Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Nowadays, use of phosphate modifications in oligonucleotide backbone has become a common approach for imbuing its structure with the desired beneficial properties. The recent advances in successful application of different classes of phosphate modifications in the design of therapeutic oligonucleotides have led to a renewed interest in the development of approaches for introducing diverse classes of phosphate modifications.

Methods

This study aims to investigate the efficiency and optimize protocols for the application of the iodine-amine oxidation reaction to produce various N-alkyl phosphoramidate oligonucleotide derivatives during the conventional solid-phase phosphoramidite synthesis method.

Results

Various solvents and drying reagents were tested, and it was evaluated that even minor traces of water in a reaction mixture had a significant impact on yield. Using set of commercially available amines, it was shown that steric accessibility is a more critical parameter than nucleophilicity of the amino group in oxidative amination reaction. It was demonstrated that through use of amino alcohols and diamines during iodine-amine oxidation step various branched oligonucleotide structures can be synthesized.

Conclusion

The obtained data indicates that the oxidative amination approach can be a promising tool for preparing various oligonucleotide derivatives during solid-phase synthesis without the use of specialized phosphoramidite monomers.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064325532241002105426
2024-10-14
2025-05-03
Loading full text...

Full text loading...

References

  1. KafilH.S. NezhadiJ. TaghizadehS. KhodadadiE. YousefiM. GanbarovK. YousefiB. LeylabadloH.E. AsgharzadehM. TanomandA. KazeminavaF. Antisense agents against antibiotic-resistant bacteria.Curr. Pharm. Biotechnol.202223151813182310.2174/1389201023666220114160216 35034590
    [Google Scholar]
  2. JulianoR.L. MingX. CarverK. LaingB. Cellular uptake and intracellular trafficking of Oligonucleotides: Implications for oligonucleotide pharmacology.Nucleic Acid Ther.201424210111310.1089/nat.2013.0463 24383421
    [Google Scholar]
  3. TarnW.Y. ChengY. KoS.H. HuangL.M. Antisense oligonucleotide-based therapy of viral infections.Pharmaceutics20211312201510.3390/pharmaceutics13122015 34959297
    [Google Scholar]
  4. MillarJ.A. RaghavanR. Modulation of bacterial fitness and virulence through antisense RNAs.Front. Cell. Infect. Microbiol.20211059627710.3389/fcimb.2020.596277 33747974
    [Google Scholar]
  5. RossorA.M. ReillyM.M. SleighJ.N. Antisense oligonucleotides and other genetic therapies made simple.Pract. Neurol.201818212613110.1136/practneurol‑2017‑001764 29455156
    [Google Scholar]
  6. TakakuraK. KawamuraA. TorisuY. KoidoS. YahagiN. SarutaM. The clinical potential of Oligonucleotide therapeutics against pancreatic cancer.Int. J. Mol. Sci.20192013333110.3390/ijms20133331 31284594
    [Google Scholar]
  7. EgliM. ManoharanM. Chemistry, structure and function of approved Oligonucleotide therapeutics.Nucleic Acids Res.20235162529257310.1093/nar/gkad067 36881759
    [Google Scholar]
  8. BelgradJ. FakihH.H. KhvorovaA. Nucleic acid therapeutics: Successes, milestones, and upcoming innovation.Nucleic Acid Ther.2024342527210.1089/nat.2023.0068 38507678
    [Google Scholar]
  9. LaufferM.C. Van Roon-MomW. Aartsma-RusA. Possibilities and limitations of antisense Oligonucleotide therapies for the treatment of monogenic disorders.Commun. Med.202441610.1038/s43856‑023‑00419‑1 38182878
    [Google Scholar]
  10. JulianoR. BaumanJ. KangH. MingX. Biological barriers to therapy with antisense and siRNA Oligonucleotides.Mol. Pharm.20096368669510.1021/mp900093r 19397332
    [Google Scholar]
  11. MingX. AlamM.R. FisherM. YanY. ChenX. JulianoR.L. Intracellular delivery of an antisense Oligonucleotide via endocytosis of a G protein-coupled receptor.Nucleic Acids Res.201038196567657610.1093/nar/gkq534 20551131
    [Google Scholar]
  12. ZhangY. ChenH. HongL. WangH. LiB. ZhangM. LiJ. YangL. LiuF. Inclisiran: A new generation of lipid-lowering siRNA therapeutic.Front. Pharmacol.202314126092110.3389/fphar.2023.1260921 37900173
    [Google Scholar]
  13. GagliardiM. AshizawaA.T. The challenges and strategies of antisense Oligonucleotide drug delivery.Biomedicines20219443310.3390/biomedicines9040433 33923688
    [Google Scholar]
  14. CrookeS.T. WitztumJ.L. BennettC.F. BakerB.F. RNA-targeted therapeutics.Cell Metab.201827471473910.1016/j.cmet.2018.03.004 29617640
    [Google Scholar]
  15. Al MusaimiO. Al ShaerD. AlbericioF. De la TorreB.G. 2022 FDA TIDES (Peptides and Oligonucleotides) Harvest.Pharmaceuticals202316333610.3390/ph16030336 36986436
    [Google Scholar]
  16. HattaT. TakaiK. YokoyamaS. NakashimaH. YamamotoN. TakakuH. Phosphorothioate Oligonucleotides block reverse transcription by the Rnase H activity associated with the HIV-1 polymerase.Biochem. Biophys. Res. Commun.199521131041104610.1006/bbrc.1995.1916 7541196
    [Google Scholar]
  17. GearyR.S. WatanabeT.A. TruongL. FreierS. LesnikE.A. SioufiN.B. SasmorH. ManoharanM. LevinA.A. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified Oligonucleotide analogs in rats.J. Pharmacol. Exp. Ther.20012963890897 11181921
    [Google Scholar]
  18. MoultonH.M. MoultonJ.D. Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy.Biochim. Biophys. Acta Biomembr.20101798122296230310.1016/j.bbamem.2010.02.012 20170628
    [Google Scholar]
  19. KeamS.J. Vutrisiran: First approval.Drugs202282131419142510.1007/s40265‑022‑01765‑5 35997942
    [Google Scholar]
  20. KimY. JoM. SchmidtJ. LuoX. PrakashT.P. ZhouT. KleinS. XiaoX. PostN. YinZ. MacLeodA.R. Enhanced potency of GalNAc-conjugated antisense Oligonucleotides in hepatocellular cancer models.Mol. Ther.20192791547155710.1016/j.ymthe.2019.06.009 31303442
    [Google Scholar]
  21. CaruthersM.H. BaroneA.D. BeaucageS.L. DoddsD.R. FisherE.F. McBrideL.J. MatteucciM. StabinskyZ. TangJ.Y. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method.Methods Enzymol.198715428731310.1016/0076‑6879(87)54081‑2 3431460
    [Google Scholar]
  22. NiS. YaoH. WangL. LuJ. JiangF. LuA. ZhangG. Chemical modifications of nucleic acid aptamers for therapeutic purposes.Int. J. Mol. Sci.2017188168310.3390/ijms18081683 28767098
    [Google Scholar]
  23. LönnbergH. Synthesis of Oligonucleotides on a soluble support.Beilstein J. Org. Chem.2017131368138710.3762/bjoc.13.134 28781703
    [Google Scholar]
  24. RoyS. CaruthersM. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries.Molecules20131811142681428410.3390/molecules181114268 24252996
    [Google Scholar]
  25. CrookeS.T. BakerB.F. CrookeR.M. LiangX. Antisense technology: An overview and prospectus.Nat. Rev. Drug Discov.202120642745310.1038/s41573‑021‑00162‑z 33762737
    [Google Scholar]
  26. LemaîtreM.M.M. Sulfurizing reagent II and its use in synthesizing oligonucleotide phosphoramidites.2006Available from: https://www.glenresearch.com/reports/gr18-13
    [Google Scholar]
  27. KupryushkinM.S. FilatovA.V. MironovaN.L. PatutinaO.A. ChernikovI.V. ChernolovskayaE.L. ZenkovaM.A. PyshnyiD.V. StetsenkoD.A. AltmanS. VlassovV.V. Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells.Mol. Ther. Nucleic Acids20222721122610.1016/j.omtn.2021.11.025 34976439
    [Google Scholar]
  28. ZharkovT.D. MarkovO.V. ZhukovS.A. KhodyrevaS.N. KupryushkinM.S. Influence of combinations of lipophilic and phosphate backbone modifications on cellular uptake of modified Oligonucleotides.Molecules202429245210.3390/molecules29020452 38257365
    [Google Scholar]
  29. ZhukovS.A. PyshnyiD.V. KupryushkinM.S. Synthesis of novel representatives of phosphoryl guanidine oligonucleotides.Russ. J. Bioorganic Chem.202147238038910.1134/S1068162021020291
    [Google Scholar]
  30. AndersonB.A. FreestoneG.C. LowA. De-HoyosC.L. IiiW.J.D. ØstergaardM.E. MigawaM.T. FazioM. WanW.B. BerdejaA. ScandalisE. BurelS.A. VickersT.A. CrookeS.T. SwayzeE.E. LiangX. SethP.P. Towards next generation antisense oligonucleotides: Msylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense Oligonucleotides.Nucleic Acids Res.202149169026904110.1093/nar/gkab718 34417625
    [Google Scholar]
  31. BazhenovM.A. ShernyukovA.V. KupryushkinM.S. PyshnyiD.V. Study of the staudinger reaction and reveal of key factors affecting the efficacy of automatic synthesis of phosphoryl guanidinic Oligonucleotide analogs.Russ. J. Bioorganic Chem.201945669970810.1134/S1068162019060074
    [Google Scholar]
  32. MiroshnichenkoS.K. PatutinaO.A. BurakovaE.A. ChelobanovB.P. FokinaA.A. VlassovV.V. AltmanS. ZenkovaM.A. StetsenkoD.A. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties.Proc. Natl. Acad. Sci. USA201911641229123410.1073/pnas.1813376116 30622178
    [Google Scholar]
  33. KandasamyP. McCloreyG. ShimizuM. KothariN. AlamR. IwamotoN. KumarasamyJ. BommineniG.R. BezigianA. ChivatakarnO. ButlerD.C.D. ByrneM. ChwaleniaK. DaviesK.E. DesaiJ. ShelkeJ.D. DurbinA.F. ElleringtonR. EdwardsB. GodfreyJ. HossA. LiuF. LongoK. LuG. MarappanS. OieniJ. PaikI.H. EstabrookE.P. ShivalilaC. TischbeinM. KawamotoT. RinaldiC. Rajão-SaraivaJ. TripathiS. YangH. YinY. ZhaoX. ZhouC. ZhangJ. ApponiL. WoodM.J.A. VargeeseC. Control of backbone chemistry and chirality boost Oligonucleotide splice switching activity.Nucleic Acids Res.202250105443546610.1093/nar/gkac018 35061895
    [Google Scholar]
  34. LetsingerR.L. HeavnerG.A. Synthesis of phosphoromonoamidate diester nucleotides via the phosphite-azide coupling method.Tetrahedron Lett.197516214715010.1016/S0040‑4039(00)72493‑2
    [Google Scholar]
  35. FreistW. SchattkaK. CramerF. JastorffB. Neue darstellungsmethode von nucleotid‐analogen der 5′‐amino‐5′‐desoxy‐nucleoside.Chem. Ber.1972105399199910.1002/cber.19721050330 4336271
    [Google Scholar]
  36. NielsenJ. CaruthersM.H. Directed arbuzov-type reactions of 2-cyano-1,1-dimethylethyl deoxynucleoside phosphites.J. Am. Chem. Soc.1988110186275627610.1021/ja00226a069 22148829
    [Google Scholar]
  37. KupryushkinM.S. PyshnyiD.V. StetsenkoD.A. Phosphoryl guanidines: A new type of nucleic Acid analogues.Acta Nat.20146411611810.32607/20758251‑2014‑6‑4‑116‑118 25558402
    [Google Scholar]
  38. KandasamyP. LiuY. AdudaV. AkareS. AlamR. AndreucciA. BoulayD. BowmanK. ByrneM. CannonM. ChivatakarnO. ShelkeJ.D. IwamotoN. KawamotoT. KumarasamyJ. LamoreS. LemaitreM. LinX. LongoK. LoobyR. MarappanS. MettervilleJ. MohapatraS. NewmanB. PaikI.H. PatilS. Purcell-EstabrookE. ShimizuM. ShumP. StandleyS. TabornK. TripathiS. YangH. YinY. ZhaoX. DaleE. VargeeseC. Impact of guanidine-containing backbone linkages on stereopure antisense Oligonucleotides in the CNS.Nucleic Acids Res.202250105401542310.1093/nar/gkac037 35106589
    [Google Scholar]
  39. LevinaA.S. RepkovaM.N. ChelobanovB.P. BessudnovaE.V. MazurkovaN.A. StetsenkoD.A. ZarytovaV.F. Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine Oligonucleotides in MDCK cells infected with H5N1 bird flu virus.Mol. Biol.2017514717723 28900092
    [Google Scholar]
  40. KumarP. CaruthersM.H. DNA analogues modified at the nonlinking positions of phosphorus.Acc. Chem. Res.202053102152216610.1021/acs.accounts.0c00078 32885957
    [Google Scholar]
  41. RoyS. PaulS. RoyM. KunduR. MonfregolaL. CaruthersM.H. Pyridinium boranephosphonate modified DNA oligonucleotides.J. Org. Chem.20178231420142710.1021/acs.joc.6b02599 28099007
    [Google Scholar]
  42. MarkovO.V. FilatovA.V. KupryushkinM.S. ChernikovI.V. PatutinaO.A. StrunovA.A. ChernolovskayaE.L. VlassovV.V. PyshnyiD.V. ZenkovaM.A. Transport oligonucleotides—a novel system for intracellular delivery of antisense therapeutics.Molecules20202516366310.3390/molecules25163663 32796768
    [Google Scholar]
  43. SkowrońskaA. PakulskiM. MichalskiJ. CooperD. TrippettS. The arbuzov reaction of triethyl phosphite with elemental iodine.Tetrahedron Lett.198021332132210.1016/S0040‑4039(00)71202‑0
    [Google Scholar]
  44. CullisP.M. LeeM. The mechanism of iodine–water oxidation of H-phosphonate diesters.J. Chem. Soc. Chem. Commun.1992171207120810.1039/C39920001207
    [Google Scholar]
  45. FroehlerB.C. Deoxynucleoside H-Phosphonate diester intermediates in the synthesis of internucleotide phosphate analogues.Tetrahedron Lett.198627465575557810.1016/S0040‑4039(00)85269‑7
    [Google Scholar]
  46. Solid phase oligonucleotide synthesisAvailable from: https://atdbio.com/nucleic-acids-book/Solid-phase-oligonucleotide-synthesis
  47. SchugJ.C. KoganM.J. The nature of iodine-amine solutions.J. Magn. Reson.197311340641510.1016/0022‑2364(73)90067‑X
    [Google Scholar]
  48. AndreevS.M. MironovaN.V. DavidovichY.A. RogozhinS.V. Reactivities of trimethylsilyl derivatives of amino acids in aminolysis of activated esters.Bull. Acad. Sci. USSR, Div. Chem. Sci.19782781564156810.1007/BF00925041
    [Google Scholar]
  49. FlemingI. DunoguèsJ. SmithersR. The electrophilic substitution of allylsilanes and vinylsilanes.Org. React.200457575
    [Google Scholar]
  50. KupryushkinM.S. NekrasovM.D. StetsenkoD.A. PyshnyiD.V. Efficient functionalization of Oligonucleotides by new achiral nonnucleosidic monomers.Org. Lett.201416112842284510.1021/ol500668n 24820262
    [Google Scholar]
/content/journals/mc/10.2174/0115734064325532241002105426
Loading
/content/journals/mc/10.2174/0115734064325532241002105426
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test