Skip to content
2000
image of Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets

Abstract

Background

(Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.

Aim

Isolation of Bioactive Compounds from : Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H Receptor

Material and Methods

The fruit of the plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H Receptor.

Results

The research successfully extracted methanolic extract from by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.

Conclusion

The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H Receptor.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064366819250125070619
2025-02-04
2025-05-31
Loading full text...

Full text loading...

References

  1. Jung H.K. Epidemiology of gastroesophageal reflux disease in Asia: A systematic review. J. Neurogastroenterol. Motil. 2011 17 1 14 27 10.5056/jnm.2011.17.1.14 21369488
    [Google Scholar]
  2. Dumic I. Nordin T. Jecmenica M. Stojkovic Lalosevic M. Milosavljevic T. Milovanovic T. Gastrointestinal tract disorders in older age. Can. J. Gastroenterol. Hepatol. 2019 2019 1 19 10.1155/2019/6757524 30792972
    [Google Scholar]
  3. Liu J. Luo B. Zhou Y. Ma X. Liang J. Sang X. Lyu L. Chen W. Fu P. Liu H. Zhen S. Wang C. Wu Y. Huang Q. Liang X. Bai G. Lan Z. Zhang S. Wu Y. Li N. Guo Y. Prevalence and distribution of acute gastrointestinal illness in the community of China: A population-based face-to-face survey, 2014–2015. BMC Public Health 2023 23 1 836 10.1186/s12889‑023‑15337‑z 37158857
    [Google Scholar]
  4. Dias D.A. Urban S. Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012 2 2 303 336 10.3390/metabo2020303 24957513
    [Google Scholar]
  5. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  6. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  7. Foss S.R. Nakamura C.V. Ueda-Nakamura T. Cortez D.A.G. Endo E.H. Dias Filho B.P. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann. Clin. Microbiol. Antimicrob. 2014 13 1 32 10.1186/s12941‑014‑0032‑6 25260038
    [Google Scholar]
  8. Al-Zoreky N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol. 2009 134 3 244 8
    [Google Scholar]
  9. Negi P Antioxidant and antibacterial activities of Punica granatum peel extracts. J. Food Sci. 2003 68 4 1473 1477
    [Google Scholar]
  10. Han J Weng X Antioxidants from a Chinese medicinal herb – Lithospermum erythrorhizon. Food Chem. 2008 106 1 2 10
    [Google Scholar]
  11. Reddy MK Gupta SK Jacob MR Khan SJPM Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007 73 5 461 7
    [Google Scholar]
  12. Alzoreky N Antioxidant activity of some edible Yemeni plants evaluated by Ferrylmyoglobin/ABTS*+ assay. Food Sci. & Tech. Res. 2001 7 2 141 144
    [Google Scholar]
  13. Kabra A. Martins N. Sharma R. Kabra R. Baghel U.S. Don: A natural source for health promotion and disease prevention. Plants 2019 8 6 149
    [Google Scholar]
  14. Sofowora A. Ogunbodede E. Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013 10 5 210 229 10.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  15. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  16. Samant S.S. Dhar U. Diversity, endemism and economic potential of wild edible plants of Indian Himalaya. Int. J. Sustain. Dev. World Ecol. 1997 4 3 179 191 10.1080/13504509709469953
    [Google Scholar]
  17. Paul S. Diversity, distribution and conservation status of raw edible plant resources of the Madgram Watershed, Lahaul Valley, Himachal Pradesh, India. J. Non-Timber For. Prod. 2022 28 4 150 156 10.54207/bsmps2000‑2022‑0W0DQ1
    [Google Scholar]
  18. Rawat S. Jugran A. Giri L. Bhatt I.D. Rawal R.S. Assessment of antioxidant properties in fruits of Myrica esculenta: A popular wild edible species in Indian Himalayan Region. Evid Based Complementary Altern Med 2011 2011 512787 10.1093/ecam/neq055
    [Google Scholar]
  19. Makdoh K. Lynser M.B. Pala K. Marketing of indigenous fruits: A source of income among Khasi Women of Meghalaya. North East India. 2014 5 1-2 1 9
    [Google Scholar]
  20. Sood P A review on ethnomedicinal, phytochemical and pharmacological aspects of Myrica esculenta. Indian J. Pharm. Sci. 2018 80 1 2 13
    [Google Scholar]
  21. Kumar A. Pharmacognostic and pharmacological profile of traditional medicinal plant: Myrica nagi. 2012 3 12 32 7
    [Google Scholar]
  22. Khare CP Indian Medicinal Plants: An Illustrated Dictionary Springer New York 2008
    [Google Scholar]
  23. Narayana D.A. The Ayurvedic Pharmacopoeia of India: Part II. A Good Beginning. JSTOR 2008
    [Google Scholar]
  24. Nagani K. Kaneria M. Chanda S. Pharmacognostic studies on the leaves of Manilkara zapota L. (Sapotaceae). Pharmacogn. J. 2012 4 27 38 41 10.5530/pj.2012.27.6
    [Google Scholar]
  25. Onyambu M.O. Nicholas K.G. Hudson N.N. Grace N.T. Macroscopic and microscopic features of diagnostic value for Warburgia ugandensis Sprague leaf and stem-bark herbal materials. J. Pharmacogn. Phytother. 2020 12 2 36 43 10.5897/JPP2019.0569
    [Google Scholar]
  26. Tewari D. Gupta P. Bawari S. Sah A.N. Barreca D. Khayatkashani M. Khayat Kashani H.R. Himalayan Ficus palmata L. fruit extract showed in vivo central and peripheral analgesic activity involving COX-2 and Mu opioid receptors. Plants 2021 10 8 1685 10.3390/plants10081685 34451731
    [Google Scholar]
  27. Sofowara A. Medicinal plants and Traditional medicine in Africa. Ibadan Spectrum Books Ltd 1993
    [Google Scholar]
  28. Trease G.E. Textbook of pharmacognosy. 12th ed London Balliere- Tindal 1979
    [Google Scholar]
  29. Kalpoutzakis E. Chatzimitakos T. Athanasiadis V. Mitakou S. Aligiannis N. Bozinou E. Gortzi O. Skaltsounis L.A. Lalas S.I. Determination of the total phenolics content and antioxidant activity of extracts from parts of plants from the Greek Island of Crete. Plants 2023 12 5 1092 10.3390/plants12051092 36903954
    [Google Scholar]
  30. Yimer A. Forsido S.F. Addis G. Ayelign A. Phytochemical profile and antioxidant capacity of some wild edible plants consumed in Southwest Ethiopia. Heliyon 2023 9 4 e15331 10.1016/j.heliyon.2023.e15331 37089323
    [Google Scholar]
  31. Orsavová J. Juríková T. Bednaříková R. Mlček J. Total phenolic and total flavonoid content, individual phenolic compounds and antioxidant activity in sweet rowanberry cultivars. Antioxidants 2023 12 4 913 10.3390/antiox12040913 37107288
    [Google Scholar]
  32. Minh T.N. Xuan T.D. Tran H.D. Van T.M. Andriana Y. Khanh T.D. Quan N.V. Ahmad A. Isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica. Molecules 2019 24 5 889 10.3390/molecules24050889 30832436
    [Google Scholar]
  33. Eberhardt TL Li X Shupe TF Hse CYJW Science F Chinese tallow tree (Sapium sebiferum) utilization: Characterization of extractives and cell-wall chemistry. Wood and Fiber Science 2007 39 2 319 324
    [Google Scholar]
  34. Younis U. Rahi A.A. Danish S. Ali M.A. Ahmed N. Datta R. Fahad S. Holatko J. Hammerschmiedt T. Brtnicky M. Zarei T. Baazeem A. Sabagh A.E.L. Glick B.R. Fourier transform infrared spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS One 2021 16 6 e0253390 10.1371/journal.pone.0253390 34191839
    [Google Scholar]
  35. Hwang I.W. Chung S.K. Isolation and identification of myricitrin, an antioxidant flavonoid, from Daebong Persimmon Peel. Prev. Nutr. Food Sci. 2018 23 4 341 346 10.3746/pnf.2018.23.4.341 30675464
    [Google Scholar]
  36. Sobeh M. Petruk G. Osman S. El Raey M.A. Imbimbo P. Monti D.M. Wink M. Isolation of myricitrin and 3,5-di-O-Methyl gossypetin from Syzygium samarangense and evaluation of their involvement in protecting keratinocytes against oxidative stress via activation of the Nrf-2 pathway. Molecules 2019 24 9 1839 10.3390/molecules24091839 31086086
    [Google Scholar]
  37. Cioanca O. Lungu I.I. Mita-Baciu I. Robu S. Burlec A.F. Hancianu M. Crivoi F. Extraction and purification of catechins from tea leaves: An overview of methods, advantages, and disadvantages. Separations 2024 11 6 171 10.3390/separations11060171
    [Google Scholar]
  38. Dong J.J. Ye J.H. Lu J.L. Zheng X.Q. Liang Y.R. Isolation of antioxidant catechins from green tea and its decaffeination. Food Bioprod. Process. 2011 89 1 62 66 10.1016/j.fbp.2010.02.003
    [Google Scholar]
  39. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  40. Gulcin İ. Alwasel S.H. DPPH Radical Scavenging Assay. Processes (Basel) 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  41. Patel A. Patel A. Patel A. Patel N.M. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010 2 3 152 158 10.4103/0974‑8490.65509 21808558
    [Google Scholar]
  42. Habu J.B. Ibeh B.O. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract. Biol. Res. 2015 48 1 16 10.1186/s40659‑015‑0007‑x 25849161
    [Google Scholar]
  43. Lalhminghlui K. Jagetia G.C. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci. OA 2018 4 2 FSO272 10.4155/fsoa‑2017‑0086 29379645
    [Google Scholar]
  44. Dasgupta A. Klein K. Methods for Measuring Oxidative Stress in the Laboratory. Antioxidants in Food, Vitamins and Supplements. Dasgupta A. Klein K. San Diego Elsevier 2014 19 40 10.1016/B978‑0‑12‑405872‑9.00002‑1
    [Google Scholar]
  45. Ajjarapu S.M. Tiwari A. Taj G. Singh D.B. Singh S. Kumar S. Simulation studies, 3D QSAR and molecular docking on a point mutation of protein kinase B with flavonoids targeting ovarian Cancer. BMC Pharmacol. Toxicol. 2021 22 1 68 10.1186/s40360‑021‑00512‑y 34727985
    [Google Scholar]
  46. Massah M. Balmeh N. Goodarzi K. Allahyari Fard N. Molecular docking analysis of H1 and H2 antihistamines groups with l-asparaginase II for reducing allergenicity; an in silico approach. Informatics in Medicine Unlocked 2022 28 100865 10.1016/j.imu.2022.100865
    [Google Scholar]
  47. Laloo D. Sinha S.K. Prasad S.K. Hemalatha S. Gastric H. Gastric H+, K+-ATPase inhibitory effects of the active constituent isolated from Potentilla fulgens roots: An in vivo and in silico molecular docking studies. Phytomedicine Plus 2021 1 3 100037 10.1016/j.phyplu.2021.100037
    [Google Scholar]
  48. Farias S.A.S. Rocha K.M.L. Nascimento É.C.M. de Jesus R.C.C. Neres P.R. Martins J.B.L. Docking and electronic structure of rutin, myricetin, and baicalein targeting 3CLpro. Int. J. Mol. Sci. 2023 24 20 15113 10.3390/ijms242015113 37894797
    [Google Scholar]
  49. Tewari D. Mocan A. Parvanov E.D. Sah A.N. Nabavi S.M. Huminiecki L. Ethnopharmacological approaches for therapy of jaundice: Part I. Front Pharmacol. 2017 8 518
    [Google Scholar]
  50. Narayanan M. Reddy K.M. Marsicano E. Peptic Ulcer Disease and Helicobacter pylori infection. Mo. Med. 2018 115 3 219 224 30228726
    [Google Scholar]
  51. Kuna L. Jakab J. Smolic R. Raguz-Lucic N. Vcev A. Smolic M. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J. Clin. Med. 2019 8 2 179 10.3390/jcm8020179 30717467
    [Google Scholar]
/content/journals/mc/10.2174/0115734064366819250125070619
Loading
/content/journals/mc/10.2174/0115734064366819250125070619
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: catechin ; H+K+-ATPase enzyme ; myricetin ; antioxidant activity ; H2 Receptor ; M. esculenta
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test