Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Topoisomerases I and II are the functionally two forms of DNA topoisomerase. In anticancer research, novel anticancer chemotherapeutical capable of blocking topoisomerase enzymes have been discovered. Most commonly, topoisomerase causes replication fork arrest and double-strand breaks, and this is how a clinically successful topoisomerase-targeting anticancer medicines work. Unfortunately, this novel mechanism of action has been linked to the development of secondary malignancies as well as cardiotoxicity. The specific binding locations and mechanisms of topoisomerase poisons have been identified by studying the structures of topoisomerase-drug-DNA ternary complexes. Recent breakthroughs in science have revealed that isoform-specific human topoisomerase II poison could be created as safer anticancer drug molecules. It may also be able to develop catalytic inhibitors of topoisomerases by focusing on their inactive conformations. In addition to this, the discovery of new bacterial topoisomerase inhibitor molecules and regulatory proteins could lead to the discovery of new human topoisomerase inhibitors. As a result, biologists, organic chemists, and medicinal chemists worldwide have been identifying, designing, synthesizing, and testing a variety of novel topoisomerase-targeting bioactive compounds. This review focused on topoisomerase inhibitors, their mechanisms of action, and different types of topoisomerase inhibitors that have been developed during the last ten years.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064311729240911102646
2024-10-15
2025-05-10
Loading full text...

Full text loading...

References

  1. MillerK.D. NogueiraL. MariottoA.B. RowlandJ.H. YabroffK.R. AlfanoC.M. JemalA. KramerJ.L. SiegelR.L. Cancer treatment and survivorship statistics, 2019.CA Cancer J. Clin.201969536338510.3322/caac.21565 31184787
    [Google Scholar]
  2. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.21262 25651787
    [Google Scholar]
  3. BrayF. MøllerB. Predicting the future burden of cancer.Nat. Rev. Cancer200661637410.1038/nrc1781 16372017
    [Google Scholar]
  4. ShrivastavaN. NaimM.J. AlamM.J. NawazF. AhmedS. AlamO. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship.Arch. Pharm. (Weinheim)20173506e20170004010.1002/ardp.201700040 28544162
    [Google Scholar]
  5. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2015.CA Cancer J. Clin.201565152910.3322/caac.21254 25559415
    [Google Scholar]
  6. MillerK.D. SiegelR.L. LinC.C. MariottoA.B. KramerJ.L. RowlandJ.H. SteinK.D. AlteriR. JemalA. Cancer treatment and survivorship statistics, 2016.CA Cancer J. Clin.201666427128910.3322/caac.21349 27253694
    [Google Scholar]
  7. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.21332 26742998
    [Google Scholar]
  8. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  9. TorreL.A. TrabertB. DeSantisC.E. MillerK.D. SamimiG. RunowiczC.D. GaudetM.M. JemalA. SiegelR.L. Ovarian cancer statistics, 2018.CA Cancer J. Clin.201868428429610.3322/caac.21456 29809280
    [Google Scholar]
  10. DeSantisC.E. MaJ. GaudetM.M. NewmanL.A. MillerK.D. Goding SauerA. JemalA. SiegelR.L. Breast cancer statistics, 2019.CA Cancer J. Clin.201969643845110.3322/caac.21583 31577379
    [Google Scholar]
  11. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  12. AliI. WaniW.A. SaleemK. Cancer scenario in India with future perspectives.Cancer Ther.20118
    [Google Scholar]
  13. PereiraC. LeãoM. SoaresJ. BessaC. SaraivaL. New therapeutic strategies for cancer and neurodegeneration emerging from yeast cell-based systems.Curr. Pharm. Des.201218274223423510.2174/138161212802430422 22650181
    [Google Scholar]
  14. LiuY. LinY.L. PaseroP. ChenC.L. Topoisomerase I prevents transcription-replication conflicts at transcription termination sites.Mol. Cell. Oncol.202181184395110.1080/23723556.2020.1843951 33553603
    [Google Scholar]
  15. TuduriS. CrabbéL. ContiC. TourrièreH. Holtgreve-GrezH. JauchA. PantescoV. De VosJ. ThomasA. TheilletC. PommierY. TaziJ. CoquelleA. PaseroP. Erratum: Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription.Nat. Cell Biol.20101211112210.1038/ncb1110‑1122 19838172
    [Google Scholar]
  16. MastrangeloS. AttinaG. TriaricoS. RomanoA. MauriziP. RuggieroA. The DNA-topoisomerase inhibitors in cancer therapy.Biomed. Pharmacol. J.202215255356210.13005/bpj/2396
    [Google Scholar]
  17. TriaricoS. RinninellaE. CintoniM. CapozzaM.A. MastrangeloS. MeleM.C. RuggieroA. Impact of malnutrition on survival and infections among pediatric patients with cancer: A retrospective study.Eur. Rev. Med. Pharmacol. Sci.201923311651175 30779086
    [Google Scholar]
  18. BiberS. PospiechH. GottifrediV. WiesmüllerL. Multiple biochemical properties of the p53 molecule contribute to activation of polymerase iota-dependent DNA damage tolerance.Nucleic Acids Res.20204821121881220310.1093/nar/gkaa974 33166398
    [Google Scholar]
  19. FesikS.W. Promoting apoptosis as a strategy for cancer drug discovery.Nat. Rev. Cancer200551187688510.1038/nrc1736 16239906
    [Google Scholar]
  20. CortésF. PastorN. MateosS. DomínguezI. Topoisomerase inhibitors as therapeutic weapons.Expert Opin. Ther. Pat.200717552153210.1517/13543776.17.5.521
    [Google Scholar]
  21. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533835010.1038/nrc2607 19377506
    [Google Scholar]
  22. BaillyC. Irinotecan: 25 years of cancer treatment.Pharmacol. Res.201914810439810.1016/j.phrs.2019.104398 31415916
    [Google Scholar]
  23. BerettaG.L. PeregoP. ZuninoF. Targeting topoisomerase I: Molecular mechanisms and cellular determinants of response to topoisomerase I inhibitors.Expert Opin. Ther. Targets200812101243125610.1517/14728222.12.10.1243 18781823
    [Google Scholar]
  24. GilesG. SharmaR. Topoisomerase enzymes as therapeutic targets for cancer chemotherapy.Med. Chem.20051438339410.2174/1573406054368738 16789895
    [Google Scholar]
  25. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms21093233 32370233
    [Google Scholar]
  26. Infante LaraL. FennerS. RatcliffeS. Isidro-LlobetA. HannM. BaxB. OsheroffN. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences.Nucleic Acids Res.20184652218223310.1093/nar/gky072 29447373
    [Google Scholar]
  27. MartinoE. Della VolpeS. TerribileE. BenettiE. SakajM. CentamoreA. SalaA. CollinaS. The long story of camptothecin: From traditional medicine to drugs.Bioorg. Med. Chem. Lett.201727470170710.1016/j.bmcl.2016.12.085 28073672
    [Google Scholar]
  28. WangX. ZhuangY. WangY. JiangM. YaoL. The recent developments of camptothecin and its derivatives as potential anti-tumor agents.Eur. J. Med. Chem.202326011571010.1016/j.ejmech.2023.115710 37595544
    [Google Scholar]
  29. YakkalaP.A. PenumalluN.R. ShafiS. KamalA. Prospects of topoisomerase inhibitors as promising anti-cancer agents.Pharmaceuticals (Basel)20231610145610.3390/ph16101456 37895927
    [Google Scholar]
  30. MakiyamaA. ArimizuK. HiranoG. MakiyamaC. MatsushitaY. ShirakawaT. OhmuraH. KomodaM. UchinoK. InadomiK. AritaS. AriyamaH. KusabaH. ShinoharaY. KuwayamaM. KajitaniT. OdaH. EsakiT. AkashiK. BabaE. Irinotecan monotherapy as third-line or later treatment in advanced gastric cancer.Gastric Cancer201821346447210.1007/s10120‑017‑0759‑9 28799048
    [Google Scholar]
  31. GershensonD.M. Irinotecan in epithelial ovarian cancer.Oncology (Williston Park)20021652931 12109803
    [Google Scholar]
  32. VerschraegenC.F. Irinotecan for the treatment of cervical cancer.Oncology (Williston Park)20021653234 12109804
    [Google Scholar]
  33. FuchsC. MitchellE.P. HoffP.M. Irinotecan in the treatment of colorectal cancer.Cancer Treat. Rev.200632749150310.1016/j.ctrv.2006.07.001 16959432
    [Google Scholar]
  34. RothenbergM.L. Irinotecan (CPT-11): Recent developments and future directions--colorectal cancer and beyond.Oncologist200161668010.1634/theoncologist.6‑1‑66 11161230
    [Google Scholar]
  35. AdamsD. The impact of tumor physiology on camptothecin-based drug development.Curr. Med. Chem. Anticancer Agents20055111310.2174/1568011053352596 15720257
    [Google Scholar]
  36. HoldenJ. DNA topoisomerases as anticancer drug targets: From the laboratory to the clinic.Curr. Med. Chem. Anticancer Agents20011112510.2174/1568011013354859 12678768
    [Google Scholar]
  37. HuangT.T. Wuerzberger-DavisS.M. SeufzerB.J. ShumwayS.D. KuramaT. BoothmanD.A. MiyamotoS. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events.J. Biol. Chem.2000275139501950910.1074/jbc.275.13.9501 10734098
    [Google Scholar]
  38. CroceA.C. BottiroliG. SupinoR. FaviniE. ZucoV. ZuninoF. Subcellular localization of the camptothecin analogues, topotecan and gimatecan.Biochem. Pharmacol.20046761035104510.1016/j.bcp.2003.10.034 15006540
    [Google Scholar]
  39. KhadkaD.B. ChoW.J. Topoisomerase inhibitors as anticancer agents: A patent update.Expert Opin. Ther. Pat.20132381033105610.1517/13543776.2013.790958 23611704
    [Google Scholar]
  40. ChoudharyS. AroraM. VermaH. KumarM. SilakariO. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile.Eur. J. Pharmacol.202189917402710.1016/j.ejphar.2021.174027 33731294
    [Google Scholar]
  41. MilluzzoA. BarchittaM. MaugeriA. AgodiA. SciaccaL. Body mass index is related to short term retinal worsening in type 2 diabetes patients treated with anticancer drugs.Minerva Endocrinol.20244917684 35103455
    [Google Scholar]
  42. KooO.M.Y. RubinsteinI. ÖnyükselH. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis.Pharm. Res.201128477678710.1007/s11095‑010‑0330‑4 21132352
    [Google Scholar]
  43. HuberS. AntoniF. SchickanederC. SchickanederH. BernhardtG. BuschauerA. Stabilities of neutral and basic esters of bendamustine in plasma compared to the parent compound: Kinetic investigations by HPLC.J. Pharm. Biomed. Anal.201510413714310.1016/j.jpba.2014.11.038 25499654
    [Google Scholar]
  44. TahlanS. KumarS. NarasimhanB. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review.BMC Chem.201913110110.1186/s13065‑019‑0625‑4 31410412
    [Google Scholar]
  45. Martínez-ViturroC.M. DomínguezD. Synthesis of the antitumoural agent batracylin and related isoindolo[1,2-b]quinazolin-12(10H)-ones.Tetrahedron Lett.20074861023102610.1016/j.tetlet.2006.11.168
    [Google Scholar]
  46. HoriA. ImaedaY. KuboK. KusakaM. Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo.Cancer Lett.20021831536010.1016/S0304‑3835(02)00110‑6 12049814
    [Google Scholar]
  47. Acar ÇevikU. SağlıkB.N. OsmaniyeD. LeventS. Kaya ÇavuşoğluB. KaradumanA.B. Atlı EklioğluÖ. ÖzkayY. KaplancıklıZ.A. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison.J. Enzyme Inhib. Med. Chem.20203511657167310.1080/14756366.2020.1806831 32811204
    [Google Scholar]
  48. YadavS. NarasimhanB. KaurH. Perspectives of benzimidazole derivatives as anticancer agents in the new era.Anticancer Agents Med Chem201616111403142510.2174/1871520616666151103113412
    [Google Scholar]
  49. ZembowerE. XieY. KoohangA. KuffelMJ. AmesMM. ZhouY. MishraR. MarAA. FlavinMT. XuZQ. Methylenedioxy and ethylenedioxy-fused indolocarbazoles: Potent human topoisomerase I inhibitors and antitumor agents. Anticancer Agents Med Chem201212911173110.2174/187152012803529628
    [Google Scholar]
  50. MarquisJ.F. MakheyD. LaVoieE.J. OlivierM. Effects of topoisomerases inhibitors protoberberine on Leishmania donovani growth, macrophage function, and infection.J. Parasitol.20038951048105210.1645/GE‑3161 14627155
    [Google Scholar]
  51. AlperS. Temiz ArpaciÖ. Şener AkiE. YalçinI. Some new bi- and ter-benzimidazole derivatives as topoisomerase I inhibitors.Farmaco200358749750710.1016/S0014‑827X(03)00042‑9 12818688
    [Google Scholar]
  52. WangK.B. ElsayedM.S.A. WuG. DengN. CushmanM. YangD. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC.J. Am. Chem. Soc.201914128110591107010.1021/jacs.9b02679 31283877
    [Google Scholar]
  53. FacompréM. TardyC. Bal-MahieuC. ColsonP. PerezC. ManzanaresI. CuevasC. BaillyC. LamellarinD. A novel potent inhibitor of topoisomerase I.Cancer Res.2003632173927399 14612538
    [Google Scholar]
  54. WeiM. ChenJ. SongY. MonserratJ.P. ZhangY. ShenL. Progress on synthesis and structure-activity relationships of lamellarins over the past decade.Eur. J. Med. Chem.202426911629410.1016/j.ejmech.2024.116294 38508119
    [Google Scholar]
  55. NagarajanM. MorrellA. IoanoviciuA. AntonyS. KohlhagenG. AgamaK. HollingsheadM. PommierY. CushmanM. Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles.J. Med. Chem.200649216283628910.1021/jm060564z 17034134
    [Google Scholar]
  56. NagarajanM. XiaoX. AntonyS. KohlhagenG. PommierY. CushmanM. Design, synthesis, and biological evaluation of indenoisoquinoline topoisomerase I inhibitors featuring polyamine side chains on the lactam nitrogen.J. Med. Chem.200346265712572410.1021/jm030313f 14667224
    [Google Scholar]
  57. KiselevE. DeGuireS. MorrellA. AgamaK. DexheimerT.S. PommierY. CushmanM. 7-azaindenoisoquinolines as topoisomerase I inhibitors and potential anticancer agents.J. Med. Chem.201154176106611610.1021/jm200719v 21823606
    [Google Scholar]
  58. KiselevE. AgamaK. PommierY. CushmanM. Azaindenoisoquinolines as topoisomerase I inhibitors and potential anticancer agents: A systematic study of structure-activity relationships.J. Med. Chem.20125541682169710.1021/jm201512x 22329436
    [Google Scholar]
  59. HanY. BuricA. ChintareddyV. DeMossM. ChenL. DickerhoffJ. De DiosR. ChandP. RiggsR. YangD. CushmanM. Design, synthesis, and investigation of the pharmacokinetics and anticancer activities of indenoisoquinoline derivatives that stabilize the g-quadruplex in the MYC promoter and inhibit topoisomerase I.J. Med. Chem.20246797006703210.1021/acs.jmedchem.3c02303 38668707
    [Google Scholar]
  60. ElsayedM.S.A. SuY. WangP. SethiT. AgamaK. RavjiA. RedonC.E. KiselevE. HorzmannK.A. FreemanJ.L. PommierY. CushmanM. Design and synthesis of chlorinated and fluorinated 7-azaindenoisoquinolines as potent cytotoxic anticancer agents that inhibit topoisomerase I.J. Med. Chem.201760135364537610.1021/acs.jmedchem.6b01870 28657311
    [Google Scholar]
  61. HevenerK. VerstakT.A. LutatK.E. RiggsbeeD.L. MooneyJ.W. Recent developments in topoisomerase-targeted cancer chemotherapy.Acta Pharm. Sin. B20188684486110.1016/j.apsb.2018.07.008 30505655
    [Google Scholar]
  62. McGowanJ.V. ChungR. MaulikA. PiotrowskaI. WalkerJ.M. YellonD.M. Anthracycline chemotherapy and cardiotoxicity.Cardiovasc. Drugs Ther.2017311637510.1007/s10557‑016‑6711‑0 28185035
    [Google Scholar]
  63. MinottiG. MennaP. SalvatorelliE. CairoG. GianniL. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity.Pharmacol. Rev.200456218522910.1124/pr.56.2.6 15169927
    [Google Scholar]
  64. EvisonB.J. SleebsB.E. WatsonK.G. PhillipsD.R. CuttsS.M. Mitoxantrone, more than just another topoisomerase II poison.Med. Res. Rev.201636224829910.1002/med.21364 26286294
    [Google Scholar]
  65. SwedanH.K. KassabA.E. GedawyE.M. ElmeligieS.E. Topoisomerase II inhibitors design: Early studies and new perspectives.Bioorg. Chem.202313610654810.1016/j.bioorg.2023.106548 37094479
    [Google Scholar]
  66. PommierY. DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition.Chem. Rev.200910972894290210.1021/cr900097c 19476377
    [Google Scholar]
  67. SánchezC. MéndezC. SalasJ.A. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity.Nat. Prod. Rep.20062361007104510.1039/B601930G 17119643
    [Google Scholar]
  68. PommierY. Topoisomerase I inhibitors: Camptothecins and beyond.Nat. Rev. Cancer200661078980210.1038/nrc1977 16990856
    [Google Scholar]
  69. LangerS. Dexrazoxane for the treatment of chemotherapy-related side effects.Cancer Manag. Res.2014635736310.2147/CMAR.S47238 25246808
    [Google Scholar]
  70. DiasN. VezinH. LansiauxA. BaillyC. Topoisomerase inhibitors of marine origin and their potential use as anticancer agents. DNA Binders Relat Subjects, 20058910810.1007/b100444
    [Google Scholar]
  71. SinghS. PandeyV.P. YadavK. YadavA. DwivediU.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases.Curr. Protein Pept. Sci.202021111103114210.2174/1389203721666200918152511 32951576
    [Google Scholar]
  72. NadasJ. SunD. Anthracyclines as effective anticancer drugs.Expert Opin. Drug Discov.20061654956810.1517/17460441.1.6.549 23506066
    [Google Scholar]
  73. KondakaK. GabrielI. Targeting DNA topoisomerase II in antifungal chemotherapy.Molecules20222722776810.3390/molecules27227768
    [Google Scholar]
  74. MarinelloJ. DelcuratoloM. CapranicoG. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives.Int. J. Mol. Sci.20181911348010.3390/ijms19113480 30404148
    [Google Scholar]
  75. ThomasC.J. RahierN.J. HechtS.M. Camptothecin: Current perspectives.Bioorg. Med. Chem.20041271585160410.1016/j.bmc.2003.11.036 15028252
    [Google Scholar]
  76. UlukanH. SwaanP.W. Camptothecins.Drugs200262142039205710.2165/00003495‑200262140‑00004 12269849
    [Google Scholar]
  77. DennyW. BaguleyB. Dual topoisomerase I/II inhibitors in cancer therapy.Curr. Top. Med. Chem.20033333935310.2174/1568026033452555 12570767
    [Google Scholar]
  78. SalernoS. Da SettimoF. TalianiS. SimoriniF. La MottaC. FornaciariG. MariniA.M. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs.Curr. Med. Chem.201017354270429010.2174/092986710793361252 20939813
    [Google Scholar]
  79. ZhuoS.T. LiC.Y. HuM.H. ChenS.B. YaoP.F. HuangS.L. OuT.M. TanJ.H. AnL.K. LiD. GuL.Q. HuangZ.S. Synthesis and biological evaluation of benzo[a]phenazine derivatives as a dual inhibitor of topoisomerase I and II.Org. Biomol. Chem.201311243989400510.1039/c3ob40325d 23657605
    [Google Scholar]
  80. GravesD.E. In DNA Topoisomerase Protocols.Springer2001161169
    [Google Scholar]
  81. WooS. JungJ. LeeC. KwonY. NaY. Synthesis of new xanthone analogues and their biological activity test—Cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study.Bioorg. Med. Chem. Lett.20071751163116610.1016/j.bmcl.2006.12.030 17194586
    [Google Scholar]
  82. ChoH.J. JungM.J. WooS. KimJ. LeeE.S. KwonY. NaY. New benzoxanthone derivatives as topoisomerase inhibitors and DNA cross-linkers.Bioorg. Med. Chem.20101831010101710.1016/j.bmc.2009.12.069 20093033
    [Google Scholar]
  83. KadayatT.M. ParkC. JunK.Y. Thapa MagarT.B. BistG. YooH.Y. KwonY. LeeE.S. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor.Eur. J. Med. Chem.20159030231410.1016/j.ejmech.2014.11.046 25437617
    [Google Scholar]
  84. My VanH.T. WooH. JeongH.M. KhadkaD.B. YangS.H. ZhaoC. JinY. LeeE.S. Youl LeeK. KwonY. ChoW.J. Design, synthesis and systematic evaluation of cytotoxic 3-heteroarylisoquinolinamines as topoisomerases inhibitors.Eur. J. Med. Chem.20148218119410.1016/j.ejmech.2014.05.047 24904965
    [Google Scholar]
  85. PreetR. MohapatraP. MohantyS. SahuS.K. ChoudhuriT. WyattM.D. KunduC.N. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity.Int. J. Cancer201213071660167010.1002/ijc.26158 21544805
    [Google Scholar]
  86. KashyapM. DasD. PreetR. MohapatraP. SatapathyS.R. SiddharthS. KunduC.N. GuchhaitS.K. Scaffold hybridization in generation of indenoindolones as anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase.Bioorg. Med. Chem. Lett.201222247410.1016/j.bmcl.2012.02.007 22381050
    [Google Scholar]
  87. KashyapM. KandekarS. BaviskarA.T. DasD. PreetR. MohapatraP. SatapathyS.R. SiddharthS. GuchhaitS.K. KunduC.N. BanerjeeU.C. Indenoindolone derivatives as topoisomerase II–inhibiting anticancer agents.Bioorg. Med. Chem. Lett.201323493493810.1016/j.bmcl.2012.12.063 23321564
    [Google Scholar]
  88. MathijssenR. LoosW. VerweijJ. SparreboomA. Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan.Curr. Cancer Drug Targets20022210312310.2174/1568009023333890 12188913
    [Google Scholar]
  89. ZhangF.L. WangP. LiuY.H. LiuL. LiuX.B. LiZ. XueY.X. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.PLoS One2013811e8181510.1371/journal.pone.0081815 24303074
    [Google Scholar]
  90. SandlerA. Irinotecan plus cisplatin in small-cell lung cancer.Oncology (Williston Park)20021693943 12375800
    [Google Scholar]
  91. KimY.M. LeeS.W. KimD.Y. KimJ.H. NamJ.H. KimY.T. The efficacy and toxicity of belotecan (CKD-602), a camptothericin analogue topoisomerase I inhibitor, in patients with recurrent or refractory epithelial ovarian cancer.J. Chemother.201022319720010.1179/joc.2010.22.3.197 20566426
    [Google Scholar]
  92. ProvencioM. CorbachoC. SalasC. MillanI. EspanaP. BonillaF. Ramon CajalS. The topoisomerase IIalpha expression correlates with survival in patients with advanced Hodgkin’s lymphoma.Clin. Cancer Res.20039414061411 12684412
    [Google Scholar]
  93. EzoeS. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor.Int. J. Environ. Res. Public Health2012972444245310.3390/ijerph9072444 22851953
    [Google Scholar]
  94. FaggadA. Darb-EsfahaniS. WirtzR. SinnB. SehouliJ. KönsgenD. LageH. WeichertW. NoskeA. BudcziesJ. MüllerB.M. BuckendahlA.C. RöskeA. Eldin ElwaliN. DietelM. DenkertC. Topoisomerase IIα mRNA and protein expression in ovarian carcinoma: Correlation with clinicopathological factors and prognosis.Mod. Pathol.200922457958810.1038/modpathol.2009.14 19270648
    [Google Scholar]
  95. TopcuZ. DNA topoisomerases as targets for anticancer drugs.J. Clin. Pharm. Ther.200126640541610.1046/j.1365‑2710.2001.00368.x 11722677
    [Google Scholar]
  96. CrulM. van WaardenburgR.C.A.M. BeijnenJ.H. SchellensJ.H.M. DNA-based drug interactions of cisplatin.Cancer Treat. Rev.200228629130310.1016/S0305‑7372(02)00093‑2 12470980
    [Google Scholar]
  97. CabanillasM.E. McFaddenD.G. DuranteC. Thyroid cancer.Lancet2016388100612783279510.1016/S0140‑6736(16)30172‑6 27240885
    [Google Scholar]
  98. JabeenS. HaqueM. IslamM.J. TalukderM.H. Profile of paediatric malignancies: A five year study.J. Dhaka Med. Coll.1970191333810.3329/jdmc.v19i1.6249
    [Google Scholar]
  99. YungL. LinchD. Hodgkin’s lymphoma.Lancet2003361936194395110.1016/S0140‑6736(03)12777‑8 12648984
    [Google Scholar]
  100. RozmovitsL. ZieblandS. What do patients with prostate or breast cancer want from an internet site? A qualitative study of information needs.Patient Educ. Couns.2004531576410.1016/S0738‑3991(03)00116‑2 15062905
    [Google Scholar]
  101. TambaroF.P. SinghH. JonesE. RyttingM. MahadeoK.M. ThompsonP. DaverN. DiNardoC. KadiaT. Garcia-ManeroG. ChanT. ShahR.R. WierdaW.G. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia.Leukemia202135113282328610.1038/s41375‑021‑01232‑2 33833386
    [Google Scholar]
  102. LeeJ.Y. ChoiJ.K. JeongN.H. YooJ. HaY.S. LeeB. ChoiH. ParkP.H. ShinT.Y. KwonT.K. LeeS.R. LeeS. LeeS.W. RhoM.C. KimS.H. Anti-inflammatory effects of ursolic acid-3-acetate on human synovial fibroblasts and a murine model of rheumatoid arthritis.Int. Immunopharmacol.20174911812510.1016/j.intimp.2017.05.028 28577436
    [Google Scholar]
  103. WangM. ZhaoT. LiuY. WangQ. XingS. LiL. WangL. LiuL. GaoD. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy.Mater. Sci. Eng. C2017711231124010.1016/j.msec.2016.11.014 27987679
    [Google Scholar]
  104. ZhangP. ChengY. DuanR.D. Ursolic acid inhibits acid sphingomyelinase in intestinal cells.Phytother. Res.201327217317810.1002/ptr.4709 22511398
    [Google Scholar]
  105. Do NascimentoP. LemosT. BizerraA. ArriagaÂ. FerreiraD. SantiagoG. Braz-FilhoR. CostaJ. Antibacterial and antioxidant activities of ursolic acid and derivatives.Molecules20141911317132710.3390/molecules19011317 24451251
    [Google Scholar]
  106. RamosA.A. MarquesF. Fernandes-FerreiraM. Pereira-WilsonC. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells.Food Chem. Toxicol.201351808610.1016/j.fct.2012.09.014 23000446
    [Google Scholar]
  107. SoicaC. OpreanC. BorcanF. DanciuC. TrandafirescuC. CoricovacD. CrăiniceanuZ. DeheleanC. MunteanuM. The synergistic biologic activity of oleanolic and ursolic acids in complex with hydroxypropyl-γ-cyclodextrin.Molecules20141944924494010.3390/molecules19044924 24747649
    [Google Scholar]
  108. ShanmugamM.K. DaiX. KumarA.P. TanB.K.H. SethiG. BishayeeA. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies.Biochem. Pharmacol.201385111579158710.1016/j.bcp.2013.03.006 23499879
    [Google Scholar]
  109. GuW. JinX.Y. LiD.D. WangS.F. TaoX.B. ChenH. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid.Bioorg. Med. Chem. Lett.201727174128413210.1016/j.bmcl.2017.07.033 28733083
    [Google Scholar]
  110. WuJ. ZhangZ.H. ZhangL.H. JinX.J. MaJ. PiaoH.R. Design, synthesis, and screening of novel ursolic acid derivatives as potential anti-cancer agents that target the HIF-1α pathway.Bioorg. Med. Chem. Lett.201929685385810.1016/j.bmcl.2018.12.060 30728113
    [Google Scholar]
  111. WangR. YangW. FanY. DehaenW. LiY. LiH. WangW. ZhengQ. HuaiQ. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties.Bioorg. Chem.20198810295110.1016/j.bioorg.2019.102951 31054427
    [Google Scholar]
  112. HarrisA.L. HochhauserD. Mechanisms of multidrug resistance in cancer treatment.Acta Oncol.199231220521310.3109/02841869209088904 1352455
    [Google Scholar]
  113. FukushimaT. TakemuraH. YamashitaT. IshisakaT. InaiK. ImamuraS. UrasakiY. UedaT. Multidrug resistance due to impaired DNA cleavage in a VP-16-resistant human leukemia cell line.Anticancer Res.1999196B51115115 10697518
    [Google Scholar]
  114. DusreL. MimnaughE.G. MyersC.E. SinhaB.K. Potentiation of doxorubicin cytotoxicity by buthionine sulfoximine in multidrug-resistant human breast tumor cells.Cancer Res.1989493511515 2535960
    [Google Scholar]
  115. ViolaM.V. FromowitzF. OravezS. DebS. FinkelG. LundyJ. HandP. ThorA. SchlomJ. Expression of ras oncogene p21 in prostate cancer.N. Engl. J. Med.1986314313313710.1056/NEJM198601163140301 2417118
    [Google Scholar]
  116. ArguelloF. AlexanderM.A. StinsonS.F. JordenJ.L. SmithE.M. KalavarN.T. AlvordW.G. KlabanskyR.L. GreeneJ.F.Jr SausvilleE.A. Preclinical evaluation of 9-chloro-2-methylellipticinium acetate alone and in combination with conventional anticancer drugs for the treatment of human brain tumor xenografts.J. Cancer Res. Clin. Oncol.19981241192610.1007/s004320050128 9498830
    [Google Scholar]
  117. ZhouB.N. JohnsonR.K. MatternM.R. WangX. HechtS.M. BeckH.T. OrtizA. KingstonD.G.I. Isolation and biochemical characterization of a new topoisomerase I inhibitor from Ocotea leucoxylon.J. Nat. Prod.200063221722110.1021/np990442s 10691712
    [Google Scholar]
  118. Van GijnR. LendfersR.R.H. SchellensJ.H.M. BultA. BeijnenJ.H. Dual topoisomerase I/II inhibitors.J. Oncol. Pharm. Pract.2000639210810.1177/107815520000600303
    [Google Scholar]
  119. VaseyP.A. KayeS.B. Combined inhibition of topoisomerases I and II - Is this a worthwhile/feasible strategy?Br. J. Cancer199776111395139710.1038/bjc.1997.568 9400932
    [Google Scholar]
  120. MiškovićK. BujakM. Baus LončarM. Glavaš-ObrovacL. Antineoplastic DNA-binding compounds: Intercalating and minor groove binding drugs.Arh. Hig. Rada Toksikol.201364459360210.2478/10004‑1254‑64‑2013‑2371 24384766
    [Google Scholar]
  121. PogorelčnikB. PerdihA. SolmajerT. Recent developments of DNA poisons--human DNA topoisomerase IIα inhibitors--as anticancer agents.Curr. Pharm. Des.201319132474248810.2174/1381612811319130016 23363399
    [Google Scholar]
  122. GaoF. ChaoH. ZhouF. ChenX. WeiY.F. JiL.N. Synthesis, GC selective DNA binding and topoisomerase II inhibition activities of ruthenium(II) polypyridyl complex containing 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one.J. Inorg. Biochem.20081025-61050105910.1016/j.jinorgbio.2007.12.025 18295337
    [Google Scholar]
  123. SkokŽ. ZidarN. KikeljD. IlašJ. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets.J. Med. Chem.202063388490410.1021/acs.jmedchem.9b00726 31592646
    [Google Scholar]
  124. CummingsJ. SmythJ.F. DNA topoisomerase I and II as targets for rational design of new anticancer drugs.Ann. Oncol.19934753354310.1093/oxfordjournals.annonc.a058584 8395870
    [Google Scholar]
  125. TalukdarA. PalS. Computational approaches toward development of topoisomerase I inhibitor: A clinically validated target.Molecular Docking for Computer-Aided Drug Design.Elsevier202144146210.1016/B978‑0‑12‑822312‑3.00018‑7
    [Google Scholar]
  126. LiangX. WuQ. LuanS. YinZ. HeC. YinL. ZouY. YuanZ. LiL. SongX. HeM. LvC. ZhangW. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade.Eur. J. Med. Chem.201917112916810.1016/j.ejmech.2019.03.034 30917303
    [Google Scholar]
  127. GomesJ.N.S. SantosM.B. De Medeiros e SilvaY.M.S. AlbinoS.L. De MouraR.O. Topoisomerase enzyme inhibitors as potential drugs against cancer: What makes them selective or dual?–A review.Curr. Pharm. Des.202228342800282410.2174/1381612828666220728095619 35909281
    [Google Scholar]
/content/journals/mc/10.2174/0115734064311729240911102646
Loading
/content/journals/mc/10.2174/0115734064311729240911102646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test