Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Objective

The objective of this study is to explore the therapeutic potential of phytochemicals in cancer cell metabolism by investigating their ability to inhibit key molecular targets involved in tumor growth and drug resistance.

Methods

We evaluated specific phytochemicals against critical cancer-related targets such as GLS1, CKα, MGLL, IDH1, PDHK1, and PHGDH. Molecular docking methods were used to understand the binding interactions between phytochemicals and their selected targets. ADME (absorption, distribution, metabolism, and excretion) analysis and molecular dynamics (MD) simulations were conducted to assess pharmacokinetic properties and ligand-protein interaction dynamics, respectively. MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) calculations were utilized to estimate binding free energies.

Results

Molecular dynamics simulations demonstrate that phytochemicals like EGCG, Diosgenin, Withaferin A, and Celastrol exhibit stable binding to their respective targets, suggesting potential therapeutic benefits. Specifically, EGCG shows strong and non-toxic binding affinity with GLS1, making it a promising candidate for cancer treatment.

Conclusion

Our study underscores the potential of phytochemicals as effective inhibitors of cancer cell metabolism. The stable binding interactions highlight promising avenues for developing innovative cancer therapies. Further experimental investigations are warranted to validate these findings and advance the development of hybrid phytochemical-based treatments for combating chemoresistance.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064325567240930044647
2024-10-10
2025-04-12
Loading full text...

Full text loading...

References

  1. (a WildC.P. WeiderpassE. StewartB.W. World Cancer Report: Cancer Research for Cancer Prevention.Lyon, FranceInternational Agency for Research on Cancer2020
    [Google Scholar]
  2. (b CooperG.M. The Cell: A Molecular Approach 2nd ed; Asm Press: Washington, Dc2000
    [Google Scholar]
  3. BordoloiD. RoyN.K. MonishaJ. PadmavathiG. KunnumakkaraA.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far.Recent Patents Anticancer Drug Discov.2016111679710.2174/1574892810666151020101706 26537958
    [Google Scholar]
  4. BanikK. HarshaC. BordoloiD. Lalduhsaki SailoB. SethiG. LeongH.C. ArfusoF. MishraS. WangL. KumarA.P. KunnumakkaraA.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer.Cancer Lett.2018416758610.1016/j.canlet.2017.12.014 29246645
    [Google Scholar]
  5. AroraS. BalasubramaniamS. ZhangH. BermanT. NarayanP. SuzmanD. BloomquistE. TangS. GongY. SridharaR. TurcuF.R. ChatterjeeD. Saritas-YildirimB. GhoshS. PhilipR. PathakA. GaoJ.J. Amiri-KordestaniL. PazdurR. BeaverJ.A. FDA approval summary: Olaparib monotherapy or in combination with bevacizumab for the maintenance treatment of patients with advanced ovarian cancer.Oncologist2021261e164e17210.1002/onco.13551 33017510
    [Google Scholar]
  6. SailoB.L. BanikK. GirisaS. BordoloiD. FanL. HalimC.E. WangH. KumarA.P. ZhengD. MaoX. SethiG. KunnumakkaraA.B. FBXW7 in cancer: What has been unraveled thus far?Cancers 201911224610.3390/cancers11020246 30791487
    [Google Scholar]
  7. SunY. Chemosensitization by emodin, a plant-derived anti-cancer agent: Mechanism of action.Cancer Biol. Ther.20087347647810.4161/cbt.7.3.5584 18245955
    [Google Scholar]
  8. LibertiM.V. LocasaleJ.W. The warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  9. BergJ.M. TymoczkoJ.L. StryerL. StryerL. Biochemistry.New YorkWH Freeman2007
    [Google Scholar]
  10. MatschinskyF.M. WilsonD.F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans.Front. Physiol.20191014810.3389/fphys.2019.00148 30949058
    [Google Scholar]
  11. LiuY. ZhangZ. WangJ. ChenC. TangX. ZhuJ. LiuJ. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: A review.OncoTargets Ther.2019121195120410.2147/OTT.S189687 30863087
    [Google Scholar]
  12. JinL. ZhouY. Crucial role of the pentose phosphate pathway in malignant tumors (Review).Oncol. Lett. 20191754213422110.3892/ol.2019.10112 30944616
    [Google Scholar]
  13. WarburgO. PosenerK. NegeleinE. On the metabolism of carcinoma cells.Biochem. Z.1924152309344
    [Google Scholar]
  14. KeenanM.M. ChiJ.T. Alternative fuels for cancer cells.Cancer J.2015212495510.1097/PPO.0000000000000104 25815843
    [Google Scholar]
  15. PoplinE. RobertsJ. TombsM. GrantS. RubinE. Leucovorin, 5-fluorouracil, and gemcitabine: A phase I study.Invest. New Drugs1999171576110.1023/A:1006239200772 10555123
    [Google Scholar]
  16. HussainS.A. SulaimanA.A. BalchC. ChauhanH. AlhadidiQ.M. TiwariA.K. Natural polyphenols in cancer chemoresistance.Nutr. Cancer201668687989110.1080/01635581.2016.1192201 27366999
    [Google Scholar]
  17. TurriniE. FerruzziL. FimognariC. Natural compounds to overcome cancer chemoresistance: Toxicological and clinical issues.Expert Opin. Drug Metab. Toxicol.201410121677169010.1517/17425255.2014.972933 25339439
    [Google Scholar]
  18. de Oliveira JúniorR.G. Christiane AdriellyA.F. da Silva AlmeidaJ.R.G. GrougnetR. ThiéryV. PicotL. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms.Fitoterapia201812938340010.1016/j.fitote.2018.02.025 29476786
    [Google Scholar]
  19. VinodB.S. MaliekalT.T. AntoR.J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance.Antioxid. Redox Signal.201318111307134810.1089/ars.2012.4573 22871022
    [Google Scholar]
  20. RoyN.K. ParamaD. BanikK. BordoloiD. DeviA.K. ThakurK.K. PadmavathiG. ShakibaeiM. FanL. SethiG. KunnumakkaraA.B. An update on pharmacological potential of boswellic acids against chronic diseases.Int. J. Mol. Sci.20192017410110.3390/ijms20174101 31443458
    [Google Scholar]
  21. KunnumakkaraA.B. SailoB.L. BanikK. HarshaC. PrasadS. GuptaS.C. BhartiA.C. AggarwalB.B. Chronic diseases, inflammation, and spices: How are they linked?J. Transl. Med.20181611410.1186/s12967‑018‑1381‑2 29370858
    [Google Scholar]
  22. SinghY.P. GirisaS. BanikK. GhoshS. SwathiP. DekaM. PadmavathiG. KotokyJ. SethiG. FanL. MaoX. HalimC.E. ArfusoF. KunnumakkaraA.B. Potential application of zerumbone in the prevention and therapy of chronic human diseases.J. Funct. Foods20195324825810.1016/j.jff.2018.12.020
    [Google Scholar]
  23. ShuL. CheungK.L. KhorT.O. ChenC. KongA.N. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis.Cancer Metastasis Rev.201029348350210.1007/s10555‑010‑9239‑y 20798979
    [Google Scholar]
  24. SunC.Y. ZhangQ.Y. ZhengG.J. FengB. Phytochemicals: Current strategy to sensitize cancer cells to cisplatin.Biomed. Pharmacother.201911051852710.1016/j.biopha.2018.12.010 30530287
    [Google Scholar]
  25. DuG.J. ZhangZ. WenX.D. YuC. CalwayT. YuanC.S. WangC.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.Nutrients20124111679169110.3390/nu4111679 23201840
    [Google Scholar]
  26. ChenB.H. HsiehC.H. TsaiS.Y. WangC.Y. WangC.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway.Sci. Rep.2020101516310.1038/s41598‑020‑62136‑2 32198390
    [Google Scholar]
  27. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  28. RamachandranS. PanC.Q. ZimmermannS.C. DuvallB. TsukamotoT. LowB.C. SivaramanJ. Structural basis for exploring the allosteric inhibition of human kidney type glutaminase.Oncotarget2016736579435795410.18632/oncotarget.10791 27462863
    [Google Scholar]
  29. Sahún-RonceroM. Rubio-RuízB. Conejo-GarcíaA. Velázquez-CampoyA. EntrenaA. Hurtado-GuerreroR. Determination of potential scaffolds for human choline kinase α1 by chemical deconvolution studies.ChemBioChem201314111291129510.1002/cbic.201300195 23813777
    [Google Scholar]
  30. Schalk-HihiC. SchubertC. AlexanderR. BayoumyS. ClementeJ.C. DeckmanI. DesJarlaisR.L. DzordzormeK.C. FloresC.M. GrasbergerB. KranzJ.K. LewandowskiF. LiuL. MaH. MaguireD. MacielagM.J. McDonnellM.E. Mezzasalma HaarlanderT. MillerR. MilliganC. ReynoldsC. KuoL.C. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution.Protein Sci.201120467068310.1002/pro.596 21308848
    [Google Scholar]
  31. DengG. ShenJ. YinM. McManusJ. MathieuM. GeeP. HeT. ShiC. BedelO. McLeanL.R. Le-StratF. ZhangY. MarquetteJ.P. GaoQ. ZhangB. RakA. HoffmannD. RooneyE. VassortA. EnglaroW. LiY. PatelV. AdrianF. GrossS. WiederschainD. ChengH. LichtS. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule.J. Biol. Chem.2015290276277410.1074/jbc.M114.608497 25391653
    [Google Scholar]
  32. KatoM. LiJ. ChuangJ.L. ChuangD.T. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol.Structure2007158992100410.1016/j.str.2007.07.001 17683942
    [Google Scholar]
  33. KapoorK. Finer-MooreJ.S. PedersenB.P. CaboniL. WaightA. HilligR.C. BringmannP. HeislerI. MüllerT. SiebeneicherH. StroudR.M. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides.Proc. Natl. Acad. Sci. USA2016113174711471610.1073/pnas.1603735113 27078104
    [Google Scholar]
  34. HsiehC.H. ChengY.S. LeeY.S. HuangH.C. JuanH.F. Crystal structure of human PHGDH in complex with Homoharringtonine.Biomed. Pharmacother.2023166115429
    [Google Scholar]
  35. WangN. JiangX. ZhangS. ZhuA. YuanY. XuH. LeiJ. YanC. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates.Cell20211842370383.e1310.1016/j.cell.2020.11.043 33333023
    [Google Scholar]
  36. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  37. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  38. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  39. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky473 29860391
    [Google Scholar]
  40. JoS. KimT. IyerV.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.20945 18351591
    [Google Scholar]
  41. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.23354 23832629
    [Google Scholar]
  42. LindahlA. GROMACS 2020.3 Manual.2020Available from: https://zenodo.org/records/3923644
    [Google Scholar]
  43. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  44. KumariR. KumarR. LynnA. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  45. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  46. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  47. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  48. van BreemenR.B. LiY. Caco-2 cell permeability assays to measure drug absorption.Expert Opin. Drug Metab. Toxicol.20051217518510.1517/17425255.1.2.175 16922635
    [Google Scholar]
  49. BrenkR. SchipaniA. JamesD. KrasowskiA. GilbertI.H. FrearsonJ. WyattP.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases.ChemMedChem20083343544410.1002/cmdc.200700139 18064617
    [Google Scholar]
  50. AlamS. KhanF. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition.Sci. Rep.201991541410.1038/s41598‑019‑41984‑7 30932078
    [Google Scholar]
  51. TestaB. KrämerS.D. The biochemistry of drug metabolism-an introduction: part 3. Reactions of hydrolysis and their enzymes.Chem. Biodivers.2007492031212210.1002/cbdv.200790169 17886859
    [Google Scholar]
  52. van WaterschootR.A.B. SchinkelA.H. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: Recent insights from knockout and transgenic mice.Pharmacol. Rev.201163239041010.1124/pr.110.002584 21490128
    [Google Scholar]
  53. SaeidniaS. ManayiA. AbdollahiM. The pros and cons of the in-silico pharmaco-toxicology in drug discovery and development.Int. J. Pharmacol.20139317618110.3923/ijp.2013.176.181
    [Google Scholar]
  54. DrwalM.N. BanerjeeP. DunkelM. WettigM.R. PreissnerR. ProTox: A web server for the in silico prediction of rodent oral toxicity.Nucleic Acids Res.201442W1W53W5810.1093/nar/gku401 24838562
    [Google Scholar]
  55. ParkJ. ParkR. JangM. ParkY.I. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases.Life202111319710.3390/life11030197 33806274
    [Google Scholar]
  56. FengY. LiC. WangW. XuL. ZhangM. YaoY. WuX. ZhangQ. HuangW. WangX. LiX. YingP. ShangL. Targeting glutaminolysis to treat multiple myeloma: An in vitro evaluation of glutaminase inhibitors telaglenastat and epigallocatechin-3-gallate.Anticancer. Agents Med. Chem.202323777978510.2174/1871520622666220905142338 36065917
    [Google Scholar]
  57. JesusM. MartinsA.P.J. GallardoE. SilvestreS. Diosgenin: Recent highlights on pharmacology and analytical methodology.J. Anal. Methods Chem.2016201611610.1155/2016/4156293 28116217
    [Google Scholar]
  58. HanS. LiuY. CaiS.J. QianM. DingJ. LarionM. GilbertM.R. YangC. IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets.Br. J. Cancer2020122111580158910.1038/s41416‑020‑0814‑x 32291392
    [Google Scholar]
  59. ChouF.J. LiuY. LangF. YangC. D-2-hydroxyglutarate in glioma biology.Cells2021109234510.3390/cells10092345 34571995
    [Google Scholar]
  60. MehrjardiN.Z. HänggiD. KahlertU.D. Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma.Cell Death Dis.2020111199810.1038/s41419‑020‑03196‑0 33221817
    [Google Scholar]
  61. BishtS. NigamM. KunjwalS.S. SergeyP. MishraA.P. Sharifi-RadJ. Cancer stem cells: From an insight into the basics to recent advances and therapeutic targeting.Stem Cells Int.2022202212810.1155/2022/9653244 35800881
    [Google Scholar]
  62. YangL. ShiP. ZhaoG. XuJ. PengW. ZhangJ. ZhangG. WangX. DongZ. ChenF. CuiH. Targeting cancer stem cell pathways for cancer therapy.Signal Transduct. Target. Ther.202051810.1038/s41392‑020‑0110‑5 32296030
    [Google Scholar]
  63. BhatG.R. SethiI. SadidaH.Q. RahB. MirR. AlgehainyN. AlbalawiI.A. MasoodiT. SubbarajG.K. JamalF. SinghM. KumarR. MachaM.A. UddinS. AkilA.S.A.S. HarisM. BhatA.A. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance.Cancer Metastasis Rev.202443119722810.1007/s10555‑024‑10172‑z 38329598
    [Google Scholar]
  64. RathoreR. SchuttC.R. Van TineB.A. PHGDH as a mechanism for resistance in metabolically-driven cancers.Cancer Drug Resist.20203476277410.20517/cdr.2020.46 33511334
    [Google Scholar]
  65. WuY.Q. ZhangC.S. XiongJ. CaiD.Q. WangC.Z. WangY. LiuY.H. WangY. LiY. WuJ. WuJ. LanB. WangX. ChenS. CaoX. WeiX. HuH.H. GuoH. YuY. GhafoorA. XieC. WuY. XuZ. ZhangC. ZhuM. HuangX. SunX. LinS.Y. PiaoH.L. ZhouJ. LinS.C. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate.Cell Res.2023331183585010.1038/s41422‑023‑00874‑4 37726403
    [Google Scholar]
  66. DongY. TuR. LiuH. QingG. Regulation of cancer cell metabolism: Oncogenic MYC in the driver’s seat.Signal Transduct. Target. Ther.20205112410.1038/s41392‑020‑00235‑2 32651356
    [Google Scholar]
  67. HouT. WangJ. LiY. WangW. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations.J. Chem. Inf. Model.2011511698210.1021/ci100275a 21117705
    [Google Scholar]
  68. TaylorM. HoJ. MM/GBSA prediction of relative binding affinities of carbonic anhydrase inhibitors: Effect of atomic charges and comparison with Autodock4Zn.J. Comput. Aided Mol. Des.202337416718210.1007/s10822‑023‑00499‑0 36930332
    [Google Scholar]
  69. TalibW.H. AwajanD. HamedR.A. AzzamA.O. MahmodA.I. AL-Yasari, I.H. Combination anticancer therapies using selected phytochemicals.Molecules20222717545210.3390/molecules27175452 36080219
    [Google Scholar]
  70. WeiR. WirkusJ. YangZ. MachucaJ. EsparzaY. MackenzieG.G. EGCG sensitizes chemotherapeutic-induced cytotoxicity by targeting the ERK pathway in multiple cancer cell lines.Arch. Biochem. Biophys.202069210854610.1016/j.abb.2020.108546 32818507
    [Google Scholar]
  71. GoetzL.H. SchorkN. J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  72. HodaA. Lika ÇekaniM. KolaneciV. Identification of deleterious nsSNPs in human HGF gene: In silico approach.J. Biomol. Struct. Dyn.20234121118891190310.1080/07391102.2022.2164060 36598356
    [Google Scholar]
  73. FongE.J. StrelezC. MumenthalerS.M. A perspective on expanding our understanding of cancer treatments by integrating approaches from the biological and physical sciences.SLAS Discov.202025767268310.1177/2472555220915830 32297829
    [Google Scholar]
  74. KariS. SubramanianK. AltomonteI.A. MurugesanA. Yli-HarjaO. KandhaveluM. Programmed cell death detection methods: A systematic review and a categorical comparison.Apoptosis2022277-848250810.1007/s10495‑022‑01735‑y 35713779
    [Google Scholar]
  75. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.2020101614
    [Google Scholar]
  76. G, M.S.; Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Anto, R.J. Cancer chemoprevention: A strategic approach using phytochemicals.Front. Pharmacol.20221280930810.3389/fphar.2021.809308 35095521
    [Google Scholar]
  77. YounasM. HanoC. Giglioli-Guivarc’hN. AbbasiB.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives.RSC Advances2018852297142974410.1039/C8RA04879G 35547279
    [Google Scholar]
/content/journals/mc/10.2174/0115734064325567240930044647
Loading
/content/journals/mc/10.2174/0115734064325567240930044647
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test