Skip to content
2000
image of Pyrazoline Derivatives: Exploring the Synthesis and Development of New Ligands for Anti-Cancer Therapy

Abstract

Pyrazoline is a 5-membered ring that has two adjacent nitrogen. It has gained advanced attention from medical and organic chemists due to very low cytotoxic activities. It is applicable and more applied in research fields and has various pharmacological activities, including cardiovascular, anti-tumor, and anti-cancer properties. In this review, the main objective is to study the pharmacological aspects of pyrazoline and its derivative analogs. The present synthetic pyrazolines are better scaffolds, which show more biological and medicinal characteristics. These compounds exhibit diverse pharmacological activities, showcasing their potential as promising candidates for cancer therapy. Pyrazolines demonstrate remarkable anti-proliferative and apoptosis-inducing effects on cancer cells, attributed to their distinctive molecular structure. This review highlights the growing significance of pyrazolines in medicinal chemistry, emphasizing their role in designing novel anticancer agents. The multifaceted properties of pyrazolines offer a compelling foundation for further research, driving innovation in the quest for effective and targeted anticancer drugs.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064339011241129075522
2025-01-09
2025-05-11
Loading full text...

Full text loading...

References

  1. P M. Balraj V. Vinitha G. v R. Synthesis, structural-spectral characterization and theoretical studies of Pyridinium-4-carbohydrazide 2,4,6-trinitrophenolate. J. Mol. Struct. 2022 1262 132779 10.1016/j.molstruc.2022.132779
    [Google Scholar]
  2. Praceka M.S. Megantara S. Maharani R. Muchtaridi M. Comparison of various synthesis methods and synthesis parameters of pyrazoline derivates. J. Adv. Pharm. Technol. Res. 2021 12 4 321 326 10.4103/japtr.JAPTR_252_21 34820304
    [Google Scholar]
  3. Hartwig de Oliveira D. Sousa F.S.S. Birmann P.T Pesarico A.P. Alves D. Jacob R.G. Evaluation of antioxidant activity and toxicity of sulfur-or selenium-containing 4-(arylchalcogenyl)-1 H-pyrazoles. Can. J. Physiol. Pharmacol. 2020 98 441 448 10.1139/cjpp‑2019‑0356
    [Google Scholar]
  4. Abu-Hashem A.A. Synthesis and antimicrobial activity of new 1,2,4‐triazole, 1,3,4‐oxadiazole, 1,3,4‐thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives. J. Heterocycl. Chem. 2021 58 1 74 92 10.1002/jhet.4149
    [Google Scholar]
  5. Wang S. Liu H. Wang X. Lei K. Li G. Quan Z. Synthesis and evaluation of antidepressant activities of 5-Aryl-4,5-dihydrotetrazolo [1,5-a]thieno[2,3-e]pyridine derivatives. Molecules 2019 24 10 1857 10.3390/molecules24101857 31091808
    [Google Scholar]
  6. Grover G. Pal R. Bhatia R. Yar M.S. Nath R. Singh S. Raj K. Kumar B. Akhtar M.J. Design, synthesis, and pharmacological evaluation of aryl oxadiazole linked 1,2,4-triazine derivatives as anticonvulsant agents. Med. Chem. Res. 2022 31 5 781 793 10.1007/s00044‑022‑02880‑4
    [Google Scholar]
  7. Sayed A.R. Gomha S.M. Taher E.A. Muhammad Z.A. El-Seedi H.R. Gaber H.M. Ahmed M.M. One-Pot synthesis of novel thiazoles as potential anti-Cancer agents. Drug Des. Devel. Ther. 2020 14 1363 1375 10.2147/DDDT.S221263 32308369
    [Google Scholar]
  8. Mantzanidou M. Pontiki E. Hadjipavlou-Litina D. Pyrazoles and pyrazolines as anti-Inflammatory agents. Molecules 2021 26 11 3439 10.3390/molecules26113439 34198914
    [Google Scholar]
  9. Zerafa N. Cini M. Magri D.C. Molecular engineering of 1,3,5-triaryl-2-pyrazoline fluorescent logic systems responsive to acidity and oxidisability and attachment to polymer beads. Mol. Syst. Des. Eng. 2021 6 1 93 99 10.1039/D0ME00136H
    [Google Scholar]
  10. Almahdi M.M. Saeed A.E.M. Metwally N.H. Synthesis and antimicrobial activity of some new pyrazoline derivatives bearing sulfanilamido moiety. Eur. J. Chem. 2019 10 1 30 36 10.5155/eurjchem.10.1.30‑36.1791
    [Google Scholar]
  11. Uddin A. Singh V. Irfan I. Mohammad T. Singh Hada R. Imtaiyaz Hassan M. Abid M. Singh S. Identification and structure–activity relationship (SAR) studies of carvacrol derivatives as potential anti-malarial against Plasmodium falciparum falcipain-2 protease. Bioorg. Chem. 2020 103 104142 10.1016/j.bioorg.2020.104142 32763521
    [Google Scholar]
  12. Paronikyan E.G. Ogannisyan A.V. Paronikyan R.G. Dzhagatspanyan I.A. Nazaryan I.M. Akopyan A.G. Minasyan N.S. Synthesis and neurotropic activity of 4-phenylpyridine-3-carboxylic acid and 3-hydroxy-4-phenylthieno[2,3-b]-pyridine derivatives. Pharm. Chem. J. 2019 52 10 839 843 10.1007/s11094‑019‑1911‑0
    [Google Scholar]
  13. Kumar L. Lal K. Kumar A. Paul A.K. Kumar A. Pyrazoline tethered 1,2,3-triazoles: Synthesis, antimicrobial evaluation and in silico studies. J. Mol. Struct. 2021 1246 131154 10.1016/j.molstruc.2021.131154
    [Google Scholar]
  14. Abeed A.A.O. Jaleel G.A.A. Youssef M.S.K. Novel heterocyclic hybrids based on 2-pyrazoline: Synthesis and assessment of anti-inflammatory and analgesic activities. Curr. Org. Synth. 2019 16 6 921 930 10.2174/1570179416666190703115133 31984913
    [Google Scholar]
  15. El-Kazak A.M. El-Gohary N.M. Badran A.S. Ibrahim M.A. Synthesis and chemical reactivity of the novel 3-chloro-3-(4-chlorocoumarin-3-yl)prop-2-enal. Tetrahedron 2019 75 29 3923 3932 10.1016/j.tet.2019.06.013
    [Google Scholar]
  16. Tok F. İrem Abas B. Çevik Ö. Koçyiğit-Kaymakçıoğlu B. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents. Bioorg. Chem. 2020 102 104063 10.1016/j.bioorg.2020.104063 32663669
    [Google Scholar]
  17. Ahamed L.S. Ali R.A. Ahmed R.S. Solvent-free synthesis of new chalcone derivatives from 3-nitro phthalic acid and evaluation of their biological activities. Egypt. J. Chem. 2021 0 0 0 10.21608/ejchem.2021.55742.3176
    [Google Scholar]
  18. Narwal S. Kumar S. Verma P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed. 2021 47 4 1625 1641 10.1007/s11164‑020‑04359‑6
    [Google Scholar]
  19. Jain S.K. Singhal R. Jain N.K. Synthesis, characterization and biological activity of pyrazoline derivatives. Res. J. Pharma. Technol. 2021 14 6223 6227 10.52711/0974‑360X.2021.01077
    [Google Scholar]
  20. Sadgir N.V. Synthesis, characterization and antimicrobial activity of chalcones, pyrazolines and pyrimidine derivatives. World J. Pharma. Res. 2021 10 3 2202 10.17605/OSF.IO/X5JHP
    [Google Scholar]
  21. Kalaiselvi E. Arunadevi R. Sashikala S. Synthesis, characterization and antimicrobial activity of A chalcone derivative. J. Sci. Technol. 2020 5 Volume 5 335 343 10.46243/jst.2020.v5.i4.pp335‑343
    [Google Scholar]
  22. Uppar V. Chandrashekharappa S. Basarikatt A.I. Banuprakash G. Mohan M.K. Chougala M. Mudnakudu-Nagaraju K.K. Ningegowda R. Synthesis, antibacterial, and antioxidant studies of 7-amino-3-(4-fluorobenzoyl)indolizine-1-carboxylate derivatives. J. Appl. Pharm. Sci. 2020 10 2 77 85 10.7324/JAPS.2020.102013
    [Google Scholar]
  23. Hosny M.A. Zaki Y.H. Mokbel W.A. Abdelhamid A.O. Synthesis, characterization, antimicrobial activity and anticancer of some new pyrazolo [1, 5-a] pyrimidines and pyrazolo [5, 1-c] 1, 2, 4-triazines. Med. Chem. 2020 16 6 750 760 10.2174/1573406415666190620144404 31218963
    [Google Scholar]
  24. Bhatt J.J. Dhakhda S.K. Trivedi M.H. Synthesis, characterization and anti-microbial activity of pyrazole capped 2-azitidinone derivatives. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2019 5 1 647 652 10.26479/2019.0501.54
    [Google Scholar]
  25. Mohamed dawoud nabil fathall hosni anwer Synthesis and biological activity of a new class of enaminonitrile pyrazole. Egypt. J. Chem. 2021 0 0 0 10.21608/ejchem.2021.62916.3350
    [Google Scholar]
  26. Shaikh M.M. Patel A.P. Patel S.P. Chikhalia K.H. Synthesis, in vitro COX-1/COX-2 inhibition testing and molecular docking study of novel 1,4-benzoxazine derivatives. New J. Chem. 2019 43 26 10305 10317 10.1039/C9NJ00684B
    [Google Scholar]
  27. R K. Bodke Y.D. Synthesis, analgesic and anti-inflammatory activity of benzofuran pyrazole heterocycles. Chemical Data Collections 2020 28 100453 10.1016/j.cdc.2020.100453
    [Google Scholar]
  28. El-Ossaily Y.A. Alanazi N.M.M. Althobaiti I.O. Altaleb H.A. Al-Muailkel N.S. El-Sayed M.Y. Hussein M.F. Ahmed I.M. Alanazi M.M. Fawzy A. Abdel-Raheem S.A.A. Tolba M.S. Multicomponent approach to the synthesis and spectral characterization of some 3,5-pyrazolididione derivatives and evaluation as anti-inflammatory agents. Curr. Chem. Lett. 2024 13 1 127 140 10.5267/j.ccl.2023.8.003
    [Google Scholar]
  29. Trukhanova Y.A. Kolesnik D.A. Yakovlev I.P. Spiridonova D.V. Yuskovets V.N. Kuvaeva E.V. Ksenofontova G.V. Semakova T.L. An efficient synthesis and characterization of novel (Z)-1-phenyl(arylamino)methylpyrrolidine-2,5-dione derivatives as potential analgesic agents. Chem. Data Collect.. 2021 35 100770 10.1016/j.cdc.2021.100770
    [Google Scholar]
  30. Deng Z. Feng J. Zhou F. Ouyang Y. Ma H. Zhou W. Zhang X. Cai Q. Copper( i )–catalyzed intramolecular asymmetric C-arylation of acyclic β-ester amides: Enantioselective formation of chiral oxindoles. Org. Chem. Front. 2021 8 15 4211 4216 10.1039/D1QO00568E
    [Google Scholar]
  31. Bai X.D. Zhang Q.F. He Y. Enantioselective iridium catalyzed α-alkylation of azlactones by a tandem asymmetric allylic alkylation/aza-Cope rearrangement. Chem. Commun. (Camb.) 2019 55 39 5547 5550 10.1039/C9CC01450K 30993284
    [Google Scholar]
  32. Xie F. Zhao J. Ren D. Xue J. Wang J. Zhao Q. Liu L. Liu X. Enantio-and diastereoselective copper-catalyzed synthesis of chiral aziridines with vicinal tetrasubstituted stereocenters. Org. Lett. 2023 25 47 8530 8534 10.1021/acs.orglett.3c03565 37975634
    [Google Scholar]
  33. Hu F. Zhang H. Chu Y. Hui X.P. Efficient enantioselective synthesis of pyrazolines and isoxazolines enabled by an iridium-catalyzed intramolecular allylic substitution reaction. Org. Chem. Front. 2022 9 10 2734 2738 10.1039/D2QO00147K
    [Google Scholar]
  34. Sebest F. Lachhani K. Pimpasri C. Casarrubios L. White A.J.P. Rzepa H.S. Díez-González S. Cycloaddition reactions of azides and electron-deficient alkenes in deep eutectic solvents: Pyrazolines, aziridines and other surprises. Adv. Synth. Catal. 2020 362 9 1877 1886 10.1002/adsc.201901614
    [Google Scholar]
  35. Osipov D.V. Korzhenko K.S. Rashchepkina D.A. Artemenko A.A. Demidov O.P. Shiryaev V.A. Osyanin V.A. Catalyst-free formal [3 + 2] cycloaddition of stabilized N, N -cyclic azomethine imines to 3-nitrobenzofurans and 3-nitro-4 H -chromenes: Access to heteroannulated pyrazolo[1,2- a ]pyrazoles. Org. Biomol. Chem. 2021 19 46 10156 10168 10.1039/D1OB01377G 34778893
    [Google Scholar]
  36. Yu X.Y. Xiao W.J. Chen J.R. Synthesis of trisubstituted 1, 2, 4‐triazoles from azlactones and aryldiazonium salts by a cycloaddition/decarboxylation cascade. Eur. J. Org. Chem. 2019 2019 41 6994 6998 10.1002/ejoc.201901467
    [Google Scholar]
  37. Angyal A. Demjén A. Wölfling J. Puskás L.G. Kanizsai I. Acid-catalyzed 1, 3-dipolar cycloaddition of 2 H-azirines with nitrones: An unexpected access to 1, 2, 4, 5-tetrasubstituted imidazoles. J. Org. Chem. 2020 85 5 3587 3595 10.1021/acs.joc.9b03288 32020808
    [Google Scholar]
  38. Liang Q. Zeng Y. Mendez Ocampo P.A. Zhu H. Qu Z.W. Grimme S. Song D. [4+1] cyclization of α-diazo esters and mesoionic N-heterocyclic olefins. Chem. Commun. (Camb.) 2023 59 32 4770 4773 10.1039/D3CC01139A 37000520
    [Google Scholar]
  39. Black L.E. Longo J.F. Carroll S.L. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am. J. Pathol. 2019 189 10 1898 1912 10.1016/j.ajpath.2019.06.008 31351986
    [Google Scholar]
  40. Xia X. Gong C. Zhang Y. Xiong H. The history and development of HER2 inhibitors. Pharmaceuticals 2023 16 10 1450 10.3390/ph16101450 37895921
    [Google Scholar]
  41. Choi B. Cha M. Eun G.S. Lee D.H. Lee S. Ehsan M. Chae P.S. Heo W.D. Park Y. Yoon T.Y. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. Elife 2020 9 e53934 10.7554/eLife.53934
    [Google Scholar]
  42. Vellingiri B. Iyer M. Devi Subramaniam M. Jayaramayya K. Siama Z. Giridharan B. Narayanasamy A. Abdal Dayem A. Cho S.G. Understanding the role of the transcription factor Sp1 in ovarian cancer: From theory to practice. Int. J. Mol. Sci. 2020 21 3 1153 10.3390/ijms21031153 32050495
    [Google Scholar]
  43. Majumder A. HER3: Toward the prognostic significance, therapeutic potential, current challenges, and future therapeutics in different types of cancer. Cells 2023 12 21 2517 10.3390/cells12212517 37947595
    [Google Scholar]
  44. Zhang Y. Targeting epidermal growth factor receptor for cancer treatment: Abolishing both kinase-dependent and kinase-independent functions of the receptor. Pharmacol. Rev. 2023 75 6 1218 1232 10.1124/pharmrev.123.000906 37339882
    [Google Scholar]
  45. Higano C.S. Armstrong A.J. Sartor A.O. Vogelzang N.J. Kantoff P.W. McLeod D.G. Pieczonka C.M. Penson D.F. Shore N.D. Vacirca J. Concepcion R.S. Tutrone R.F. Nordquist L.T. Quinn D.I. Kassabian V. Scholz M.C. Harmon M. Tyler R.C. Chang N.N. Tang H. Cooperberg M.R. Real‐world outcomes of sipuleucel‐T treatment in PROCEED, a prospective registry of men with metastatic castration‐resistant prostate cancer. Cancer 2019 125 23 4172 4180 10.1002/cncr.32445 31483485
    [Google Scholar]
  46. Wei X.X. Kwak L. Hamid A. He M. Sweeney C. Flanders S.C. Harmon M. Choudhury A.D. Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: Experience at Dana Farber and in the proceed Registry. Prostate Cancer Prostatic Dis. 2022 25 2 314 319 10.1038/s41391‑022‑00493‑x 35145218
    [Google Scholar]
  47. Madan R.A. Antonarakis E.S. Drake C.G. Fong L. Yu E.Y. McNeel D.G. Lin D.W. Chang N.N. Sheikh N.A. Gulley J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T. JNCI. J. Natl. Cancer Inst. 2020 112 6 562 573 10.1093/jnci/djaa021 32145020
    [Google Scholar]
  48. Gündoğdu S. Türkeş C. Arslan M. Demir Y. Beydemir Ş. New isoindole‐1, 3‐dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect 2019 4 45 13347 13355 10.1002/slct.201903458
    [Google Scholar]
  49. Rana M. Hungyo H. Parashar P. Ahmad S. Mehandi R. Tandon V. Raza K. Assiri M.A. Ali T.E. El-Bahy Z.M. Rahisuddin Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole–pyrazoline hybrid derivatives. RSC Advances 2023 13 38 26766 26779 10.1039/D3RA04873J 37681049
    [Google Scholar]
  50. Haq I. Thermodynamics of drug–DNA interactions. Arch. Biochem. Biophys. 2002 403 1 1 15 10.1016/S0003‑9861(02)00202‑3 12061796
    [Google Scholar]
  51. Bag S. Bhowmik S. Fluorescence Spectroscopy: A useful method to explore the interactions of small molecule ligands with DNA structures. Reverse Engineering of Regulatory Networks. Springer Mandal S. 2023 33 39 10.1007/978‑1‑0716‑3461‑5_3
    [Google Scholar]
  52. Benfenati E. Carnesecchi E. Roncaglioni A. Baldin R. Ceriani L. Ciacci A. Kovarich S. Sartori L. Mostrag A. Magdziarz T. Yang C. Maintenance,update and further development of EFSA’s Chemical Hazards: OpenFoodTox 2.0. EFSA Support. Publ. 2020 17 3 1822E 10.2903/sp.efsa.2020.EN‑1822
    [Google Scholar]
  53. Kashyap D. Garg V.K. Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol. 2021 125 73 120 10.1016/bs.apcsb.2021.01.003 33931145
    [Google Scholar]
  54. Bock F.J. Riley J.S. When cell death goes wrong: Inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ. 2023 30 2 293 303 10.1038/s41418‑022‑01082‑0 36376381
    [Google Scholar]
  55. Nössing C. Ryan K.M. 50 years on and still very much alive: ‘Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br. J. Cancer 2023 128 3 426 431 10.1038/s41416‑022‑02020‑0 36369364
    [Google Scholar]
  56. Xu X. Lai Y. Hua Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep. 2019 39 1 BSR20180992 10.1042/BSR20180992 30530866
    [Google Scholar]
  57. a Caruso S. Atkin-Smith G.K. Baxter A.A. Tixeira R. Jiang L. Ozkocak D.C. Santavanond J.P. Hulett M.D. Lock P. Poon I.K.H. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis 2021 58 596 623 10.1177/03009858211005537
    [Google Scholar]
  58. a Caruso S. Atkin-Smith G.K. Baxter A.A. Tixeira R. Jiang L. Ozkocak D.C. Santavanond J.P. Hulett M.D. Lock P. Poon I.K.H. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis 2021 58 596 623 10.1177/03009858211005537
    [Google Scholar]
  59. Jan R. Chaudhry G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  60. Ghafouri-Fard S. Khoshbakht T. Hussen B.M. Dong P. Gassler N. Taheri M. Baniahmad A. Dilmaghani N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022 22 1 325 10.1186/s12935‑022‑02747‑z 36266723
    [Google Scholar]
  61. Łukasik P. Załuski M. Gutowska I. Cyclin-Dependent Kinases (CDK) and their role in diseases development–review. Int. J. Mol. Sci. 2021 22 6 2935 10.3390/ijms22062935 33805800
    [Google Scholar]
  62. Gao X. Leone G.W. Wang H. Cyclin D-CDK4/6 functions in cancer. Adv. Cancer Res. 2020 148 147 169 10.1016/bs.acr.2020.02.002 32723562
    [Google Scholar]
  63. Selvaraj C. Therapeutic targets in cancer treatment: Cell cycle proteins. Adv. Protein Chem. Struct. Biol. 2023 135 313 342 10.1016/bs.apcsb.2023.02.003 37061336
    [Google Scholar]
  64. Massacci G. Perfetto L. Sacco F. The cyclin-dependent kinase 1: more than a cell cycle regulator. Br. J. Cancer 2023 129 11 1707 1716 10.1038/s41416‑023‑02468‑8 37898722
    [Google Scholar]
  65. Kõivomägi M. Swaffer M.P. Turner J.J. Marinov G. Skotheim J.M. G 1 cyclin–Cdk promotes cell cycle entry through localized phosphorylation of RNA polymerase II. Science 2021 374 6565 347 351 10.1126/science.aba5186 34648313
    [Google Scholar]
  66. Warren C.F.A. Wong-Brown M.W. Bowden N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019 10 3 177 10.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  67. Feno S. Rizzuto R. Raffaello A. Vecellio Reane D. The molecular complexity of the mitochondrial calcium uniporter. Cell Calcium 2021 93 102322 10.1016/j.ceca.2020.102322 33264708
    [Google Scholar]
  68. Alevriadou B.R. Patel A. Noble M. Ghosh S. Gohil V.M. Stathopulos P.B. Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol. 2021 320 4 C465 C482 10.1152/ajpcell.00502.2020 33296287
    [Google Scholar]
  69. Xia Y. Zhang X. An P. Luo J. Luo Y. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling. Int. J. Mol. Sci. 2023 24 4 3483 10.3390/ijms24043483 36834896
    [Google Scholar]
  70. Ziada A.S. Smith M.S.R. Côté H.C.F. Updating the free radical theory of aging. Front. Cell Dev. Biol. 2020 8 575645 10.3389/fcell.2020.575645 33043009
    [Google Scholar]
  71. Genders A.J. Holloway G.P. Bishop D.J. Are alterations in skeletal muscle mitochondria a cause or consequence of insulin resistance. Int. J. Mol. Sci. 2020 21 18 6948 10.3390/ijms21186948 32971810
    [Google Scholar]
  72. Di Gregorio J. Petricca S. Iorio R. Toniato E. Flati V. Mitochondrial and metabolic alterations in cancer cells. Eur. J. Cell Biol. 2022 101 3 151225 10.1016/j.ejcb.2022.151225 35453093
    [Google Scholar]
  73. Cassim S. Vučetić M. Ždralević M. Pouyssegur J. Warburg and Beyond: The power of mitochondrial metabolism to collaborate or replace fermentative glycolysis in cancer. Cancers 2020 12 5 1119 10.3390/cancers12051119 32365833
    [Google Scholar]
  74. Fischer A. Alsina-Sanchis E. Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr. Opin. Cell Biol. 2024 86 102287 10.1016/j.ceb.2023.102287 38029706
    [Google Scholar]
  75. Al-Ostoot F.H. Salah S. Khamees H.A. Khanum S.A. 2020 10.1016/j.ctarc.2021.100422
  76. Rani V. Prabhu A. Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment. Curr. Pharm. Des. 2021 27 7 919 931 10.2174/1381612826666201002145454 33006535
    [Google Scholar]
  77. Dieterich L.C. Tacconi C. Ducoli L. Detmar M. 2022
  78. Ghalehbandi S. Yuzugulen J. Pranjol M.Z.I. Pourgholami M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023 949 175586 10.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  79. Fares J. Fares M.Y. Khachfe H.H. Salhab H.A. Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020 5 1 28 10.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  80. Ribatti D. Pezzella F. Overview on the different patterns of tumor vascularization. Cells 2021 10 3 639 10.3390/cells10030639 33805699
    [Google Scholar]
  81. Thankamony A.P. Saxena K. Murali R. Jolly M.K. Nair R. Cancer stem cell plasticity – A deadly deal. Front. Mol. Biosci. 2020 7 79 10.3389/fmolb.2020.00079 32426371
    [Google Scholar]
  82. Nacev B.A. Jones K.B. Intlekofer A.M. Yu J.S.E. Allis C.D. Tap W.D. Ladanyi M. Nielsen T.O. The epigenomics of sarcoma. Nat. Rev. Cancer 2020 20 10 608 623 10.1038/s41568‑020‑0288‑4 32782366
    [Google Scholar]
  83. Madrigal P. Deng S. Feng Y. Militi S. Goh K.J. Nibhani R. Grandy R. Osnato A. Ortmann D. Brown S. Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat. Commun. 2023 14 1 405 10.1038/s41467‑023‑36116‑9 36697417
    [Google Scholar]
  84. Kunnumakkara A.B. Bordoloi D. Sailo B.L. Roy N.K. Thakur K.K. Banik K. Shakibaei M. Gupta S.C. Aggarwal B.B. Cancer drug development: The missing links. Exp. Biol. Med. (Maywood) 2019 244 8 663 689 10.1177/1535370219839163 30961357
    [Google Scholar]
  85. Neophytou C.M. Panagi M. Stylianopoulos T. Papageorgis P. The role of tumor microenvironment in cancer metastasis. Cancers 2021 13 9 2053 10.3390/cancers13092053 33922795
    [Google Scholar]
  86. Fousek-Schuller V. Borgstahl G. The intriguing mystery of RPA phosphorylation in DNA double-strand break repair. Genes 2024 15 2 167 10.3390/genes15020167 38397158
    [Google Scholar]
  87. Stecoza C.E. Nitulescu G.M. Draghici C. Caproiu M.T. Hanganu A. Olaru O.T. Mihai D.P. Bostan M. Mihaila M. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation. Int. J. Mol. Sci. 2023 24 24 17476 10.3390/ijms242417476 38139304
    [Google Scholar]
  88. Fu J. Su X. Li Z. Deng L. Liu X. Feng X. Peng J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene 2021 40 28 4625 4651 10.1038/s41388‑021‑01863‑w 34145400
    [Google Scholar]
  89. Tiwari P.C. Pal R. Chaudhary M.J. Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev. Res. 2023 84 8 1652 1663 10.1002/ddr.22115 37712494
    [Google Scholar]
  90. Constantinescu T. Lungu C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci. 2021 22 21 11306 10.3390/ijms222111306 34768736
    [Google Scholar]
  91. Kavanagh M.E. Horning B.D. Khattri R. Roy N. Lu J.P. Whitby L.R. Ye E. Brannon J.C. Parker A. Chick J.M. Eissler C.L. Wong A.J. Rodriguez J.L. Rodiles S. Masuda K. Teijaro J.R. Simon G.M. Patricelli M.P. Cravatt B.F. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat. Chem. Biol. 2022 18 12 1388 1398 10.1038/s41589‑022‑01098‑0 36097295
    [Google Scholar]
  92. Balsa L.M. Baran E.J. León I.E. Copper complexes as antitumor agents: In vitro and in vivo evidence. Curr. Med. Chem. 2023 30 5 510 557 10.2174/0929867328666211117094550 34789122
    [Google Scholar]
  93. Vyas A.K. Lunagariya K.S. Khunt R.C. Multi-step synthesis of novel pyrazole derivatives as anticancer agents. Poly. Aro. Com. 2023 35 1 4 10.1080/10406638.2023.2278664
    [Google Scholar]
  94. Wang L. Doherty G.A. Judd A.S. Tao Z.F. Hansen T.M. Frey R.R. Song X. Bruncko M. Kunzer A.R. Wang X. Wendt M.D. Flygare J.A. Catron N.D. Judge R.A. Park C.H. Shekhar S. Phillips D.C. Nimmer P. Smith M.L. Tahir S.K. Xiao Y. Xue J. Zhang H. Le P.N. Mitten M.J. Boghaert E.R. Gao W. Kovar P. Choo E.F. Diaz D. Fairbrother W.J. Elmore S.W. Sampath D. Leverson J.D. Souers A.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med. Chem. Lett. 2020 11 10 1829 1836 10.1021/acsmedchemlett.9b00568 33062160
    [Google Scholar]
  95. Ali Y.M. Ismail M.F. Abu El-Azm F.S.M. Marzouk M.I. Design, synthesis, and pharmacological assay of novel compounds based on pyridazine moiety as potential antitumor agents. J. Heterocycl. Chem. 2019 56 9 2580 2591 10.1002/jhet.3662
    [Google Scholar]
  96. Aljohani G.F. Abolibda T.Z. Alhilal M. Al-Humaidi J.Y. Alhilal S. Ahmed H.A. Gomha S.M. Novel thiadiazole-thiazole hybrids: Synthesis, molecular docking, and cytotoxicity evaluation against liver cancer cell lines. J. Taibah Univ. Sci. 2022 16 1 1005 1015 10.1080/16583655.2022.2135805
    [Google Scholar]
  97. Abdelgawad N. Ismail M.F. Hekal M.H. Marzouk M.I. Design, synthesis, and evaluation of some novel heterocycles bearing pyrazole moiety as potential anticancer agents. J. Heterocycl. Chem. 2019 56 6 1771 1779 10.1002/jhet.3544
    [Google Scholar]
  98. Niu Z. Ma S. Zhang L. Liu Q. Zhang S. Discovery of novel quinazoline derivatives as potent antitumor agents. Molecules 2022 27 12 3906 10.3390/molecules27123906 35745027
    [Google Scholar]
  99. Stefanes N.M. Toigo J. Maioral M.F. Jacques A.V. Chiaradia-Delatorre L.D. Perondi D.M. Ribeiro A.A.B. Bigolin Á. Pirath I.M.S. Duarte B.F. Nunes R.J. Santos-Silva M.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg. Med. Chem. 2019 27 2 375 382 10.1016/j.bmc.2018.12.012 30579801
    [Google Scholar]
  100. Rana M. Faizan M.I. Dar S.H. Ahmad T. Rahisuddin Design and synthesis of carbothioamide/carboxamide-based pyrazoline analogs as potential anticancer agents: Apoptosis, molecular docking, ADME assay, and DNA binding studies. ACS Omega 2022 7 26 22639 22656 10.1021/acsomega.2c02033 35811873
    [Google Scholar]
  101. Fakhry M.M. Mahmoud K. Nafie M.S. Noor A.O. Hareeri R.H. Salama I. Kishk S.M. Rational design, synthesis and biological evaluation of novel pyrazoline-based antiproliferative agents in MCF-7 cancer cells. Pharmaceuticals 2022 15 10 1245 10.3390/ph15101245 36297358
    [Google Scholar]
  102. Haider K. Sharma S. Pokharel Y.R. Das S. Joseph A. Najmi A.K. Ahmad F. Yar M.S. Synthesis, biological evaluation, and in silico studies of indole‐tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα. Drug Dev. Res. 2022 83 7 1555 1577 10.1002/ddr.21976 35898169
    [Google Scholar]
  103. Tilekar K. Upadhyay N. Meyer-Almes F.J. Loiodice F. Anisimova N.Y. Spirina T.S. Sokolova D.V. Smirnova G.B. Choe J. Pokrovsky V.S. Lavecchia A. S Ramaa C. Synthesis and biological evaluation of pyrazoline and pyrrolidine‐2, 5‐dione hybrids as potential antitumor agents. ChemMedChem 2020 15 19 1813 1825 10.1002/cmdc.202000458 32715626
    [Google Scholar]
  104. Karen S. Jaime M. Gary G.B. Method of using COX-2 inhibitors in the treatment and prevention of neoplasia. Patent US5972986-A 1999
  105. Steven K.R. Lee B.S. Allen B. Stephan C. Ye J.H. Indazole comound and pharmaceutical association for inhibiting protein kinase and method for their use. Patent US6534524-B1 2003
  106. Berglee H. Erik V. Zhengying P. Inhibitors of Bruton tyrosine kinase. Patent US8476284-B2 2013
  107. Dong Z. Sheng H.W. Mathew T.R. Antoinettec R. Jiewi Q.I. Subsituted acetylenic imidazo [1,2-A] pyridazines as kinase inhibitors. Patent US9029533-B2 2015
  108. Jagabandhu D. Ramesh P. Ping C. Derek N. Arthur D. Cyclic protein tyrosine kinase inhibitor. Patent US6596746-B1 2003
  109. Thomas H. Use of RNAI inhibiting PARP activity for the manufacture of a medicamentfor a treatment cancer. Patent US8859562-B2 2014
  110. Johanees J.E Neils G.B. Subsituted 5-flouro-1H- pyrazolopyridines and their use. Patent US9993476B2 2018
  111. Kandeel E.M. Abdullah A.N. Taher A.L. Yousef A. Treatment of fungal infection using dabigartin etexilate. Patent US11446286-B1 2022
  112. Elizabeth A.E. Scott W.G. Metabolites os selective androgen receptor modulators. Patent WO2009155481A1 2021
  113. Jun L. Zhen W. Cheng S.M. A method of simultaneous determination of volatile phenolic substances in smoked met products based on gas chromatography-mass spectrometry. Patent CN115248278-A 2022
/content/journals/mc/10.2174/0115734064339011241129075522
Loading
/content/journals/mc/10.2174/0115734064339011241129075522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Pyrazoline ; synthesis ; anticancer activity ; apoptosis ; cancer ; cell cycle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test