Skip to content
2000
image of Identification of Natural Terpenoid Compounds as Potential Inhibitors of Nucleoprotein of Influenza A Virus using in silico Approach: ADMET, Molecular Docking, and Molecular Dynamic Simulation

Abstract

Background

We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

Objective

The objective of this study is to explore the inhibitory potential of terpenoid compounds against the Nucleoprotein (NP) of influenza A virus, which is a highly effective drug target due to its ability to facilitate the transcription and replication of viral RNA.

Method

research was performed to identify potential inhibitors of NP. Molecular docking studies were conducted to assess the binding of terpenoid compounds to the active site residues of the target protein. The most promising hits were then subjected to molecular dynamics simulations to examine the stability of the protein-ligand complexes. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies and Lipinski's rule of five were employed to evaluate the drug safety and druglikeness of the compounds.

Result

Docking studies revealed that the terpenoid compounds bind strongly to the active site residues of the NP protein. Molecular dynamics simulations demonstrated the stability of the protein-ligand complexes for the best-hit compounds. ADMET studies and Lipinski's filter indicated that the compounds exhibit desirable drug safety and drug-likeness profiles.

Conclusion

This work may contribute significantly to drug discovery and the development of therapeutic agents against the influenza A virus. The identification of terpenoid compounds that bind strongly to the NP protein and exhibit favorable drug-like properties through in silico studies provides a promising foundation for further research and the development of potential inhibitors targeting this critical viral protein.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064311430240906112547
2025-01-13
2025-05-10
Loading full text...

Full text loading...

References

  1. Hsieh Y.C. Wu T.Z. Liu D.P. Shao P.L. Chang L.Y. Lu C.Y. Lee C.Y. Huang F.Y. Huang L.M. Influenza pandemics: Past, present and future. J. Formos. Med. Assoc. 2006 105 1 1 6 10.1016/S0929‑6646(09)60102‑9 16440064
    [Google Scholar]
  2. Neumann G. Noda T. Kawaoka Y. Timeline of swine-origin H1N1 virus outbreak. Nature 2009 459 18 931 939 10.1038/nature08157 19525932
    [Google Scholar]
  3. Rahman S. Hasan M. Alam M.S. Uddin K.M.M. Moni S. Rahman M. The evolutionary footprint of influenza A subtype H3N2 strains in Bangladesh: Implication of vaccine strain selection. Sci. Rep. 2022 12 1 16186 10.1038/s41598‑022‑20179‑7 36171388
    [Google Scholar]
  4. Palese P. Ohomyxoviridae: The viruses and their replication. Fields Virology 2007 1647 1689
    [Google Scholar]
  5. Webster R.G. Monto A.S. Braciale T.J. Lamb R.A. Textbook of influenza. John Wiley & Sons 2014
    [Google Scholar]
  6. Hu Y. Sneyd H. Dekant R. Wang J. Influenza A virus nucleoprotein: A highly conserved multi-functional viral protein as a hot antiviral drug target. Curr. Top. Med. Chem. 2017 17 20 2271 2285 28240183
    [Google Scholar]
  7. Sasaki-Tanaka R. Shibata T. Moriyama M. Okamoto H. Kogure H. Kanda T. Amantadine and rimantadine inhibit hepatitis a virus replication through the induction of autophagy. J. Virol. 2022 96 18 e00646-22 10.1128/jvi.00646‑22 36040176
    [Google Scholar]
  8. McKimm-Breschkin J.L. Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza Other Respir. Viruses 2013 7 s1 Suppl. 1 25 36 10.1111/irv.12047 23279894
    [Google Scholar]
  9. von Itzstein M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007 6 12 967 974 10.1038/nrd2400 18049471
    [Google Scholar]
  10. Hayden F.G. de Jong M.D. Emerging influenza antiviral resistance threats. Oxford University Press 2011 203 6 10
    [Google Scholar]
  11. Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014 8 22 29 10.1016/j.coviro.2014.04.009 24866471
    [Google Scholar]
  12. Ison M.G. Antivirals and resistance: Influenza virus. Curr. Opin. Virol. 2011 1 6 563 573 10.1016/j.coviro.2011.09.002 22440914
    [Google Scholar]
  13. Hayden F.G. Newer influenza antivirals, biotherapeutics and combinations. Influenza Other Respir. Viruses 2013 7 s1 Suppl. 1 63 75 10.1111/irv.12045 23279899
    [Google Scholar]
  14. De Clercq E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006 5 12 1015 1025 10.1038/nrd2175 17139286
    [Google Scholar]
  15. Pinto L.H. Lamb R.A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 2006 281 14 8997 9000 10.1074/jbc.R500020200 16407184
    [Google Scholar]
  16. Herz C. Stavnezer E. Krug R.M. Gurney T. Jr Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 1981 26 3 391 400 10.1016/0092‑8674(81)90208‑7 7326745
    [Google Scholar]
  17. Jackson D.A. Caton A.J. McCready S.J. Cook P.R. Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 1982 296 5855 366 368 10.1038/296366a0 7063035
    [Google Scholar]
  18. Shi F. Xie Y. Shi L. Xu W. Viral RNA polymerase: A promising antiviral target for influenza A virus. Curr. Med. Chem. 2013 20 31 3923 3934 10.2174/09298673113209990208 23931274
    [Google Scholar]
  19. Lee S.M.Y. Yen H.L. Targeting the host or the virus: Current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res. 2012 96 3 391 404 10.1016/j.antiviral.2012.09.013 23022351
    [Google Scholar]
  20. Mathur S. Hoskins C. Drug development: Lessons from nature. Biomed. Rep. 2017 6 6 612 614 10.3892/br.2017.909 28584631
    [Google Scholar]
  21. Herman A. Herman A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015 67 4 473 485 10.1111/jphp.12334 25557808
    [Google Scholar]
  22. Guimarães A.G. Serafini M.R. Quintans-Júnior L.J. Terpenes and derivatives as a new perspective for pain treatment: A patent review. Expert Opin. Ther. Pat. 2014 24 3 243 265 10.1517/13543776.2014.870154 24387185
    [Google Scholar]
  23. Angeh J. E. Huang X. Swan G. E. Mollman U. Sattler I. Eloff J. N. Novel antibacterial triterpenoid from Combretum padoides. ARKIVOC 2007 ix 113 120
    [Google Scholar]
  24. del Carmen Recio M. Giner R. Máñez S. Ríos J. Structural requirements for the anti-inflammatory activity of natural triterpenoids. Planta Med. 1995 61 2 182 185 10.1055/s‑2006‑958045 7753929
    [Google Scholar]
  25. Nosrati M. Behbahani M. Molecular docking study of HIV-1 protease with triterpenoides compounds from plants and mushroom. J Arak Uni Med Sci 2015 18 3 67 79
    [Google Scholar]
  26. Topcu G. Ertas A. Kolak U. Ozturk M. Ulubelen A. Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys. ARKIVOC 2007 7 195 208
    [Google Scholar]
  27. Aljarallah K.M. Rahman S. Identification of plant-based inhibitors by molecular docking against catalytic glucosyltransferase domains of TcdA and TcdB toxins from clostridium difficile. Int. J. Clin. Exp. Med. 2021 14 12 2620 2630
    [Google Scholar]
  28. Moradi M. Golmohammadi R. Najafi A. Moosazadeh-Moghadam M. Fasihi-Ramandi M. Mirnejad R. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Informatics in Medicine Unlocked 2022 100862
    [Google Scholar]
  29. Wouters O.J. McKee M. Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 2020 323 9 844 853 10.1001/jama.2020.1166 32125404
    [Google Scholar]
  30. Wagner K.H. Elmadfa I. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. Ann. Nutr. Metab. 2003 47 3-4 95 106 10.1159/000070030 12743459
    [Google Scholar]
  31. Wen C.C. Kuo Y.H. Jan J.T. Liang P.H. Wang S.Y. Liu H.G. Lee C.K. Chang S.T. Kuo C.J. Lee S.S. Hou C.C. Hsiao P.W. Chien S.C. Shyur L.F. Yang N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 2007 50 17 4087 4095 10.1021/jm070295s 17663539
    [Google Scholar]
  32. Sinha D. Chatterjee M. Choudhury S. Seal S. Das T. Sharma S. Banerjee S. Chowdhury S. Terpenes and terpenoids: Potent antiviral agents against SARS-CoV-2. Bioactive Compounds Against SARS-CoV-2. CRC Press 94 110
    [Google Scholar]
  33. Eswar N. Webb B. Marti‐Renom M. A. Madhusudhan M. Eramian D. Shen M. Pieper U. Sali A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 2006 15 1 1 30 10.1002/0471250953.bi0506s15
    [Google Scholar]
  34. Hooft R.W.W. Sander C. Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics 1997 13 4 425 430 10.1093/bioinformatics/13.4.425 9283757
    [Google Scholar]
  35. Tian W. Chen C. Lei X. Zhao J. Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 46 W1 W363 W367 10.1093/nar/gky473 29860391
    [Google Scholar]
  36. Weako J. Uba A.I. Keskin Ö. Gürsoy A. Yelekçi K. Identification of potential inhibitors of human methionine aminopeptidase (type II) for cancer therapy: Structure-based virtual screening, ADMET prediction and molecular dynamics studies. Comput. Biol. Chem. 2020 86 107244 10.1016/j.compbiolchem.2020.107244 32252002
    [Google Scholar]
  37. Akash S. Bayıl I. Hossain M.S. Islam M.R. Hosen M.E. Mekonnen A.B. Nafidi H.A. Bin Jardan Y.A. Bourhia M. Bin Emran T. Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives. Sci. Rep. 2023 13 1 16565 10.1038/s41598‑023‑43175‑x 37783745
    [Google Scholar]
  38. Akash S. Islam M.R. Rahman M.M. Hossain M.S. Azad M.A. Sharma R. Investigation of the new inhibitors by modified derivatives of pinocembrin for the treatment of monkeypox and marburg virus with different computational approaches. Biointerface Res. Appl. Chem. 2023 13 6 534
    [Google Scholar]
  39. Sharma S. Kumar P. Chandra R. Applications of BIOVIA materials studio, LAMMPS, and GROMACS in various fields of science and engineering. Molecular dynamics simulation of nanocomposites using BIOVIA materials studio. Lammps and Gromacs 2019 329 341
    [Google Scholar]
  40. Dallakyan S. Olson A. J. Small-molecule library screening by docking with PyRx. Chem. Biol.: Methods Protoc. 2015 243 250
    [Google Scholar]
  41. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  42. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  43. Vanommeslaeghe K. Hatcher E. Acharya C. Kundu S. Zhong S. Shim J. Darian E. Guvench O. Lopes P. Vorobyov I. Mackerell A.D. Jr CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem. 2010 31 4 671 690 10.1002/jcc.21367 19575467
    [Google Scholar]
  44. Jiang X. Li S. Zhang H. Wang L.L. Discovery of potentially biased agonists of mu-opioid receptor (MOR) through molecular docking, pharmacophore modeling, and MD simulation. Comput. Biol. Chem. 2021 90 107405 10.1016/j.compbiolchem.2020.107405 33184004
    [Google Scholar]
  45. Turner P. XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research. Beaverton, OR Oregon Graduate Institute of Science and Technology 2005 2
    [Google Scholar]
  46. Hameduh T. Haddad Y. Adam V. Heger Z. Homology modeling in the time of collective and artificial intelligence. Comput. Struct. Biotechnol. J. 2020 18 3494 3506 10.1016/j.csbj.2020.11.007 33304450
    [Google Scholar]
  47. Belzer M. Morales M. Jagadish B. Mash E.A. Wright S.H. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J. Pharmacol. Exp. Ther. 2013 346 2 300 310 10.1124/jpet.113.203257 23709117
    [Google Scholar]
  48. Gyebi G.A. Adegunloye A.P. Ibrahim I.M. Ogunyemi O.M. Afolabi S.O. Ogunro O.B. Prevention of SARS-CoV-2 cell entry: Insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. J. Biomol. Struct. Dyn. 2022 40 5 2121 2145 10.1080/07391102.2020.1835726 33089728
    [Google Scholar]
  49. Abdou A. Mostafa H.M. Abdel-Mawgoud A.M.M. Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular docking analysis. Inorg. Chim. Acta 2022 539 121043 10.1016/j.ica.2022.121043
    [Google Scholar]
  50. Li T. Guo R. Zong Q. Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022 276 118644 10.1016/j.carbpol.2021.118644 34823758
    [Google Scholar]
  51. Hansson T. Oostenbrink C. van Gunsteren W. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 2002 12 2 190 196 10.1016/S0959‑440X(02)00308‑1 11959496
    [Google Scholar]
  52. Jain N. Sk M.F. Mishra A. Kar P. Kumar A. Identification of novel efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and molecular dynamics approaches. Comput. Biol. Chem. 2022 98 107682 10.1016/j.compbiolchem.2022.107682 35462198
    [Google Scholar]
  53. He Q. Han C. Li G. Guo H. Wang Y. Hu Y. Lin Z. Wang Y. In silico design novel (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine derivatives as inhibitors for glycogen synthase kinase 3 based on 3D-QSAR, molecular docking and molecular dynamics simulation. Comput. Biol. Chem. 2020 88 107328 10.1016/j.compbiolchem.2020.107328 32688011
    [Google Scholar]
  54. Li Y. Peng J. Li P. Du H. Li Y. Liu X. Zhang L. Wang L.L. Zuo Z. Identification of potential AMPK activator by pharmacophore modeling, molecular docking and QSAR study. Comput. Biol. Chem. 2019 79 165 176 10.1016/j.compbiolchem.2019.02.007 30836318
    [Google Scholar]
  55. Lee G.R. Shin W.H. Park H.B. Shin S.M. Seok C.O. Conformational sampling of flexible ligand-binding protein loops. Bull. Korean Chem. Soc. 2012 33 3 770 774 10.5012/bkcs.2012.33.3.770
    [Google Scholar]
  56. Teague S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003 2 7 527 541 10.1038/nrd1129 12838268
    [Google Scholar]
  57. Ali S. Hassan M. Islam A. Ahmad F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci. 2014 15 5 456 476 10.2174/1389203715666140327114232 24678666
    [Google Scholar]
  58. Lobanov M.Y. Bogatyreva N.S. Galzitskaya O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008 42 4 623 628 10.1134/S0026893308040195 18856071
    [Google Scholar]
  59. Menéndez C.A. Accordino S.R. Gerbino D.C. Appignanesi G.A. Hydrogen bond dynamic propensity studies for protein binding and drug design. PLoS One 2016 11 10 e0165767 10.1371/journal.pone.0165767 27792778
    [Google Scholar]
  60. Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M.R. Smith J.C. Kasson P.M. van der Spoel D. Hess B. Lindahl E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013 29 7 845 854 10.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  61. Santos S.J.M. Valentini A. In silico investigation of Komaroviquinone as a potential inhibitor of SARS-CoV-2 main protease (Mpro): Molecular docking, molecular dynamics, and QM/MM approaches. J. Mol. Graph. Model. 2024 126 108662 10.1016/j.jmgm.2023.108662 37950976
    [Google Scholar]
/content/journals/mc/10.2174/0115734064311430240906112547
Loading
/content/journals/mc/10.2174/0115734064311430240906112547
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Terpenoid ; MD simulations ; ADMET ; influenza A ; molecular docking ; nucleoprotein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test