08.00117869386
    [Google Scholar]
  27. ZhouC. MinJ. LiuZ. YoungA. DeshazerH. GaoT. ChangY.T. KallenbachN.R. Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents.Bioorg. Med. Chem. Lett.20081841308131110.1016/j.bmcl.2008.01.03118226902
    [Google Scholar]
  28. SrinivasK. SrinivasU. BhanuprakashK. HarakishoreK. MurthyU.S.N. Jayathirtha RaoV. Synthesis and antibacterial activity of various substituted s-triazines.Eur. J. Med. Chem.200641111240124610.1016/j.ejmech.2006.05.01316815597
    [Google Scholar]
  29. GuanB. JiangC. Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-ĸB.Bioorg. Med. Chem. Lett.20214112796410.1016/j.bmcl.2021.12796433744436
    [Google Scholar]
  30. Jaraph-AlhadadL.A. MekheimerR.A. Abd-ElmonemM. MoustafaM.S. Abdel-HameedA. Abuo-RahmaG.E. SadekK. A novel one-pot three-component synthesis of 4-aryl-6-alkylamino/piperidinyl-1, 3, 5-triazine-2-amines under controlled microwave irradiation.ARKIVOC20232023446066010.24820/ark.5550190.p012.043
    [Google Scholar]
  31. PavanP. AngajalaG. SubashiniR. ArunaV. Ultrasound assisted MK-10 catalyzed new benzimidazole bejeweled quinoline molecular hybrids: Facile synthesis, sar, molecular modelling and biological evaluation as free radical scavengers and antiinflammatory agents.J. Mol. Str.20241305137702
    [Google Scholar]
  32. MajiL. SenguptaS. Purawarga MatadaG.S. TeliG. BiswasG. DasP.K. Medicinal chemistry perspective of JAK inhibitors: Synthesis, biological profile, selectivity, and structure activity relationship.Mol. Divers.2024147
    [Google Scholar]
  33. CascioferroS. ParrinoB. SpanòV. CarboneA. MontalbanoA. BarrajaP. DianaP. CirrincioneG. Synthesis and antitumor activities of 1,2,3-triazines and their benzo- and heterofused derivatives.Eur. J. Med. Chem.2017142748610.1016/j.ejmech.2017.06.00328615111
    [Google Scholar]
  34. MorenoL.M. QuirogaJ. AboniaR. LauriaA. MartoranaA. InsuastyH. InsuastyB. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents.RSC Advances20201056341143412910.1039/D0RA06799G35519030
    [Google Scholar]
  35. RanjbariS. BehzadiM. SepehriS. Dadkhah AsemanM. JarrahpourA. MohkamM. GhasemiY. Reza AkbarizadehA. KianpourS. AtioğluZ. ÖzdemirN. AkkurtM. Masoud NabavizadehS. TurosE. Investigations of antiproliferative and antioxidant activity of β-lactam morpholino-1,3,5-triazine hybrids.Bioorg. Med. Chem.202028811540810.1016/j.bmc.2020.11540832165076
    [Google Scholar]
  36. KuthyalaS. HanumanthappaM. Madan KumarS. SheikS. Gundibasappa KarikannarN. PrabhuA. Crystal, Hirshfeld, ADMET, drug-like and anticancer study of some newly synthesized imidazopyridine containing pyrazoline derivatives.J. Mol. Struct.20191197657210.1016/j.molstruc.2019.07.031
    [Google Scholar]
  37. VermaS.K. RangappaS. VermaR. XueF. VermaS. Sharath KumarK.S. RangappaK.S. Sulfur (SⅥ)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR.Bioorg. Chem.202414510724110.1016/j.bioorg.2024.10724138437761
    [Google Scholar]
  38. SinglaP. LuxamiV. PaulK. Triazine as a promising scaffold for its versatile biological behavior.Eur. J. Med. Chem.2015102395710.1016/j.ejmech.2015.07.03726241876
    [Google Scholar]
  39. PanZ. FuY. PengC. XiaoL. ZhuS. PengF. LiuQ. ZhouB. Triazine-Porphyrin-based aminal linked porous organic polymer as self-enhanced photo/enzyme synergistic antibacterial agent for wound healing.Microporous Mesoporous Mater.202436511288110.1016/j.micromeso.2023.112881
    [Google Scholar]
  40. KumarR. KumarN. RoyR.K. SinghA. 1, 3, 5-triazine analogs: A potent anticancer scaffold.Curr. Signal Transduct. Ther.20191428710610.2174/1574362413666180221113805
    [Google Scholar]
  41. KumarR. KumarN. RoyR.K. SinghA. Triazines – A comprehensive review of their synthesis and diverse biological importance.Curr. Med. Drug Res.20171117310.53517/CMDR.2581‑5008.112017173
    [Google Scholar]
  42. SukhadiaB. TanD. OhY. ChaeY.K. EP08.02-023 Differentiation syndrome in a patient with non-small-cell lung cancer harboring IDH2 mutation treated with enasidenib.J. Thorac. Oncol.2022179S407S40810.1016/j.jtho.2022.07.705
    [Google Scholar]
  43. YaoK. LiuH. YuS. ZhuH. PanJ. Resistance to mutant IDH inhibitors in acute myeloid leukemia: Molecular mechanisms and therapeutic strategies.Cancer Lett.202253321560310.1016/j.canlet.2022.21560335227786
    [Google Scholar]
  44. AlirezapourF. KhanmohammadiA. The effect of cation–π interactions on the stability and electronic properties of anticancer drug Altretamine: A theoretical study.Acta Crystallogr. C Struct. Chem.2020761098299110.1107/S205322962001258933016269
    [Google Scholar]
  45. HassanzadehK. AkhtariK. EsmaeiliS.S. VaziriA. ZamaniH. MaghsoodiM. NooriS. MoradiA. HamidiP. Encapsulation of thiotepa and altretamine as neurotoxic anticancer drugs in Cucurbit[n]uril (n=7, 8) nanocapsules: A DFT study.J. Theor. Comput. Chem.2016157165005610.1142/S0219633616500565
    [Google Scholar]
  46. IssaJ.P.J. KantarjianH.M. KirkpatrickP. Azacitidine.Nat. Rev. Drug Discov.20054427527610.1038/nrd169815861567
    [Google Scholar]
  47. RastelliG. SirawarapornW. SompornpisutP. VilaivanT. KamchonwongpaisanS. QuarrellR. LoweG. ThebtaranonthY. YuthavongY. Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: Structural basis of antifolate resistance.Bioorg. Med. Chem.2000851117112810.1016/S0968‑0896(00)00022‑510882022
    [Google Scholar]
  48. BarchanskaH. SajdakM. SzczypkaK. SwientekA. TworekM. KurekM. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.Environ. Sci. Pollut. Res. Int.201724164465810.1007/s11356‑016‑7798‑327743329
    [Google Scholar]
  49. BonoraS. BenassiE. MarisA. TugnoliV. OttaniS. Di FoggiaM. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides.J. Mol. Struct.2013104013914810.1016/j.molstruc.2013.02.025
    [Google Scholar]
  50. SilvaT.S. de Freitas SouzaM. Maria da Silva TeófiloT. Silva dos SantosM. Formiga PortoM.A. Martins SouzaC.M. Barbosa dos SantosJ. SilvaD.V. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: A case study of diuron, hexazinone, and sulfometuron-methyl in Brazil.Chemosphere201923612433310.1016/j.chemosphere.2019.07.06431319303
    [Google Scholar]
  51. AbdallaN.S. E AmrA.E. S M El-TantawyA. A Al-OmarM. H KamelA. KhalifaN.M. Tailor-made specific recognition of cyromazine pesticide integrated in a potentiometric strip cell for environmental and food analysis.Polymers2019119152610.3390/polym1109152631546880
    [Google Scholar]
  52. KasoziK.I. MacLeodE.T. WelburnS.C. WelburnS.C. African animal trypanocide resistance: A systematic review and meta-analysis.Front. Vet. Sci.2023995024810.3389/fvets.2022.95024836686196
    [Google Scholar]
  53. AsifM. Diverse chemical and pharmacological properties of triazine compounds.Int. J. Hetero. Chem.2019924979
    [Google Scholar]
  54. BespalovV.G. BeliaevaO.A. KireevaG.S. SenchikK.Iu. StukovA.N. AristovaV.A. VyshinskaiaE.A. Kon’kovS.A. KrylovaI.A. SemënovA.L. MaĭdinM.A. AleksandrovV.A. BeliaevA.M. [Antitumor effect of dioxadet in intraperitoneal chemoperfusion treatment for advanced ovarian cancer in experimental setting].Vopr. Onkol.2014602727924919266
    [Google Scholar]
  55. D’RuizC.D. PlautzJ.R. SchuetzR. SanabriaC. HammondsJ. EratoC. KlockJ. VollhardtJ. MesarosS. Preliminary clinical pharmacokinetic evaluation of bemotrizinol - A new sunscreen active ingredient being considered for inclusion under FDA’s over-the-counter (OTC) sunscreen monograph.Regul. Toxicol. Pharmacol.202313910534410.1016/j.yrtph.2023.10534436738872
    [Google Scholar]
  56. SantosF.P.S. KantarjianH. Garcia-ManeroG. IssaJ.P. RavandiF. Decitabine in the treatment of myelodysplastic syndromes.Expert Rev. Anticancer Ther.201010192210.1586/era.09.16420014881
    [Google Scholar]
  57. Fernández-CalviñoD. RouskJ. BååthE. BollmannU.E. BesterK. BrandtK.K. Short-term toxicity assessment of a triazine herbicide (terbutryn) underestimates the sensitivity of soil microorganisms.Soil Biol. Biochem.202115410813010.1016/j.soilbio.2021.108130
    [Google Scholar]
  58. OturanN. BrillasE. OturanM.A. Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode.Environ. Chem. Lett.201210216517010.1007/s10311‑011‑0337‑z
    [Google Scholar]
  59. DasS.K. MukherjeeI. DasS.K. Application of biochar in agriculture and environment, and its safety issues.Int. J. Bio-Resour. Stress Manag.20178223624110.23910/IJBSM/2017.8.2.1712
    [Google Scholar]
  60. AlbarránA. CelisR. HermosínM.C. López-PiñeiroA. CornejoJ. Behaviour of simazine in soil amended with the final residue of the olive-oil extraction process.Chemosphere200454671772410.1016/j.chemosphere.2003.09.00414602104
    [Google Scholar]
  61. KourbeliV. ChontzopoulouE. MoschovouK. PavlosD. MavromoustakosT. PapanastasiouI.P. An overview on target-based drug design against kinetoplastid protozoan infections: Human African trypanosomiasis.Molecules20212615462910.3390/molecules2615462934361781
    [Google Scholar]
  62. GolderF.J. HewittM.M. McLeodJ.F. Respiratory stimulant drugs in the post-operative setting.Respir. Physiol. Neurobiol.2013189239540210.1016/j.resp.2013.06.01023791825
    [Google Scholar]
  63. LaurentS. Antihypertensive drugs.Pharmacol. Res.201712411612510.1016/j.phrs.2017.07.02628780421
    [Google Scholar]
  64. IslamM.M. Oyarzun-GonzalezX. Bose-BrillS. DonneyongM.M. Supplemental nutrition assistance program and adherence to antihypertensive medications.JAMA Netw. Open202472e235661910.1001/jamanetworkopen.2023.5661938393731
    [Google Scholar]
  65. SinglaP. LuxamiV. PaulK. Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors.Bioorg. Med. Chem.20152381691170010.1016/j.bmc.2015.03.01225792141
    [Google Scholar]
  66. HuJ. ZhangY. TangN. LuY. GuoP. HuangZ. Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR.Bioorg. Med. Chem.20213211599710.1016/j.bmc.2021.11599733440319
    [Google Scholar]
  67. ShawishI. BarakatA. AldalbahiA. AlshaerW. DaoudF. AlqudahD.A. Al ZoubiM. HatmalM.M. NafieM.S. HaukkaM. SharmaA. de la TorreB.G. AlbericioF. El-FahamA. Acetic acid mediated for one-pot synthesis of novel pyrazolyl s-triazine derivatives for the targeted therapy of triple-negative breast tumor cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR signaling cascades.Pharmaceutics2022148155810.3390/pharmaceutics1408155836015186
    [Google Scholar]
  68. MuraseY. HosoyaK. SatoT. KimS. OkumuraM. Antitumor activity of the dual PI3K/mTOR inhibitor gedatolisib and the involvement of ABCB1 in gedatolisib resistance in canine tumor cells.Oncol. Rep.20224746110.3892/or.2022.827235088890
    [Google Scholar]
  69. CascioferroS. ParrinoB. SpanòV. CarboneA. MontalbanoA. BarrajaP. DianaP. CirrincioneG. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds.Eur. J. Med. Chem.201714232837510.1016/j.ejmech.2017.08.00928851503
    [Google Scholar]
  70. GuoH. DiaoQ.P. 1, 3, 5-Triazine-azole hybrids and their anticancer activity.Curr. Top. Med. Chem.202020161481149210.2174/156802662066620031012274132156236
    [Google Scholar]
  71. ZouJ.P. ZhangZ. LvJ.Y. ZhangX.Q. ZhangZ.Y. HanS.T. LiuY.W. LiuW.W. JiJ. ShiD.H. Design, synthesis and anti-cancer evaluation of genistein-1,3,5-triazine derivatives.Tetrahedron202313413329310.1016/j.tet.2023.133293
    [Google Scholar]
  72. Developmental therapeutics program.Available From: dtp.nci.nih.gov
  73. SinglaP. LuxamiV. PaulK. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin.Eur. J. Med. Chem.2016117596910.1016/j.ejmech.2016.03.08827089212
    [Google Scholar]
  74. GreverM.R. SchepartzS.A. ChabnerB.A. The National Cancer Institute: Cancer drug discovery and development program.Semin. Oncol.19921966226381462164
    [Google Scholar]
  75. MonksA. ScudieroD. SkehanP. ShoemakerR. PaullK. VisticaD. HoseC. LangleyJ. CroniseP. Vaigro-WolffA. Gray-GoodrichM. CampbellH. MayoJ. BoydM. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.J. Natl. Cancer Inst.1991831175776610.1093/jnci/83.11.7572041050
    [Google Scholar]
  76. BoydM.R. PaullK.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen.Drug Dev. Res.19953429110910.1002/ddr.430340203
    [Google Scholar]
  77. ChuaM.S. ShiD.F. WrigleyS. BradshawT.D. HutchinsonI. ShawP.N. BarrettD.A. StanleyL.A. StevensM.F.G. Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines.J. Med. Chem.199942338139210.1021/jm981076x9986708
    [Google Scholar]
  78. SinglaP. LuxamiV. PaulK. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure–activity relationship studies of 1,3,5-triazine analogues.Bioorg. Med. Chem. Lett.201626251852310.1016/j.bmcl.2015.11.08326670841
    [Google Scholar]
  79. ZhengM. XuC. MaJ. SunY. DuF. LiuH. LinL. LiC. DingJ. ChenK. JiangH. Synthesis and antitumor evaluation of a novel series of triaminotriazine derivatives.Bioorg. Med. Chem.20071541815182710.1016/j.bmc.2006.11.02817157510
    [Google Scholar]
  80. McKayG.A. ReddyR. ArhinF. BelleyA. LehouxD. MoeckG. SarmientoI. ParrT.R. GrosP. PelletierJ. FarA.R. Triaminotriazine DNA helicase inhibitors with antibacterial activity.Bioorg. Med. Chem. Lett.20061651286129010.1016/j.bmcl.2005.11.07616343901
    [Google Scholar]
  81. Jagadeesh KumarG. Sriramkumar BommaH.V.S. SrihariE. ShrivastavaS. NaiduV.G.M. SrinivasK. Jayathirtha RaoV. Synthesis and anticancer activity of some new s-triazine derivatives.Med. Chem. Res.201322125973598110.1007/s00044‑013‑0584‑6
    [Google Scholar]
  82. MagaG. FalchiF. RadiM. BottaL. CasaluceG. BernardiniM. IrannejadH. ManettiF. GarbelliA. SamueleA. ZanoliS. EstéJ.A. GonzalezE. ZuccaE. PaolucciS. BaldantiF. De RijckJ. DebyserZ. BottaM. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: Synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation.ChemMedChem2011681371138910.1002/cmdc.20110016621698775
    [Google Scholar]
  83. RaniaM.G. MohamedA.M. HassanM.E. Molecular modeling of new 1, 3, 5-triazine derivatives as anticancer agents.Der. Pharma Chem.201911714
    [Google Scholar]
  84. SkehanP. StorengR. ScudieroD. MonksA. McMahonJ. VisticaD. WarrenJ.T. BokeschH. KenneyS. BoydM.R. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.199082131107111210.1093/jnci/82.13.11072359136
    [Google Scholar]
  85. MorenoL. QuirogaJ. AboniaR. Ramírez-PradaJ. InsuastyB. Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agents.Molecules2018238195610.3390/molecules2308195630082588
    [Google Scholar]
  86. MikhaylichenkoS.N. PatelS.M. DaliliS. ChesnyukA.A. ZaplishnyV.N. Synthesis and structure of new 1,3,5-triazine-pyrazole derivatives.Tetrahedron Lett.200950212505250810.1016/j.tetlet.2009.03.054
    [Google Scholar]
  87. FarooqM. TahaN. ButoracR. EvansD. ElzatahryA. ElsayedE. WadaanM. Al-DeyabS. CowleyA. Biological screening of newly synthesized BIAN N-heterocyclic gold carbene complexes in zebrafish embryos.Int. J. Mol. Sci.20151610247182473110.3390/ijms16102471826501273
    [Google Scholar]
  88. FarooqM. SharmaA. AlmarhoonZ. Al-DhfyanA. El-FahamA. TahaN.A. WadaanM.A.M. TorreB.G. AlbericioF. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos.Bioorg. Chem.20198745746410.1016/j.bioorg.2019.03.06330927586
    [Google Scholar]
  89. SączewskiF. BułakowskaA. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives.Eur. J. Med. Chem.200641561161510.1016/j.ejmech.2005.12.01216540207
    [Google Scholar]
  90. (a BrzozowskiZ. SączewskiF. Synthesis and antitumor activity of novel 2-amino-4-(3,5,5-trimethyl-2-pyrazolino)-1,3,5-triazine derivatives.Eur. J. Med. Chem.200237970972010.1016/S0223‑5234(02)01379‑X12350288
    [Google Scholar]
  91. (b SączewskiF. BułakowskaA. BednarskiP. GrunertR. Synthesis of 2, 4-diamino-1, 3, 5-triazine analogues of methotrexate with potential antitumor activity.Eur. J. Med. Chem.200237970972010.1016/S0223‑5234(02)01379‑X12350288
    [Google Scholar]
  92. SączewskiF. BułakowskaA. BednarskiP. GrunertR. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives.Eur. J. Med. Chem.200641221922510.1016/j.ejmech.2005.10.01316377034
    [Google Scholar]
  93. ČurillováJ. PecháčováM. PadrtováT. PecherD. MascarettiŠ. JampílekJ. PaškovĽ. BilkaF. KováčG. MalíkI. Synthesis and critical view on the structure-activity relationships of N-(substituted phenyl)-/N-diphenylmethyl-piperazine-based conjugates as antimycobacterial agents.Appli. Sci.2021121300
    [Google Scholar]
  94. BarrowF. ThorneycroftF.J. 159. N-oximino-ethers. Part IV. Formation of oximino-ethers in the Ehrlich–Sachs reaction.J. Chem. Soc.19390076977310.1039/JR9390000769
    [Google Scholar]
  95. HoffmanR. BartshA. ChoB.R. Base-promoted, imine-forming 1, 2-elimination reactions.Acc. Chem. Rev.19896211217
    [Google Scholar]
  96. BrzozowskiZ. KamińskiZ. KozakiewiczI. AngielskiS. RogulskiJ. SyntezaI. [Synthesis and hypoglycemic activity of various N-(2-pyrazoline-1-carbaimidoyl)-guanidine derivatives].Acta Pol. Pharm.1979364401410532682
    [Google Scholar]
  97. PomarnackaE. BednarskiP. GrunertR. ReszkaP. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)- 1,3,5-triazine derivatives.Acta Pol. Pharm.200461646146615794339
    [Google Scholar]
  98. MakowskaA. SączewskiF. BednarskiP. SączewskiJ. BalewskiŁ. Hybrid molecules composed of 2, 4-diamino-1, 3, 5-triazines and 2-imino-coumarins and coumarins. Synthesis and cytotoxic properties.Molecules2018237161610.3390/molecules2307161629970833
    [Google Scholar]
  99. (a SinghU.P. BhatH.R. GahtoriP. Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives.J. Mycol. Med.201222213414110.1016/j.mycmed.2011.12.07323518015
    [Google Scholar]
  100. (b DömlingA. UgiI. Multicomponent reactions with isocyanides.Angew. Chem. Int. Ed.200039183168321010.1002/1521‑3773(20000915)39:18<3168::AID‑ANIE3168>3.0.CO;2‑U11028061
    [Google Scholar]
  101. SrivastavaJ.K. PillaiG.G. BhatH.R. VermaA. SinghU.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase.Sci. Rep.201771585110.1038/s41598‑017‑05934‑528724908
    [Google Scholar]
  102. MachakanurS.S. PatilB.R. BadigerD.S. BakaleR.P. GudasiK.B. Annie BlighS.W. Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1,3,5-triazine hydrazones.J. Mol. Struct.2012101112112710.1016/j.molstruc.2011.12.023
    [Google Scholar]
  103. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  104. Betancur-GalvisL.A. SaezJ. GranadosH. SalazarA. OssaJ.E. Antitumor and antiviral activity of Colombian medicinal plant extracts.Mem. Inst. Oswaldo Cruz199994453153510.1590/S0074‑0276199900040001910446015
    [Google Scholar]
  105. KothayerH. ElshanawaniA.A. Abu KullM.E. El-SabbaghO.I. ShekharM.P.V. BrancaleA. JonesA.T. WestwellA.D. Design, synthesis and in vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides.Bioorg. Med. Chem. Lett.201323246886688910.1016/j.bmcl.2013.09.08724153206
    [Google Scholar]
  106. RowanN.J. DeansK. AndersonJ.G. GemmellC.G. HunterI.S. ChaithongT. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae.Appl. Environ. Microbiol.20016793873388110.1128/AEM.67.9.3873‑3881.200111525980
    [Google Scholar]
  107. SachsJ. MalaneyP. The economic and social burden of malaria.Nature2002415687268068510.1038/415680a11832956
    [Google Scholar]
  108. WhiteN.J. Artemisinin resistance—the clock is ticking.Lancet201037697582051205210.1016/S0140‑6736(10)61963‑021168039
    [Google Scholar]
  109. KremsnerP.G. KrishnaS. Antimalarial combinations.Lancet2004364943028529410.1016/S0140‑6736(04)16680‑415262108
    [Google Scholar]
  110. SnowR.W. GuerraC.A. NoorA.M. MyintH.Y. HayS.I. The global distribution of clinical episodes of Plasmodium falciparum malaria.Nature2005434703021421710.1038/nature0334215759000
    [Google Scholar]
  111. KumarA. PaliwalD. SainiD. ThakurA. AggarwalS. KaushikD. A comprehensive review on synthetic approach for antimalarial agents.Eur. J. Med. Chem.20148514717810.1016/j.ejmech.2014.07.08425084143
    [Google Scholar]
  112. PatelR. KeumY.S. ParkS. Medicinal chemistry discoveries among 1,3,5-triazines: Recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials.Mini Rev. Med. Chem.201414976878910.2174/138955751466614062220590424958216
    [Google Scholar]
  113. World Health OrganizationMalaria.2018https://www.who.int/news-room/fact-sheets/detail/malaria
  114. KumarA. SrivastavaK. KumarS.R. PuriS.K. ChauhanP.M. Synthesis of new 4-aminoquinolines and quinoline–acridine hybrids as antimalarial agents.Bioorg. Med. Chem. Lett.2009196996699910.1016/j.bmcl.2009.10.01019879137
    [Google Scholar]
  115. HöglundI.P.J. SilverS. EngströmM.T. SaloH. TauberA. KyyrönenH.K. SaarenketoP. HoffrénA.M. KokkoK. PohjanoksaK. SallinenJ. SavolaJ.M. WursterS. KallatsaO.A. Structure-activity relationship of quinoline derivatives as potent and selective α(2C)-adrenoceptor antagonists.J. Med. Chem.200649216351636310.1021/jm060262x17034141
    [Google Scholar]
  116. KumarA. SrivastavaK. Raja KumarS. SiddiqiM.I. PuriS.K. SexanaJ.K. ChauhanP.M.S. 4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents.Eur. J. Med. Chem.201146267669010.1016/j.ejmech.2010.12.00321194812
    [Google Scholar]
  117. KumarD. KhanS.I. PonnanP. RawatD.S. Triazine–pyrimidine based molecular hybrids: Synthesis, docking studies and evaluation of antimalarial activity.New J. Chem.201438105087509510.1039/C4NJ00978A
    [Google Scholar]
  118. DoktorovK. KurtevaV.B. IvanovaD. TimtchevaI. Microwave assisted solventless synthesis of melamines with flexible aromatic substituents.ARKIVOC200720071523224510.3998/ark.5550190.0008.f23
    [Google Scholar]
  119. SahuS. GhoshS.K. KalitaJ. DuttaM. BhatH.R. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS.Exp. Parasitol.2016163384510.1016/j.exppara.2016.01.01026821296
    [Google Scholar]
  120. SahuS. GhoshS.K. GahtoriP. Pratap SinghU. BhattacharyyaD.R. BhatH.R. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor.Pharmacol. Rep.201971576276710.1016/j.pharep.2019.04.00631351317
    [Google Scholar]
  121. GahtoriP. PandeyR. KumarV. GhoshS.K. DasA. KalitaJ.M. SahuS. PrakashA. BhattacharyyaD.R. Toward resistance‐compromised DHFR inhibitors part 1: Combined structure/ligand‐based virtual screenings and ADME‐Tox profiling.J. Chemometr.201630846248110.1002/cem.2814
    [Google Scholar]
  122. BhatH.R. SinghU.P. YadavP.S. KumarV. GahtoriP. DasA. ChetiaD. PrakashA. MahantaJ. Synthesis, characterization and antimalarial activity of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.Arab. J. Chem.20169S625S63110.1016/j.arabjc.2011.07.001
    [Google Scholar]
  123. BhatH.R. SinghU.P. GahtoriP. GhoshS.K. GogoiK. PrakashA. SinghR.K. 4-Aminoquinoline-1,3,5-triazine: Design, synthesis, in vitro antimalarial activity and docking studies.New J. Chem.20133792654266210.1039/c3nj00317e
    [Google Scholar]
  124. BhatH.R. Singh. U.P.; Gahtori, P.; Ghosh, S.P.; Gogoi, K.; Prakash, A.; Singh, R.K. in vitro and in vivo antimalarial activity of hybrid 4‐aminoquinoline–1, 3, 5‐triazine derivatives against wild and mutant malaria parasites.Chem. Biol. Drug Des.20158626527110.1111/cbdd.1249025487527
    [Google Scholar]
  125. BhatH.R. SinghU.P. ThakurA. Kumar GhoshS. GogoiK. PrakashA. SinghR.K. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.Exp. Parasitol.2015157596710.1016/j.exppara.2015.06.01626164360
    [Google Scholar]
  126. ManoharS. KhanS.I. RawatD.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline–triazine conjugates.Bioorg. Med. Chem. Lett.201020132232510.1016/j.bmcl.2009.10.10619910192
    [Google Scholar]
  127. GogoiP. ShakyaA. GhoshS.K. GogoiN. GahtoriP. SinghN. BhattacharyyaD.R. SinghU.P. BhatH.R. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5‐triazine derivatives.J. Biochem. Mol. Toxicol.2021353e2268210.1002/jbt.2268233332673
    [Google Scholar]
  128. KatiyarS.B. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of 2-[3,5-substituted pyrazol-1-yl]-4,6-trisubstituted triazine derivatives as antimalarial agents.Bioorg. Med. Chem. Lett.200515224957496010.1016/j.bmcl.2005.08.02316168643
    [Google Scholar]
  129. AdhikariN. KashyapA. ShakyaA. GhoshS.K. BhattacharyyaD.R. BhatH.R. SinghU.P. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives.J. Heterocycl. Chem.20205762389239910.1002/jhet.3955
    [Google Scholar]
  130. GavadeS.N. MarkadV.L. KodamK.M. ShingareM.S. ManeD.V. Synthesis and biological evaluation of novel 2,4,6-triazine derivatives as antimicrobial agents.Bioorg. Med. Chem. Lett.201222155075507710.1016/j.bmcl.2012.05.11122742908
    [Google Scholar]
  131. ChuD.T.W. PlattnerJ.J. KatzL. New directions in antibacterial research.J. Med. Chem.199639203853387410.1021/jm960294s8831751
    [Google Scholar]
  132. BeovićB. The issue of antimicrobial resistance in human medicine.Int. J. Food Microbiol.2006112328028710.1016/j.ijfoodmicro.2006.05.00116815582
    [Google Scholar]
  133. SureeN. JungM. ClubbR. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens.Mini Rev. Med. Chem.2007710991100010.2174/13895570778211009717979801
    [Google Scholar]
  134. BuzziniP. ArapitsasP. GorettiM. BrandaE. TurchettiB. PinelliP. IeriF. RomaniA. Antimicrobial and antiviral activity of hydrolysable tannins.Mini Rev. Med. Chem.20088121179118710.2174/13895570878614099018855732
    [Google Scholar]
  135. Al-ZaydiK.M. KhalilH.H. El-FahamA. KhattabS.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.Chem. Cent. J.20171113910.1186/s13065‑017‑0267‑329086830
    [Google Scholar]
  136. ModhR.P. PatelA.C. ChikhaliaK.H. Design, synthesis, antibacterial, and antifungal studies of novel 3-substituted coumarinyl-triazine derivatives.hc201319534334910.1515/hc‑2013‑0104
    [Google Scholar]
  137. DesaiN.C. MakwanaA.H. SentaR.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides.J. Saudi Chem. Soc.201620668669410.1016/j.jscs.2015.01.004
    [Google Scholar]
  138. PatelD.H. ChikhaliaK.H. ShahN.K. PatelD.P. KaswalaP.B. BuhaV.M. Synthesis and antimicrobial studies of s -triazine based heterocycles.J. Enzyme Inhib. Med. Chem.201025112112510.3109/1475636090302795619814592
    [Google Scholar]
  139. BaldaniyaB.B. PatelP.K. Synthesis, antibacterial and antifungal activities of s-triazine derivatives.J. Chem.200963673680
    [Google Scholar]
  140. ManeD.V. ManeM. PardeshiR.K. Synthesis and antimicrobial activity of 2,4,6-substituted S-triazine derivatives.Current Research in Biochemistry and MicrobiologyMicrobiologist society of India20155063
    [Google Scholar]
  141. DinariM. GharahiF. AsadiP. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids.J. Mol. Struct.20181156435010.1016/j.molstruc.2017.11.087
    [Google Scholar]
  142. ShahD.R. LakumH.P. ChikhaliaK.H. Synthesis and in vitro antimicrobial evaluation of amine substituted s-triazine based thiazolidinone/chalcone hybrids.Int. Lett. Chem. Phy. Astron20143620721917
    [Google Scholar]
  143. GahtoriP. GhoshS.K. SinghB. SinghU.P. BhatH.R. UppalA. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines.Saudi Pharm. J.2012201354310.1016/j.jsps.2011.05.00323960775
    [Google Scholar]
  144. SinghU.P. PathakM. DubeyV. BhatH.R. GahtoriP. SinghR.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor.Chem. Biol. Drug Des.201280457258310.1111/j.1747‑0285.2012.01430.x22702334
    [Google Scholar]
  145. KumarS. BhatH.R. KumawatM.K. SinghU.P. Design and one-pot synthesis of hybrid thiazolidin-4-one-1,3,5-triazines as potent antibacterial agents against human disease-causing pathogens.New J. Chem.201337358158410.1039/c2nj41028a
    [Google Scholar]
  146. KaswalaP.B. ChikhaliaK.H. ShahN.K. PatelD.P. PatelD.H. MudaliarG.V. Design, synthesis and antimicrobial evaluation of s-triazinyl urea and thiourea derivatives.ARKIVOC200920091132633510.3998/ark.5550190.0010.b30
    [Google Scholar]
  147. PatilV. Noonikara-PoyilA. JoshiS.D. PatilS.A. PatilS.A. LewisA.M. BugarinA. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents.J. Mol. Struct.2020122012868710.1016/j.molstruc.2020.128687
    [Google Scholar]
  148. DandiaA. AryaK. SatiM. SarawgiP. Green chemical synthesis of fluorinated 1,3,5-triaryl-s-triazines in aqueous medium under microwaves as potential antifungal agents.J. Fluor. Chem.200412591273127710.1016/j.jfluchem.2004.03.002
    [Google Scholar]
  149. ShindeR.S. DakeS.A. PawarR.P. Design, synthesis and antimicrobial activity of some triazine chalcone derivatives.Antiinfect. Agents202118433233810.2174/2211352517666190710115111
    [Google Scholar]
  150. SharmaA. GhabbourH. KhanS.T. de la TorreB.G. AlbericioF. El-FahamA. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity.J. Mol. Struct.2017114524425310.1016/j.molstruc.2017.05.040
    [Google Scholar]
  151. KlenkH.D. RottR. The molecular biology of influenza virus pathogenicity.Adv. Virus Res.19883424728110.1016/S0065‑3527(08)60520‑53046255
    [Google Scholar]
  152. KuznetsovO.K. KiselevO.I. Potential of several triazene derivatives against DENGUE viruses.J. Med. Acad.20032112121
    [Google Scholar]
  153. Abimbola SalubiC. AbboH.S. JahedN. TitinchiS. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors.Bioorg. Med. Chem.20249911760510.1016/j.bmc.2024.11760538246116
    [Google Scholar]
  154. KhodairA.I. El-BarbaryA.A. ImamD.R. KhederN.A. ElmalkiF. Ben HaddaT. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds.Carbohydr. Res.202150010824610.1016/j.carres.2021.10824633516074
    [Google Scholar]
  155. Majeed GanaiA. Khan PathanT. HampannavarG.A. PawarC. ObakachiV.A. KushwahaB. Deshwar KushwahaN. KarpoormathR. Recent advances on the s‐triazine scaffold with emphasis on synthesis, structure‐activity and pharmacological aspects: A concise review.ChemistrySelect2021671616166010.1002/slct.202004591
    [Google Scholar]
  156. MaaroufA.R. FarahatA.A. SelimK.B. EisaH.M. Synthesis and antiviral activity of benzimidazolyl- and triazolyl-1,3,5-triazines.Med. Chem. Res.201221670371010.1007/s00044‑011‑9574‑8
    [Google Scholar]
  157. PandeyV.K. TusiZ. TandonM. JoshiM.N. BajpaiS.K. Synthesis of thiadiazolo-s-triazines for their antiviral activity based on QSAR studies.Indian J. Chem.20034225832588
    [Google Scholar]
  158. MibuN. YokomizoK. KogaA. HondaM. MizokamiK. FujiiH. OtaN. YuzurihaA. IshimaruK. ZhouJ. MiyataT. SumotoK. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines.Chem. Pharm. Bull.201462101032104010.1248/cpb.c14‑0042125273062
    [Google Scholar]
  159. GuptaO. PradhanT. BhatiaR. MongaV. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships.Eur. J. Med. Chem.202122311360610.1016/j.ejmech.2021.11360634171661
    [Google Scholar]
  160. ManathanathM. SasidharanS. SaudagarP. Gopalakrishna PanickerU. SujathaS. Photodynamic evaluation of triazine appended porphyrins as anti-leishmanial and anti-tumor agents.Polyhedron202221711571110.1016/j.poly.2022.115711
    [Google Scholar]
  161. CroftS.L. CoombsG.H. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs.Trends Parasitol.2003191150250810.1016/j.pt.2003.09.00814580961
    [Google Scholar]
  162. OuelletteM. DrummelsmithJ. PapadopoulouB. Leishmaniasis: Drugs in the clinic, resistance and new developments.Drug Resist. Updat.200474-525726610.1016/j.drup.2004.07.00215533763
    [Google Scholar]
  163. ManathanathM. SasidharanS. SaudagarP. PanickerU.G. SujathaS. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies.Polyhedron202221711571110.1016/j.poly.2022.115711
    [Google Scholar]
  164. SharmaM. ChauhanK. ShivahareR. VishwakarmaP. SutharM.K. SharmaA. GuptaS. SaxenaJ.K. LalJ. ChandraP. KumarB. ChauhanP.M.S. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents.J. Med. Chem.201356114374439210.1021/jm400053v23611626
    [Google Scholar]
  165. GuptaL. SunduruN. VermaA. SrivastavaS. GuptaS. GoyalN. ChauhanP.M.S. Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani.Eur. J. Med. Chem.20104562359236510.1016/j.ejmech.2010.02.01520371140
    [Google Scholar]
  166. BaréaP. BarbosaV.A. BidóiaD.L. de PaulaJ.C. StefanelloT.F. da CostaW.F. NakamuraC.V. SarragiottoM.H. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids.Eur. J. Med. Chem.201815057959010.1016/j.ejmech.2018.03.01429549842
    [Google Scholar]
  167. PatelR.V. KumariP. RajaniD.P. PannecouqueC. De ClercqE. ChikhaliaK.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s -triazine-based heterocycles.Future Med. Chem.2012491053106510.4155/fmc.12.5722709250
    [Google Scholar]
  168. Barré-SinoussiF. ChermannJ.C. ReyF. NugeyreM.T. ChamaretS. GruestJ. DauguetC. Axler-BlinC. Vézinet-BrunF. RouziouxC. RozenbaumW. MontagnierL. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).Science1983220459986887110.1126/science.61891836189183
    [Google Scholar]
  169. ArnoldE. DasK. DingJ. YadavP.N. HsiouY. BoyerP.L. HughesS.H. Targeting HIV reverse transcriptase for anti-AIDS drug design: Structural and biological considerations for chemotherapeutic strategies.Drug Des. Discov.1996133-429478874042
    [Google Scholar]
  170. SakakibaraN. BalboniG. CongiuC. OnnisV. DemizuY. MisawaT. KuriharaM. KatoY. MaruyamaT. ToyamaM. OkamotoM. BabaM. Design, synthesis, and anti-HIV-1 activity of 1-substituted 3-(3,5-dimethylbenzyl)triazine derivatives.Antivir. Chem. Chemother.2015242627110.1177/204020661561220826514833
    [Google Scholar]
  171. GazzardB. GraemeG. BHIVA Guidelines Writing Committee 1998 revision to the British HIV Association guidelines for antiretroviral treatment of HIV seropositive individuals.Lancet1998352912431431610.1016/S0140‑6736(98)04084‑79690427
    [Google Scholar]
  172. De ClercqE. Targets and strategies for the antiviral chemotherapy of AIDS.Trends Pharmacol. Sci.199011519820510.1016/0165‑6147(90)90115‑O2188403
    [Google Scholar]
  173. DesaiS.D. DesaiK.R. ChikhaliaK.H. PannecouqueC. De ClercqE. Synthesis of a novel class of some 1, 3, 5-triazine derivatives and their anti-HIV activity.Int. J. Drug Design Discov.20112361368
    [Google Scholar]
  174. PatelR.B. ChikhaliaK.H. PannecouqueC. ClercqE. Synthesis of novel PETT analogues: 3,4-dimethoxy phenyl ethyl 1,3,5-triazinyl thiourea derivatives and their antibacterial and anti-HIV studies.J. Braz. Chem. Soc.200718231210.1590/S0103‑50532007000200011
    [Google Scholar]
  175. HamdiN. LidrissiC. SaoudM. Romerosa NievasA. ZarroukH. Synthesis of some new biologically active coumarin derivatives.Chem. Heterocycl. Compd.200642332032510.1007/s10593‑006‑0088‑0
    [Google Scholar]
  176. LiuB. LeeY. ZouJ. PetrassiH.M. JosephR.W. ChaoW. MichelottiE.L. BukhtiyarovaM. SpringmanE.B. DorseyB.D. Discovery and SAR of a series of 4,6-diamino-1,3,5-triazin-2-ol as novel non-nucleoside reverse transcriptase inhibitors of HIV-1.Bioorg. Med. Chem. Lett.201020226592659610.1016/j.bmcl.2010.09.03420888224
    [Google Scholar]
  177. MahajanD.H. PannecouqueC. De ClercqE. ChikhaliaK.H. Synthesis and studies of new 2-(coumarin-4-yloxy)-4,6-(substituted)-S-triazine derivatives as potential anti-HIV agents.Arch. Pharm.2009342528129010.1002/ardp.20080014919415671
    [Google Scholar]
  178. LudoviciD.W. KavashR.W. KuklaM.J. HoC.Y. YeH. De CorteB.L. AndriesK. de BéthuneM.P. AzijnH. PauwelsR. MoereelsH.E. HeeresJ. KoymansL.M. de JongeM.R. Van AkenK.J. DaeyaertF.F. LewiP.J. DasK. ArnoldE. JanssenP.A. Evolution of anti-HIV drug candidates. Part 2: Diaryltriazine (DATA) analogues.Bioorg. Med. Chem. Lett.200111172229223410.1016/S0960‑894X(01)00411‑511527704
    [Google Scholar]
  179. ChenX. ZhanP. PannecouqueC. BalzariniJ. De ClercqE. LiuX. Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors.Eur. J. Med. Chem.201251606610.1016/j.ejmech.2012.02.01922405288
    [Google Scholar]
  180. (a ZacharieB. AbbottS.D. BienvenuJ.F. CameronA.D. CloutierJ. DuceppeJ.S. EzzitouniA. FortinD. HoudeK. LauzonC. MoreauN. PerronV. WilbN. AsselinM. DoucetA. FafardM.E. GaudreauD. GrouixB. Sarra-BournetF. St-AmantN. GagnonL. 2, 4, 6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases.J. Med. Chem.2010531138114510.1021/jm901403r20047277
    [Google Scholar]
  181. (b WuestJ.D. LebelO. Anarchy in the solid state: Structural dependence on glass-forming ability in triazine-based molecular glasses.Tetrahedron200965367393740210.1016/j.tet.2009.07.026
    [Google Scholar]
  182. El-SaghierA.M. EnailiS.S. AbdouA. HamedA.M. KadryA.M. An operationally simple, one‐pot, convenient synthesis, and in vitro anti‐inflammatory activity of some new spirotriazolotriazine derivatives.J. Heterocycl. Chem.202461114616210.1002/jhet.4752
    [Google Scholar]
  183. ŁażewskaD. WięcekM. NerJ. KamińskaK. KottkeT. SchwedJ.S. ZygmuntM. KarczT. OlejarzA. KuderK. LataczG. GrosickiM. SapaJ. Karolak-WojciechowskaJ. StarkH. Kieć-KononowiczK. Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands.Eur. J. Med. Chem.20148353454610.1016/j.ejmech.2014.06.03224996140
    [Google Scholar]
  184. World Health OrganizationWHO mental health gap action programme.2008Available From :https://www.who.int/publications/i/item/9789240084278
  185. PrinceM. AliG.C. GuerchetM. PrinaA.M. AlbaneseE. WuY.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia.Alzheimers Res. Ther.2016812310.1186/s13195‑016‑0188‑827473681
    [Google Scholar]
  186. SelkoeD.J. American College of Physicians American Physiological Society Alzheimer disease: Mechanistic understanding predicts novel therapies.Ann. Intern. Med.2004140862763810.7326/0003‑4819‑140‑8‑200404200‑0004715096334
    [Google Scholar]
  187. World Health OrganisationDiabetes Fact sheets, https:// www.who.int/news-room/fact-sheets/detail/diabetes 2018
  188. SallowayS. CorreiaS. Alzheimer disease: Time to improve its diagnosis and treatment.Cleve. Clin. J. Med.2009761495810.3949/ccjm.76a.07217819122111
    [Google Scholar]
  189. WHO Fact sheets.2018Available From: https://www.who.int/en/news-room/factsheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed December 12, 2020).
  190. HonjoK. BlackS.E. VerhoeffN.P.L.G. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade.Can. J. Neurol. Sci.201239671272810.1017/S031716710001554723227576
    [Google Scholar]
  191. Abu-HashemA.A. Al-HussainS.A. ZakiM.E.A. Synthesis of novel benzodifuranyl; 1, 3, 5-triazines; 1, 3, 5-oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-inflammatory and analgesic agents.Molecules202025122010.3390/molecules2501022031948127
    [Google Scholar]
  192. MaqboolM. ManralA. JameelE. KumarJ. SainiV. ShandilyaA. TiwariM. HodaN. JayaramB. Development of cyanopyridine–triazine hybrids as lead multitarget anti-Alzheimer agents.Bioorg. Med. Chem.201624122777278810.1016/j.bmc.2016.04.04127157006
    [Google Scholar]
  193. JameelE. MeenaP. MaqboolM. KumarJ. AhmedW. MumtazuddinS. TiwariM. HodaN. JayaramB. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents.Eur. J. Med. Chem.2017136365110.1016/j.ejmech.2017.04.06428478343
    [Google Scholar]
  194. BalianiA. BuenoG.J. StewartM.L. YardleyV. BrunR. BarrettM.P. GilbertI.H. Design and synthesis of a series of melamine-based nitroheterocycles with activity against Trypanosomatid parasites.J. Med. Chem.200548175570557910.1021/jm050177+16107157
    [Google Scholar]
  195. KlenkeB. StewartM. BarrettM.P. BrunR. GilbertI.H. Synthesis and biological evaluation of s-triazine substituted polyamines as potential new anti-trypanosomal drugs.J. Med. Chem.200144213440345210.1021/jm010854+11585449
    [Google Scholar]
  196. ShindeR.S. SalunkeS.D. Facile synthesis of some triazine based chalcones as potential antioxidant and anti-diabetic agents.J. Chem. Pharm. Res.20157114
    [Google Scholar]
  197. SrivastavaJ.K. DubeyP. SinghS. BhatH.R. KumawatM.K. SinghU.P. Discovery of novel 1,3,5-triazine-thiazolidine-2,4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes.RSC Advances2015519140951410210.1039/C4RA16903D
    [Google Scholar]
  198. ZhengX.Z. ZhouJ.L. YeJ. GuoP.P. LinC.S. Cardioprotective effect of novel sulphonamides‐1,3,5‐triazine conjugates against ischaemic–reperfusion injury via selective inhibition of MMP ‐9.Chem. Biol. Drug Des.201688575676510.1111/cbdd.1280727317634
    [Google Scholar]
  199. BekircanO. KüxükM. KahveciB. KolaylıS. Convenient synthesis of fused heterocyclic 1,3,5-triazines from some N-acyl imidates and heterocyclic amines as anticancer and antioxidant agents.Arch. Pharm. (Weinheim)2005338836537210.1002/ardp.20040096416041836
    [Google Scholar]
  200. WatanabeY. UsuiH. KobayashiS. YoshiwaraH. ShibanoT. TanakaT. MorishimaY. YasuokaM. KanaoM. Syntheses of 5-HT2 antagonist activity of bicyclic 1,2,4-triazol-3(2H)-one and 1,3,5-triazine-2,4(3H)-dione derivatives.J. Med. Chem.199235118919410.1021/jm00079a0261732528
    [Google Scholar]
  201. Yan Xia, MirzaiB. ChackalamannilS. CzarnieckiM. WangS. ClemmonsA. AhnH.S. BoykowG.C. Substituted 1,3,5-triazines as cholesteryl ester transfer protein inhibitors.Bioorg. Med. Chem. Lett.19966791992210.1016/0960‑894X(96)00145‑X
    [Google Scholar]
  202. WaniM.Y. BhatA.R. AzamA. ChoiI. AtharF. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives.Eur. J. Med. Chem.20124831332010.1016/j.ejmech.2011.12.03322236470
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575309800240526180356
Loading
/content/journals/mrmc/10.2174/0113895575309800240526180356
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; antibacterial; antitumor; antiviral; polymer; Triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test