Skip to content
2000
image of Exploring 1-Azaaurones: A Concise Overview of Synthetic Strategies and Biological Activities

Abstract

Azaaurones are formed by the replacement of intra-cyclic oxygen of the central core of a five-membered furan ring or any other carbon of aurones by a nitrogen atom. However, 1-azaaurone obtained by the replacement of intra-cyclic oxygen is the most prominent and desirable. They are the bioactive compounds acting as potential anti-inflammatory, anticancer, antibacterial, and antiviral agents. They comprise relatively less explored, pharmacologically active compounds exhibiting diverse biological activities that can act as potential lead compounds in the context of drug development. This review represents a comprehensive and updated overview of the synthetic protocols and biological activities of 1-azaaurones and their derivatives, enabling the readers to know about the vast medicinal potential of azaaurones and their derivatives in different areas and prompt the medicinal chemists to emphasize their further exploration. Furthermore, this review also covers some important Structure-Activity Relationships (SAR), highlighting the most potential compounds in each series, providing pivotal scope for further improvisation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064357796250120060204
2025-01-23
2025-06-19
Loading full text...

Full text loading...

References

  1. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  2. Aggarwal R. Kumar P. Kumar S. Sadana R. Lwanga R. Campbell J. Chaubal V. Design, synthesis, and in vitro cytotoxic studies of some novel arylidene-hydrazinyl-thiazoles as anticancer and apoptosis-inducing agents. ACS Omega 2024 9 37 38832 38845 10.1021/acsomega.4c04924 39310139
    [Google Scholar]
  3. Aggarwal R. Kumar P. Hooda M. Singh R. Kumar P. Efficient synthesis of promising antidiabetic triazinoindole analogues via a solvent-free method: investigating the reaction of 1,3-diketones and 2,5-dihydro-3 H -[1,2,4]triazino[5,6- b ]indole-3-thione. Org. Biomol. Chem. 2025 14 1487 10.1039/D4OB01487A 39540780
    [Google Scholar]
  4. Borah P. Hazarika S. Chettri A. Sharma D. Deka S. Venugopala K.N. Shinu P. Al-Shar’i N.A. Bardaweel S.K. Deb P.K. Heterocyclic Compounds as Antimicrobial Agents. Viral, Parasitic, Bacterial, and Fungal Infections. Elsevier 2023 781 804 10.1016/B978‑0‑323‑85730‑7.00068‑0
    [Google Scholar]
  5. Qadir T. Amin A. Sharma P.K. Jeelani I. Abe H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J. 2022 16 1 e187410452202280 10.2174/18741045‑v16‑e2202280
    [Google Scholar]
  6. Saroha B. Kumar G. Kumar R. Kumari M. Kumar S. A minireview of 1,2,3‐triazole hybrids with O‐heterocycles as leads in medicinal chemistry. Chem. Biol. Drug Des. 2022 100 6 843 869 10.1111/cbdd.13966 34592059
    [Google Scholar]
  7. Biswas T. Mittal R.K. Sharma V. Kanupriya Mishra I. Nitrogen-fused heterocycles: empowering anticancer drug discovery. Med. Chem. 2024 20 4 369 384 10.2174/0115734064278334231211054053 38192143
    [Google Scholar]
  8. Sui G. Li T. Zhang B. Wang R. Hao H. Zhou W. Recent advances on synthesis and biological activities of aurones. Bioorg. Med. Chem. 2021 29 115895 10.1016/j.bmc.2020.115895 33271454
    [Google Scholar]
  9. Lathwal E. Kumar S. A review of the various synthetic approaches to access aurone derivatives and their biological activities. Curr. Org. Chem. 2023 27 4 308 351 10.2174/1385272827666230407110607
    [Google Scholar]
  10. Lathwal E. Kumar S. Sahoo P.K. Ghosh S. Mahata S. Nasare V.D. Kapavarapu R. Kumar S. Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line. Heliyon 2024 10 5 e26843 10.1016/j.heliyon.2024.e26843 38463825
    [Google Scholar]
  11. Boumendjel A. Aurones: a subclass of flavones with promising biological potential. Curr. Med. Chem. 2003 10 23 2621 2630 10.2174/0929867033456468 14529476
    [Google Scholar]
  12. Chalkha M. Bakhouch M. Akhazzane M. Bourass M. Nicolas Y. Al Houari G. El Yazidi M. Design, synthesis and characterization of functionalized pyrazole derivatives bearing amide and sulfonamide moieties from aza-aurones. J. Chem. Sci. 2020 132 1 86 10.1007/s12039‑020‑01792‑3
    [Google Scholar]
  13. Mazziotti I. Petrarolo G. La Motta C. Aurones: A golden resource for active compounds. Molecules 2021 27 1 2 10.3390/molecules27010002 35011233
    [Google Scholar]
  14. Geissman T.A. Heaton C.D. Anthochlor Pigments. IV. The Pigments of Coreopsis grandiflora, Nutt. I. J. Am. Chem. Soc. 1943 65 4 677 683 10.1021/ja01244a050
    [Google Scholar]
  15. Bandgar B.P. Patil S.A. Korbad B.L. Biradar S.C. Nile S.N. Khobragade C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem. 2010 45 7 3223 3227 10.1016/j.ejmech.2010.03.045 20430485
    [Google Scholar]
  16. Zhu Q. Zheng X. Tan Y. Luo Z. Yao X. Chen H. Biological activities of aurones: a brief summary. Mini Rev. Org. Chem. 2024 21 10.2174/0118756298277226231128032502
    [Google Scholar]
  17. Alsayari A. Muhsinah A.B. Hassan M.Z. Ahsan M.J. Alshehri J.A. Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur. J. Med. Chem. 2019 166 417 431 10.1016/j.ejmech.2019.01.078 30739824
    [Google Scholar]
  18. Kumar G. Saroha B. Kumari B. Ghosh S. Nassare V.D. Kumar S. Exploring the antiproliferative potential of morpholine‐functionalized aurones: design, synthesis, SAR, DFT, hirshfeld surface, 3D energy frameworks and molecular docking analysis. ChemistrySelect 2024 9 20 e202400749 10.1002/slct.202400749
    [Google Scholar]
  19. Demirayak S. Yurttas L. Gundogdu-Karaburun N. Karaburun A.C. Kayagil I. Synthesis and anti-cancer activity evaluation of new aurone derivatives. J. Enzyme Inhib. Med. Chem. 2015 30 5 816 825 10.3109/14756366.2014.976568 25716125
    [Google Scholar]
  20. Alsaif G. Almosnid N. Hawkins I. Taylor Z. Knott D.L.T. Handy S. Altman E. Gao Y. Evaluation of fourteen aurone derivatives as potential anti-cancer agents. Curr. Pharm. Biotechnol. 2017 18 5 384 390 10.2174/1389201018666170502112303 28464771
    [Google Scholar]
  21. Jardosh H.H. Patel M.P. Antimicrobial and antioxidant evaluation of new quinolone based aurone analogs. Arab. J. Chem. 2017 10 S3781 S3791 10.1016/j.arabjc.2014.05.014
    [Google Scholar]
  22. Zheng Y.Z. Deng G. Zhang Y.C. Multiple free radical scavenging reactions of aurones. Phytochemistry 2021 190 112853 10.1016/j.phytochem.2021.112853 34214923
    [Google Scholar]
  23. Olleik H. Yahiaoui S. Roulier B. Courvoisier-Dezord E. Perrier J. Pérès B. Hijazi A. Baydoun E. Raymond J. Boumendjel A. Maresca M. Haudecoeur R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019 165 133 141 10.1016/j.ejmech.2019.01.022 30665143
    [Google Scholar]
  24. Hassan G.S. Georgey H.H. George R.F. Mohamed E.R. Aurones and furoaurones: Biological activities and synthesis. Bull. Fac. Pharm. Cairo Univ. 2018 56 2 121 127 10.1016/j.bfopcu.2018.06.002
    [Google Scholar]
  25. Sutton C.L. Taylor Z.E. Farone M.B. Handy S.T. Antifungal activity of substituted aurones. Bioorg. Med. Chem. Lett. 2017 27 4 901 903 10.1016/j.bmcl.2017.01.012 28094180
    [Google Scholar]
  26. Caleffi G.S. Rosa A.S. de Souza L.G. Avelar J.L.S. Nascimento S.M.R. de Almeida V.M. Tucci A.R. Ferreira V.N. da Silva A.J.M. Santos-Filho O.A. Miranda M.D. Costa P.R.R. Aurones: A promising scaffold to inhibit SARS-COV-2 replication. J. Nat. Prod. 2023 86 6 1536 1549 10.1021/acs.jnatprod.3c00249 37257024
    [Google Scholar]
  27. Meguellati A. Ahmed-Belkacem A. Yi W. Haudecoeur R. Crouillère M. Brillet R. Pawlotsky J.M. Boumendjel A. Peuchmaur M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem. 2014 80 579 592 10.1016/j.ejmech.2014.04.005 24835816
    [Google Scholar]
  28. Samra R.M. Darwish M.S. Abou-Zeid N.A. Khojah E. Imieje V.O. Zaki A.A. Aurones as antidiabetic agents and their prebiotic activities. Future Pharmacol. 2023 3 3 625 636 10.3390/futurepharmacol3030040
    [Google Scholar]
  29. Ayaz M. Ali Shah S.W. Shoaib M. Shah F.A. Ahmed F. Synthesis, characterization and biological evaluation of aurones as potential neuroprotective agents. Future Med. Chem. 2024 16 16 1649 1663 10.1080/17568919.2024.2363713 38940451
    [Google Scholar]
  30. Nguyen P.T.V. Huynh H.A. Truong D.V. Tran T.D. Vo C.V.T. Exploring aurone derivatives as potential human pancreatic lipase inhibitors through molecular docking and molecular dynamics simulations. Molecules 2020 25 20 4657 10.3390/molecules25204657 33066044
    [Google Scholar]
  31. Kumar S. Lathwal E. Saroha B. Kumar G. Bhardwaj A. Bishnoi P. Rani M. Raghav N. Kumar R. Kumar S. Design, synthesis, molecular docking and biological studies of some novel pyrrolidine-triazole-aurone hybrids against digestive enzymes. Res. Chem. Intermed. 2024 50 3 1249 1271 10.1007/s11164‑023‑05221‑1
    [Google Scholar]
  32. Roussaki M. Costa Lima S. Kypreou A.M. Kefalas P. Cordeiro da Silva A. Detsi A. Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents. Int. J. Med. Chem. 2012 2012 1 8 10.1155/2012/196921 25374683
    [Google Scholar]
  33. Haudecoeur R. Boumendjel A. Recent advances in the medicinal chemistry of aurones. Curr. Med. Chem. 2012 19 18 2861 2875 10.2174/092986712800672085 22519399
    [Google Scholar]
  34. Kumar G. Lathwal E. Saroha B. Kumar S. Kumar S. Chauhan N.S. Kumar T. Synthesis and biological evaluation of quinoline‐based novel aurones. ChemistrySelect 2020 5 12 3539 3543 10.1002/slct.201904912
    [Google Scholar]
  35. Saroha B. Kumar G. Arya P. Raghav N. Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg. Chem. 2023 140 106805 10.1016/j.bioorg.2023.106805 37634269
    [Google Scholar]
  36. Saroha B. Kumar G. Kumar S. Kumari M. Rani M. Raghav N. Sahoo P.K. Ghosh S. Mahata S. Nasare V.D. Novel 1,2,3-triazole-aurone hybrids as cathepsin B inhibitors: One-pot synthesis, anti-proliferative, and drug modeling studies. Eur. J. Med. Chem. Rep. 2022 5 100056 10.1016/j.ejmcr.2022.100056
    [Google Scholar]
  37. Popova A.V. Bondarenko S.P. Frasinyuk M.S. Aurones: Synthesis and properties. Chem. Heterocycl. Compd. 2019 55 4-5 285 299 10.1007/s10593‑019‑02457‑x
    [Google Scholar]
  38. Lazinski L.M. Royal G. Robin M. Maresca M. Haudecoeur R. Bioactive aurones, indanones, and other hemiindigoid scaffolds: medicinal chemistry and photopharmacology perspectives. J. Med. Chem. 2022 65 19 12594 12625 10.1021/acs.jmedchem.2c01150 36126323
    [Google Scholar]
  39. Zwergel C. Gaascht F. Valente S. Diederich M. Bagrel D. Kirsch G. Aurones: Interesting natural and synthetic compounds with emerging biological potential. Nat. Prod. Commun. 2012 7 3 389 394 10.1177/1934578X1200700322
    [Google Scholar]
  40. Aggarwal R. Hooda M. Kumar P. Jain N. Dubey G.P. Chugh H. Chandra R. Visible-light-prompted synthesis and binding studies of 5,6-dihydroimidazo[2,1- b ]thiazoles with BSA and DNA using biophysical and computational methods. J. Org. Chem. 2022 87 6 3952 3966 10.1021/acs.joc.1c02471 35235320
    [Google Scholar]
  41. Aggarwal R. Hooda M. Kumar P. Kumar S. Singh S. Chandra R. An expeditious on-water regioselective synthesis of novel arylidene-hydrazinyl-thiazoles as DNA targeting agents. Bioorg. Chem. 2023 136 106524 10.1016/j.bioorg.2023.106524 37079989
    [Google Scholar]
  42. Aggarwal R. Kumar P. Hooda M. Kumar S. Serendipitous N. Serendipitous N, S -difunctionalization of triazoles with trifluoromethyl-β-diketones: access to regioisomeric 1-trifluoroacetyl-3-aryl-5-(2-oxo-2-arylethylthio)-1,2,4-triazoles as DNA-groove binders. RSC Advances 2024 14 10 6738 6751 10.1039/D4RA00083H 38405072
    [Google Scholar]
  43. Souard F. Okombi S. Beney C. Chevalley S. Valentin A. Boumendjel A. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs. Bioorg. Med. Chem. 2010 18 15 5724 5731 10.1016/j.bmc.2010.06.008 20630767
    [Google Scholar]
  44. Brown N. Bioisosteres and scaffold hopping in medicinal chemistry. Mol. Inform. 2014 33 6-7 458 462 10.1002/minf.201400037 27485983
    [Google Scholar]
  45. Bakhouch M. Es-Sounni B. Nakkabi A. El Yazidi M. Thioaurones: Recent advances in synthesis, reactivity, and biological activity. Mini Rev. Org. Chem. 2021 18 3 313 327 10.2174/1570193X17999200719135019
    [Google Scholar]
  46. Das B. Baidya A.T.K. Mathew A.T. Yadav A.K. Kumar R. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg. Med. Chem. 2022 56 116614 10.1016/j.bmc.2022.116614 35033884
    [Google Scholar]
  47. Meanwell N.A. The influence of bioisosteres in drug design: tactical applications to address developability problems. Tactics in Contemporary Drug Design. Berlin, Heidelberg Springer 2013 9 283 381 10.1007/7355_2013_29
    [Google Scholar]
  48. Meanwell N.A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 2023 71 47 18087 18122 10.1021/acs.jafc.3c00765 36961953
    [Google Scholar]
  49. Lawson M.A. Mariotte A.M. Boumendjel A. A short method for the synthesis of 4,6-dimethoxy-1-azaaurones. Heterocycl. Commun. 2003 9 2 10.1515/HC.2003.9.2.149
    [Google Scholar]
  50. Friedländer P. Ueber schwefelhaltige analoga der indigogruppe. Ber. Dtsch. Chem. Ges. 1906 39 1 1060 1066 10.1002/cber.190603901167
    [Google Scholar]
  51. Baeyer A. Ueber die verbindungen der indigogruppe. Ber. Dtsch. Chem. Ges. 1883 16 2 2188 2204 10.1002/cber.188301602130
    [Google Scholar]
  52. Zweig J.E. Newhouse T.R. Isomer-specific hydrogen bonding as a design principle for bidirectionally quantitative and redshifted hemithioindigo photoswitches. J. Am. Chem. Soc. 2017 139 32 10956 10959 10.1021/jacs.7b04448 28749144
    [Google Scholar]
  53. Petermayer C. Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc. Chem. Res. 2018 51 5 1153 1163 10.1021/acs.accounts.7b00638 29694014
    [Google Scholar]
  54. Erdélyi M. Karlén A. Gogoll A. A new tool in peptide engineering: a photoswitchable stilbene-type beta-hairpin mimetic. Chemistry 2006 12 2 403 412 10.1002/chem.200500648 16187380
    [Google Scholar]
  55. Erdélyi M. Varedian M. Sköld C. Niklasson I.B. Nurbo J. Persson Å. Bergquist J. Gogoll A. Chemistry and folding of photomodulable peptides – stilbene and thioaurone-type candidates for conformational switches. Org. Biomol. Chem. 2008 6 23 4356 4373 10.1039/b812001c 19005595
    [Google Scholar]
  56. Campaniço A. Carrasco M.P. Njoroge M. Seldon R. Chibale K. Perdigão J. Portugal I. Warner D.F. Moreira R. Lopes F. Azaaurones as potent antimycobacterial agents active against MDR‐ and XDR‐TB. ChemMedChem 2019 14 16 1537 1546 10.1002/cmdc.201900289 31294529
    [Google Scholar]
  57. Baiceanu E. Nguyen K.A. Gonzalez-Lobato L. Nasr R. Baubichon-Cortay H. Loghin F. Le Borgne M. Chow L. Boumendjel A. Peuchmaur M. Falson P. 2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. Eur. J. Med. Chem. 2016 122 408 418 10.1016/j.ejmech.2016.06.039 27393949
    [Google Scholar]
  58. Zhang M. Li T. Qian M. Li K. Qin Y. Zhao T. Yang L.Q. Synthesis and biological activities of 1‐azaaurone derivatives. J. Heterocycl. Chem. 2018 55 7 1574 1578 10.1002/jhet.3190
    [Google Scholar]
  59. Li Y. Qiang X. Luo L. Yang X. Xiao G. Liu Q. Ai J. Tan Z. Deng Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2017 126 762 775 10.1016/j.ejmech.2016.12.009 27951485
    [Google Scholar]
  60. Zhang M. Xu X.H. Cui Y. Xie L.G. Kong C.H. Synthesis and herbicidal potential of substituted aurones. Pest Manag. Sci. 2012 68 11 1512 1522 10.1002/ps.3339 22718431
    [Google Scholar]
  61. Gerby B. Boumendjel A. Blanc M. Bringuier P.P. Champelovier P. Fortuné A. Ronot X. Boutonnat J. 2-Arylidenedihydroindole-3-ones: Design, synthesis, and biological activity on bladder carcinoma cell lines. Bioorg. Med. Chem. Lett. 2007 17 1 208 213 10.1016/j.bmcl.2006.09.057 17049235
    [Google Scholar]
  62. Shu C. Li L. Xiao X.Y. Yu Y.F. Ping Y.F. Zhou J.M. Ye L.W. Flexible and practical synthesis of 3-oxyindoles through gold-catalyzed intermolecular oxidation of o-ethynylanilines. Chem. Commun. (Camb.) 2014 50 63 8689 8692 10.1039/C4CC03565H 24958270
    [Google Scholar]
  63. Abonia R. Cuervo P. Castillo J. Insuasty B. Quiroga J. Nogueras M. Cobo J. Unexpected intramolecular cyclization of some 2′-aminochalcones to indolin-3-ones mediated by Amberlyst®-15. Tetrahedron Lett. 2008 49 34 5028 5031 10.1016/j.tetlet.2008.06.047
    [Google Scholar]
  64. Malbari K. Saha P. Chawla-Sarkar M. Dutta S. Rai S. Joshi M. Kanyalkar M. In quest of small-molecules as potent non-competitive inhibitors against influenza. Bioorg. Chem. 2021 114 105139 10.1016/j.bioorg.2021.105139 34243071
    [Google Scholar]
  65. Genelot M. Bendjeriou A. Dufaud V. Djakovitch L. Optimised procedures for the one-pot selective syntheses of indoxyls and 4-quinolones by a carbonylative Sonogashira/cyclisation sequence. Appl. Catal. A Gen. 2009 369 1-2 125 132 10.1016/j.apcata.2009.09.016
    [Google Scholar]
  66. Genelot M. Dufaud V. Djakovitch L. Heterogeneous metallo-organocatalysis for the selective one-pot synthesis of 2-benzylidene-indoxyl and 2-phenyl-4-quinolone. Tetrahedron 2011 67 5 976 981 10.1016/j.tet.2010.11.112
    [Google Scholar]
  67. Xiong W. Wu B. Zhu B. Tan X. Wang L. Wu W. Qi C. Jiang H. One‐pot palladium‐catalyzed carbonylative sonogashira coupling using carbon dioxide as carbonyl source. ChemCatChem 2021 13 12 2843 2851 10.1002/cctc.202100051
    [Google Scholar]
  68. Song X. Zhao X. Zeng Z. Rominger F. Rudolph M. Hashmi A.S.K. Protecting group‐free gold‐catalyzed synthesis of 2‐acylidene‐3‐oxindoles and azaaurones via a double oxidation strategy. Isr. J. Chem. 2023 63 9 e202300094 10.1002/ijch.202300094
    [Google Scholar]
  69. An Z. Catellani M. Chiusoli G.P. A new palladium-catalyzed synthesis of indoxyl derivatives. J. Organomet. Chem. 1990 397 2 C31 C32 10.1016/0022‑328X(90)80248‑X
    [Google Scholar]
  70. Zhu Y.L. Dong Y.F. Wang S.R. Li Y.G. Wu X. Ye L.W. Nucleophile-controlled trapping of gold carbene by nitriles and water: Synthesis of 5 H -Pyrimido[5,4- b ]indoles and 2-Benzylidene-3-indolinones. Org. Lett. 2024 26 3 631 635 10.1021/acs.orglett.3c03856 38214532
    [Google Scholar]
  71. La Monica G. Alamia F. Bono A. Lauria A. Martorana A. Scaffold-hopping strategies in aurone optimization: A comprehensive review of synthetic procedures and biological activities of nitrogen and sulfur analogues. Molecules 2024 29 12 2813 10.3390/molecules29122813 38930878
    [Google Scholar]
  72. Leite F.F. de Sousa N.F. de Oliveira B.H.M. Duarte G.D. Ferreira M.D.L. Scotti M.T. Filho J.M.B. Rodrigues L.C. de Moura R.O. Mendonça-Junior F.J.B. Scotti L. Anticancer activity of chalcones and its derivatives: review and in silico studies. Molecules 2023 28 10 4009 10.3390/molecules28104009 37241750
    [Google Scholar]
  73. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  74. Thun M.J. DeLancey J.O. Center M.M. Jemal A. Ward E.M. The global burden of cancer: priorities for prevention. Carcinogenesis 2010 31 1 100 110 10.1093/carcin/bgp263 19934210
    [Google Scholar]
  75. Chunarkar-Patil P. Kaleem M. Mishra R. Ray S. Ahmad A. Verma D. Bhayye S. Dubey R. Singh H. Kumar S. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines 2024 12 1 201 10.3390/biomedicines12010201 38255306
    [Google Scholar]
  76. Szumilak M. Wiktorowska-Owczarek A. Stanczak A. Hybrid drugs: a strategy for overcoming anticancer drug resistance? Molecules 2021 26 9 2601 10.3390/molecules26092601 33946916
    [Google Scholar]
  77. Fortin S. Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov. 2013 8 8 1029 1047 10.1517/17460441.2013.798296 23646979
    [Google Scholar]
  78. Hadjeri M. Barbier M. Ronot X. Mariotte A.M. Boumendjel A. Boutonnat J. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J. Med. Chem. 2003 46 11 2125 2131 10.1021/jm021099i 12747785
    [Google Scholar]
  79. Boumendjel A. Beney C. Deka N. Mariotte A.M. Lawson M.A. Trompier D. Baubichon-Cortay H. Pietro A.D. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein. Chem. Pharm. Bull. (Tokyo) 2002 50 6 854 856 10.1248/cpb.50.854 12045348
    [Google Scholar]
  80. Vo Nguyen T.T. Watanabe Y. Shiba A. Noguchi M. Itoh S. Kato M. TMEPAI / PMEPA 1 enhances tumorigenic activities in lung cancer cells. Cancer Sci. 2014 105 3 334 341 10.1111/cas.12355 24438557
    [Google Scholar]
  81. Li Y. Wang J. Song N. Zeng F. Zhao M. Wang A. Chen Y. Jing L. Yu P. Diao A. 2‐(2‐nitrobenzylidene) indolin‐3‐one compound inhibits transmembrane prostate androgen‐induced protein (TMEPAI) expression and cancer cell proliferation. Cell Prolif. 2018 51 5 e12469 10.1111/cpr.12469 30069967
    [Google Scholar]
  82. He Q. Chen J. Yan J. Cai S. Xiong H. Liu Y. Peng D. Mo M. Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J. Pharm. Sci. 2020 15 4 416 448 10.1016/j.ajps.2019.08.003 32952667
    [Google Scholar]
  83. Li Y. Guo A. Feng Y. Zhang Y. Wang J. Jing L. Yan Y. Jing L. Liu Z. Ma L. Diao A. Sp1 transcription factor promotes TMEPAI gene expression and contributes to cell proliferation. Cell Prolif. 2016 49 6 710 719 10.1111/cpr.12292 27625141
    [Google Scholar]
  84. Tóth S. Szepesi Á. Tran-Nguyen V.K. Sarkadi B. Német K. Falson P. Di Pietro A. Szakács G. Boumendjel A. Synthesis and anticancer cytotoxicity of azaaurones overcoming multidrug resistance. Molecules 2020 25 3 764 10.3390/molecules25030764 32050702
    [Google Scholar]
  85. Yen H.L. Hoffmann E. Taylor G. Scholtissek C. Monto A.S. Webster R.G. Govorkova E.A. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J. Virol. 2006 80 17 8787 8795 10.1128/JVI.00477‑06 16912325
    [Google Scholar]
  86. Kim C.U. Chen X. Mendel D.B. Neuraminidase inhibitors as anti-influenza virus agents. Antivir. Chem. Chemother. 1999 10 4 141 154 10.1177/095632029901000401 10480735
    [Google Scholar]
  87. Garcia L.S. Malaria. Clin. Lab. Med. 2010 30 1 93 129 10.1016/j.cll.2009.10.001 20513543
    [Google Scholar]
  88. Global technical strategy for malaria 2016–2030. 2015 Available from: https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf
  89. Carrasco M.P. Machado M. Gonçalves L. Sharma M. Gut J. Lukens A.K. Wirth D.F. André V. Duarte M.T. Guedes R.C. dos Santos D.J.V.A. Rosenthal P.J. Mazitschek R. Prudêncio M. Moreira R. Probing the azaaurone scaffold against the hepatic and erythrocytic stages of malaria parasites. ChemMedChem 2016 11 19 2194 2204 10.1002/cmdc.201600327 27538856
    [Google Scholar]
  90. Miao Y. Hu Y. Yang J. Liu T. Sun J. Wang X. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Advances 2019 9 47 27510 27540 10.1039/C9RA04917G 35529241
    [Google Scholar]
  91. Holton S. Merckx A. Burgess D. Doerig C. Noble M. Endicott J. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure 2003 11 11 1329 1337 10.1016/j.str.2003.09.020 14604523
    [Google Scholar]
  92. Praveen Kumar S. Gut J. Guedes R.C. Rosenthal P.J. Santos M.M.M. Moreira R. Design, synthesis and evaluation of 3-methylene-substituted indolinones as antimalarials. Eur. J. Med. Chem. 2011 46 3 927 933 10.1016/j.ejmech.2011.01.008 21295887
    [Google Scholar]
  93. Motta I. Boeree M. Chesov D. Dheda K. Günther G. Horsburgh C.R. Jr Kherabi Y. Lange C. Lienhardt C. McIlleron H.M. Paton N.I. Stagg H.R. Thwaites G. Udwadia Z. Van Crevel R. Velásquez G.E. Wilkinson R.J. Guglielmetti L. Motta I. Kherabi Y. Van Crevel R. Guglielmetti L. Recent advances in the treatment of tuberculosis. Clin. Microbiol. Infect. 2024 30 9 1107 1114 10.1016/j.cmi.2023.07.013 37482332
    [Google Scholar]
  94. World Health Organization. Global Tuberculosis Report. 2022 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports
  95. Campaniço A. Moreira R. Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem. 2018 150 525 545 10.1016/j.ejmech.2018.03.020 29549838
    [Google Scholar]
  96. World Health Organization. Geneva The End TB Strategy 2015 1 6
    [Google Scholar]
  97. Campaniço A. Harjivan S.G. Freitas E. Serafini M. Gaspar M.M. Capela R. Gomes P. Jordaan A. Madureira A.M. André V. Silva A.B. Duarte M.T. Portugal I. Perdigão J. Moreira R. Warner D.F. Lopes F. Structural optimization of antimycobacterial azaaurones towards improved solubility and metabolic stability. ChemMedChem 2023 18 24 e202300410 10.1002/cmdc.202300410 37845182
    [Google Scholar]
  98. Yang D. Taylor Z.E. Handy S. Li S. Liu J. Stabenow J. Zalduondo L. Jonsson C.B. Altman E. Kong Y. Identification of anti-tuberculosis compounds from aurone analogs. Front. Microbiol. 2020 11 1004 10.3389/fmicb.2020.01004 32508798
    [Google Scholar]
  99. Getahun H. Gunneberg C. Granich R. Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin. Infect. Dis. 2010 50 Suppl. 3 S201 S207 10.1086/651492 20397949
    [Google Scholar]
  100. Azevedo-Pereira J.M. Pires D. Calado M. Mandal M. Santos-Costa Q. Anes E. HIV/Mtb co-infection: from the amplification of disease pathogenesis to an “emerging syndemic”. Microorganisms 2023 11 4 853 10.3390/microorganisms11040853 37110276
    [Google Scholar]
  101. Leite D.I. Campaniço A. Costa P.A.G. Correa I.A. da Costa L.J. Bastos M.M. Moreira R. Lopes F. Jordaan A. Warner D.F. Boechat N. New azaaurone derivatives as potential multitarget agents in HIV‐TB coinfection. Arch. Pharm. 2024 357 2 2300560 10.1002/ardp.202300560 38032154
    [Google Scholar]
/content/journals/mc/10.2174/0115734064357796250120060204
Loading
/content/journals/mc/10.2174/0115734064357796250120060204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test