Skip to content
2000
image of Isoindoline-1,3-dione Derivatives as Prototypes for Anticonvulsant Drug Discovery

Abstract

Introduction

Epilepsy encompasses numerous syndromes characterized by spontaneous, intermittent, and abnormal electrical activity in the brain. Affecting about 1-2% of the population, it is estimated that approximately 30-40% of patients experience refractory epilepsy, which does not respond to traditional anticonvulsant drugs.

Aims

Therefore, developing novel, safe, and effective antiepileptic drugs remains a medical need. In this study, we synthesized a series of isoindoline-1,3-dione derivatives and evaluated their anticonvulsant effects.

Results

Compounds (-) and () were obtained with yields ranging from 52-97%. These compounds were assessed for their protective effects on the following parameters: a) time to first seizure (seizure latency), b) seizure duration, and c) mortality rate post-seizure. The most active compound, (), increased seizure latency, reduced seizure duration, and lowered the mortality rate.

Conclusion

These findings indicate that compound () is a promising new anticonvulsant prototype, offering an alternative to current anticonvulsant drugs.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064336758241113180402
2025-01-09
2025-06-26
Loading full text...

Full text loading...

References

  1. Berg A.T. Berkovic S.F. Brodie M.J. Buchhalter J. Cross J.H. Van Emde Boas W. Engel J. French J. Glauser T.A. Mathern G.W. Moshé S.L. Nordli D. Plouin P. Scheffer I.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010 51 4 676 685 10.1111/j.1528‑1167.2010.02522.x 20196795
    [Google Scholar]
  2. Thijs R.D. Surges R. O’Brien T.J. Sander J.W. Epilepsy in adults. Lancet 2019 393 10172 689 701 10.1016/S0140‑6736(18)32596‑0 30686584
    [Google Scholar]
  3. Devinsky O. Vezzani A. O’Brien T.J. Jette N. Scheffer I.E. de Curtis M. Perucca P. Epilepsy. Nat. Rev. Dis. Primers 2018 4 1 18024 10.1038/nrdp.2018.24 29722352
    [Google Scholar]
  4. Ngugi A.K. Bottomley C. Kleinschmidt I. Sander J.W. Newton C.R. Estimation of the burden of active and life‐time epilepsy: A meta‐analytic approach. Epilepsia 2010 51 5 883 890 10.1111/j.1528‑1167.2009.02481.x 20067507
    [Google Scholar]
  5. Fiest K.M. Sauro K.M. Wiebe S. Patten S.B. Kwon C.S. Dykeman J. Pringsheim T. Lorenzetti D.L. Jetté N. Prevalence and incidence of epilepsy. Neurology 2017 88 3 296 303 10.1212/WNL.0000000000003509 27986877
    [Google Scholar]
  6. Scheffer I.E. Berkovic S. Capovilla G. Connolly M.B. French J. Guilhoto L. Hirsch E. Jain S. Mathern G.W. Moshé S.L. Nordli D.R. Perucca E. Tomson T. Wiebe S. Zhang Y.H. Zuberi S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017 58 4 512 521 10.1111/epi.13709 28276062
    [Google Scholar]
  7. Lerche H. Drug-resistant epilepsy — Time to target mechanisms. Nat. Rev. Neurol. 2020 16 11 595 596 10.1038/s41582‑020‑00419‑y 33024326
    [Google Scholar]
  8. Löscher W. Potschka H. Sisodiya S.M. Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020 72 3 606 638 10.1124/pr.120.019539 32540959
    [Google Scholar]
  9. Fernandes G.F.S. Lopes J.R. Dos Santos J.L. Scarim C.B. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Dev. Res. 2023 84 7 1346 1375 10.1002/ddr.22094 37492986
    [Google Scholar]
  10. Palencia G. Martinez-Juarez I.E. Calderon A. Artigas C. Sotelo J. Thalidomide for treatment of refractory epilepsy. Epilepsy Res. 2010 92 2-3 253 257 10.1016/j.eplepsyres.2010.10.003 21035311
    [Google Scholar]
  11. Bailleux V. Vallée L. Nuyts J.P. Vamecq J. Anticonvulsant activity of some 4-amino-N-phenylphthalimides and N-(3-amino-2-methylphenyl)phthalimides. Biomed. Pharmacother. 1994 48 2 95 101 10.1016/0753‑3322(94)90083‑3 7919112
    [Google Scholar]
  12. Ahuja P. Husain A. Siddiqui N. Essential aminoacid incorporated GABA–phthalimide derivatives: Synthesis and anticonvulsant evaluation. Med. Chem. Res. 2014 23 9 4085 4098 10.1007/s00044‑014‑0949‑5
    [Google Scholar]
  13. Amanlou M. Asadollahi A. Asadi M. Hosseini F.S. Ekhtiari Z. Biglar M. Synthesis, molecular docking, and antiepileptic activity of novel phthalimide derivatives bearing amino acid conjugated anilines. Res. Pharm. Sci. 2019 14 6 534 543 10.4103/1735‑5362.272562 32038733
    [Google Scholar]
  14. de Oliveira M.C.V.A. Viana D.C.F. Silva A.A. Pereira M.C. Duarte F.S. Pitta M.G.R. Pitta I.R. Pitta M.G.R. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents. Bioorg. Chem. 2022 119 105548 10.1016/j.bioorg.2021.105548 34959174
    [Google Scholar]
  15. Cumbres-Vargas I.M. Zamudio S.R. Pichardo-Macías L.A. Ramírez-San Juan E. Thalidomide attenuates epileptogenesis and seizures by decreasing brain inflammation in lithium pilocarpine rat model. Int. J. Mol. Sci. 2023 24 7 6488 10.3390/ijms24076488 37047461
    [Google Scholar]
  16. Kamali A.N. Zian Z. Bautista J.M. Hamedifar H. Hossein-Khannazer N. Hosseinzadeh R. Yazdani R. Azizi G. The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis. Endocr. Metab. Immune Disord. Drug Targets 2021 21 10 1760 1774 10.2174/22123873MTEx2NTUz4 33200702
    [Google Scholar]
  17. de Melo T.R.F. Dulmovits B.M. Fernandes G.F.S. de Souza C.M. Lanaro C. He M. Al Abed Y. Chung M.C. Blanc L. Costa F.F. dos Santos J.L. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment. Bioorg. Chem. 2021 114 105077 10.1016/j.bioorg.2021.105077 34130111
    [Google Scholar]
  18. Lanaro C. Franco-Penteado C.F. Silva F.H. Fertrin K.Y. dos Santos J.L. Wade M. Yerigenahally S. de Melo T.R. Chin C.M. Kutlar A. Meiler S.E. Costa F.F. A thalidomide–hydroxyurea hybrid increases HbF production in sickle cell mice and reduces the release of proinflammatory cytokines in cultured monocytes. Exp. Hematol. 2018 58 35 38 10.1016/j.exphem.2017.10.003 29108926
    [Google Scholar]
  19. Dey A. Kang X. Qiu J. Du Y. Jiang J. Anti-inflammatory small molecules to treat seizures and epilepsy: From bench to bedside. Trends Pharmacol. Sci. 2016 37 6 463 484 10.1016/j.tips.2016.03.001 27062228
    [Google Scholar]
  20. Terrone G. Salamone A. Vezzani A. Inflammation and epilepsy: Preclinical findings and potential clinical translation. Curr. Pharm. Des. 2018 23 37 5569 5576 10.2174/1381612823666170926113754 28950818
    [Google Scholar]
  21. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  22. Clementino L.C. Fernandes G.F.S. Prokopczyk I.M. Laurindo W.C. Toyama D. Motta B.P. Baviera A.M. Henrique-Silva F. Santos J.L. Graminha M.A.S. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity. PLoS One 2021 16 11 e0259008 10.1371/journal.pone.0259008 34723989
    [Google Scholar]
  23. de-Paris F. Neves G. Salgueiro J.B. Quevedo J. Izquierdo I. Rates S.M.K. Psychopharmacological screening of Pfaffia glomerata Spreng. (Amarathanceae) in rodents. J. Ethnopharmacol. 2000 73 1-2 261 269 10.1016/S0378‑8741(00)00329‑9 11025164
    [Google Scholar]
  24. Palencia G. Calderon A. Sotelo J. Thalidomide inhibits pentylenetetrazole-induced seizures. J. Neurol. Sci. 2007 258 1-2 128 131 10.1016/j.jns.2007.03.010 17449064
    [Google Scholar]
  25. Pintér Á. Haberhauer G. Hyla-Kryspin I. Grimme S. Configurationally stable propeller-like triarylphosphine and triarylphosphine oxide. Chem. Commun. (Camb.) 2007 38 36 3711 3713 10.1039/b709655k 17851603
    [Google Scholar]
  26. Bialer M. White H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov. 2010 9 1 68 82 10.1038/nrd2997 20043029
    [Google Scholar]
  27. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011 20 5 359 368 10.1016/j.seizure.2011.01.003 21292505
    [Google Scholar]
  28. White H.S. Srivastava A. Klein B. Zhao B. Choi Y.M. Gordon R. Lee S.J. The novel investigational neuromodulator RWJ-333369 displays a broadspectrum anticonvulsant profile in rodent seizure and epilepsy models. Epilepsia Abstr 2006 37 320
    [Google Scholar]
  29. Carmody S. Brennan L. Effects of pentylenetetrazole-induced seizures on metabolomic profiles of rat brain. Neurochem. Int. 2010 56 2 340 344 10.1016/j.neuint.2009.11.004 19913064
    [Google Scholar]
  30. MacDonald R.L. Barker J.L. Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature 1977 267 5613 720 721 10.1038/267720a0 195224
    [Google Scholar]
  31. Squires R.F. Saederup E. Crawley J.N. Skolnick P. Paul S.M. Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci. 1984 35 14 1439 1444 10.1016/0024‑3205(84)90159‑0 6090836
    [Google Scholar]
  32. Huang R.Q. Bell-Horner C.L. Dibas M.I. Covey D.F. Drewe J.A. Dillon G.H. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: Mechanism and site of action. J. Pharmacol. Exp. Ther. 2001 298 3 986 995 11504794
    [Google Scholar]
  33. Amanlou A. Nassireslami E. Hosseini F.S. Dehpour A.R. Rashidian A. Chamanara M. Synthesis, docking and antiepileptic activity of new 2-((1,5-diphenyl-1 H -1,2,4-triazol-3-yl)thio)- N-phenylacetamide derivatives. Polycycl. Aromat. Compd. 2022 42 9 6429 6443 10.1080/10406638.2021.1983616
    [Google Scholar]
/content/journals/mc/10.2174/0115734064336758241113180402
Loading
/content/journals/mc/10.2174/0115734064336758241113180402
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: seizure ; phthalimide ; Epilepsy ; anticonvulsant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test