Skip to content
2000
image of Characterization of the Cytotoxic Effect of Naphthalenacetamides Hydrochlorides on Cervical Cancer-Derived Cells

Abstract

Introduction

Cervical cancer is a global health problem due to its high incidence and prevalence in women, mainly in third-world countries. For the treatment of this disease, there are different therapeutic options, but these are not always effective, which gives rise to the search for new compounds using cheminformatics tools.

Method

Therapies directed at the σ receptor may be a treatment alternative since this receptor modulates the processes of cell proliferation and angiogenesis, producing cytoprotective or cytotoxic actions depending on the ligand with which it is coupled.

Objective

The objective of this study was to design, synthesize, and biologically evaluate -(2-morpholinoethyl)-2-(naphthalen-2-yloxy)acetamide hydrochloride () and 2-(naphthalen-2-yloxy)--(2-(piperidin-1-yl)ethyl)acetamide hydrochloride () on the HeLa cell line . The referenced cell line from the American Type Culture Collection (ATCC®CCL-2™) was used, and the effect on cell viability was determined by MTT metabolic reduction-based assay at 24, 48, and 72 h.

Results

The analysis showed that compounds and presented activity on HeLa cancer cells and viability at micromolar concentrations (1.923 μmol/mL and 0.374 μmol/mL, respectively). Moreover, the effect was maintained for less than 72 h.

Conclusion

Naphthaleneacetamide derivatives exhibited an inhibitory effect on the HeLa cell line, and the OSIRIS program predicted less toxicity than cisplatin.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064321632241022082028
2024-10-28
2025-01-10
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Ferlay J. Ervi M. Lam F. Colombet M. Mery L. Piñeros M. Znaor A. Soerjomataram I. Bray F. Global cancer observatory: Cancer today 2020 Available from: https://gco.iarc.fr/today
  3. Ervik M. Lam F. Laversanne M. Ferlay J. Bray F. Global cancer observatory: Cancer over time. 2021 Available from: https://gco.iarc.fr/overtime
  4. Gómez-Dantés H. Lamadrid-Figueroa H. Cahuana-Hurtado L. Silverman-Retana O. Montero P. González-Robledo M.C. Fitzmaurice C. Pain A. Allen C. Dicker D.J. Hamavid H. López A. Murray C. Naghavi M. Lozano R. The burden of cancer in Mexico, 1990-2013. Salud Publica Mex. 2016 58 2 118 131 10.21149/spm.v58i2.7780 27557370
    [Google Scholar]
  5. Herrero R. Murillo R. Cancer epidemiology and prevention. Cancer Epidemiology and Prevention Oxford Academic New York 2017 10.1093/oso/9780190238667.003.0048
    [Google Scholar]
  6. Solomon D. The 1988 Bethesda System for reporting cervical/vaginal cytological diagnoses. JAMA 1989 262 7 931 934 10.1001/jama.1989.03430070079034 2754794
    [Google Scholar]
  7. PDQ cervical cancer treatment 2023 Available from: https://www.cancer.gov/types/cervical/hp/cervical-treatment-pdq
  8. Pearcey R. Brundage M. Drouin P. Jeffrey J. Johnston D. Lukka H. MacLean G. Souhami L. Stuart G. Tu D. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J. Clin. Oncol. 2002 20 4 966 972 10.1200/JCO.2002.20.4.966 11844818
    [Google Scholar]
  9. Zanaboni F. Grijuela B. Giudici S. Cormio G. Babilonti L. Ghezzi F. Giorda G. Scambia G. Franchi M. Lorusso M. Ditto A. Lorusso D. Raspagliesi F. Weekly topotecan and cisplatin (TOPOCIS) as neo-adjuvant chemotherapy for locally-advanced squamous cervical carcinoma: Results of a phase II multicentric study. Eur. J. Cancer 2013 49 5 1065 1072 10.1016/j.ejca.2012.10.008 23151423
    [Google Scholar]
  10. Dueňas-González A. Orlando M. Zhou Y. Quinlivan M. Barraclough H. Efficacy in high burden locally advanced cervical cancer with concurrent gemcitabine and cisplatin chemoradiotherapy plus adjuvant gemcitabine and cisplatin: Prognostic and predictive factors and the impact of disease stage on outcomes from a prospective randomized phase III trial. Gynecol. Oncol. 2012 126 3 334 340 10.1016/j.ygyno.2012.06.011 22691757
    [Google Scholar]
  11. Eifel P. Chemoradiotherapy in the treatment of cervical cancer. Semin. Radiat. Oncol. 2006 16 3 177 185 10.1016/j.semradonc.2006.02.007 16814159
    [Google Scholar]
  12. Assi S. Barling M. Al-Hamid A. Cheema E. Exploring the adverse effects of chemotherapeutic agents used in the treatment of cervical and ovarian cancer from the patients’ perspective: A content analysis of the online discussion forums. Eur. J. Hosp. Pharm. Sci. Pract. 2021 28 e1 Suppl. 2 e35 e40 10.1136/ejhpharm‑2019‑002162 32349988
    [Google Scholar]
  13. Aydar E. Onganer P. Perrett R. Djamgoz M.B. Palmer C.P. The expression and functional characterization of sigma (σ) 1 receptors in breast cancer cell lines. Cancer Lett. 2006 242 2 245 257 10.1016/j.canlet.2005.11.011 16388898
    [Google Scholar]
  14. Mégalizzi V. Mathieu V. Mijatovic T. Gailly P. Debeir O. De Neve N. Van Damme M. Bontempi G. Haibe-Kains B. Decaestecker C. Kondo Y. Kiss R. Lefranc F. 4-IBP, a σ1 receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 2007 9 5 358 369 10.1593/neo.07130 17534441
    [Google Scholar]
  15. Pontisso I. Combettes L. Role of Sigma-1 receptor in calcium modulation: Possible involvement in cancer. Genes (Basel) 2021 12 2 139 10.3390/genes12020139 33499031
    [Google Scholar]
  16. Crottès D. Guizouarn H. Martin P. Borgese F. Soriani O. The sigma-1 receptor: A regulator of cancer cell electrical plasticity? Front. Physiol. 2013 4 175 10.3389/fphys.2013.00175 23882221
    [Google Scholar]
  17. Maurice T. Su T.P. The pharmacology of sigma-1 receptors. Pharmacol. Ther. 2009 124 2 195 206 10.1016/j.pharmthera.2009.07.001 19619582
    [Google Scholar]
  18. Narayanan S. Bhat R. Mesangeau C. Poupaert J.H. McCurdy C.R. Early development of sigma-receptor ligands. Future Med. Chem. 2011 3 1 79 94 10.4155/fmc.10.279 21428827
    [Google Scholar]
  19. Oyer H.M. Sanders C.M. Kim F.J. Small-molecule modulators of sigma1 and sigma2/TMEM97 in the context of cancer: Foundational concepts and emerging themes. Front. Pharmacol. 2019 10 1141 10.3389/fphar.2019.01141 31695608
    [Google Scholar]
  20. Spruce B.A. Campbell L.A. McTavish N. Cooper M.A. Appleyard M.V.L. O’Neill M. Howie J. Samson J. Watt S. Murray K. McLean D. Leslie N.R. Safrany S.T. Ferguson M.J. Peters J.A. Prescott A.R. Box G. Hayes A. Nutley B. Raynaud F. Downes C.P. Lambert J.J. Thompson A.M. Eccles S. Small molecule antagonists of the σ-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res. 2004 64 14 4875 4886 10.1158/0008‑5472.CAN‑03‑3180 15256458
    [Google Scholar]
  21. Quirion R. Bowen W.D. Itzhak Y. Junien J.L. Musacchio J. Rothman R.B. Tsung-Ping S. Tam S.W. Taylor D.P. A proposal for the classification of sigma binding sites. Trends Pharmacol. Sci. 1992 13 3 85 86 10.1016/0165‑6147(92)90030‑A 1315463
    [Google Scholar]
  22. van Waarde A. Rybczynska A.A. Ramakrishnan N.K. Ishiwata K. Elsinga P.H. Dierckx R.A.J.O. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim. Biophys. Acta Biomembr. 2015 1848 10 2703 2714 10.1016/j.bbamem.2014.08.022 25173780
    [Google Scholar]
  23. Borde P. Cosgrove N. Charmsaz S. Safrany S.T. Young L. An investigation of Sigma-1 receptor expression and ligand-induced endoplasmic reticulum stress in breast cancer. Cancer Gene Ther. 2023 30 2 368 374 10.1038/s41417‑022‑00552‑4 36352093
    [Google Scholar]
  24. García-Martínez B.A. Jaramillo-Morales O.A. Espinosa-Juárez J.V. Navarrete-Vázquez G. Melo-Hernández L.A. Medina-López J.R. Domínguez-Ramírez A.M. Schepmann D. Wünsch B. López-Muñoz F.J. Antinociceptive effects of a new sigma-1 receptor antagonist (N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamide) in two types of nociception. Eur. J. Pharmacol. 2016 771 10 17 10.1016/j.ejphar.2015.12.012 26683636
    [Google Scholar]
  25. Schmidt H.R. Betz R.M. Dror R.O. Kruse A.C. Structural basis for σ1 receptor ligand recognition. Nat. Struct. Mol. Biol. 2018 25 10 981 987 10.1038/s41594‑018‑0137‑2 30291362
    [Google Scholar]
  26. Revvity signals software 2022 Available from: https://revvitysignals.com/products/research/chemdraw
  27. Hofer S. Frasch L. Putzker K. Lewis J. Sakhteman A. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. bioRxiv 2024 586243 10.1101/2024.03.22.586243
    [Google Scholar]
  28. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  29. Case D.A. Cheatham T.E. III Darden T. Gohlke H. Luo R. Merz K.M. Jr Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  30. Wang N. Jiang X. Zhang S. Zhu A. Yuan Y. Xu H. Lei J. Yan C. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 2021 184 2 370 383.e13 10.1016/j.cell.2020.11.043 33333023
    [Google Scholar]
  31. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  32. Kumar V. Krishna S. Siddiqi M.I. Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents. Methods 2015 71 64 70 10.1016/j.ymeth.2014.08.010 25171960
    [Google Scholar]
  33. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  34. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  35. Das A.P. Agarwal S.M. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Mol. Divers. 2023 ••• 1 25 10.1007/s11030‑022‑10590‑7 36670282
    [Google Scholar]
  36. Friedman R. Boye K. Flatmark K. Molecular modelling and simulations in cancer research. Biochim. Biophys. Acta Rev. Cancer 2013 1836 1 1 14 10.1016/j.bbcan.2013.02.001 23416097
    [Google Scholar]
  37. Jones G. Willett P. Glen R.C. Leach A.R. Taylor R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997 267 3 727 748 10.1006/jmbi.1996.0897 9126849
    [Google Scholar]
  38. Wang S.H. Yu J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 2018 156 1 15 10.1016/j.biomaterials.2017.11.024 29182932
    [Google Scholar]
  39. Schrödinger LLC The PyMOL molecular graphics system 2015 Available from: https://www.pymol.org/
  40. Liu J.J. Yu C.S. Wu H.W. Chang Y.J. Lin C.P. Lu C.H. The structure-based cancer-related single amino acid variation prediction. Sci. Rep. 2021 11 1 13599 10.1038/s41598‑021‑92793‑w 34193921
    [Google Scholar]
  41. BIOVIA Dassault Systèmes, Discovery Studio Visualizer, v21.1.0.20298. San Diego Dassault Systèmes 2020
    [Google Scholar]
  42. Parakkal S.C. Muthu S. Datta R. Kadaikunnan S. Abbas G. Solvent-solute polarity, electrophilic, steric effects, reactive sites, themodynamic quantities discussion and biological evaluation of lung cancer antiproliferative activities of spirobrassinin derivatives. J. Mol. Liq. 2023 385 122382 10.1016/j.molliq.2023.122382
    [Google Scholar]
  43. Babad E. Ben-Ishai D. Acylation of nitrogen heterocycles under the conditions of the schotten‐baumann reaction. III. Imidazoles. J. Heterocycl. Chem. 1969 6 2 235 237 10.1002/jhet.5570060215
    [Google Scholar]
  44. Kazemia M Noori Z Kohzadi H Sayadia M Kazemia A. A mild and efficient procedure for the synthesis of ethers from various alkyl halides. Iranian Chem. Commun. 2013 1 1 43 50
    [Google Scholar]
  45. Niwayama S. Highly efficient selective monohydrolysis of symmetric diesters. J. Org. Chem. 2000 65 18 5834 5836 10.1021/jo0001986 10970331
    [Google Scholar]
  46. Greenberg J.A. Sammakia T. The conversion of tert-butyl esters to acid chlorides using thionyl chloride. J. Org. Chem. 2017 82 6 3245 3251 10.1021/acs.joc.6b02931 28195740
    [Google Scholar]
  47. Iqbal N. Cho E.J. Visible-light-mediated synthesis of amides from aldehydes and amines via in situ acid chloride formation. J. Org. Chem. 2016 81 5 1905 1911 10.1021/acs.joc.5b02726 26836367
    [Google Scholar]
  48. MestReNova Version 6.0.2-5475. 2009 https://mestrelab.com/software/mnova-software/
  49. Badertscher M. Bühlmann P. Pretsch E. Structure determination of organic compounds: Tables of spectral data. Springer-Verlag Berlin Heidelberg 2009 XV 4 433 10.1007/978‑3‑540‑93810‑1
    [Google Scholar]
  50. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  51. Yao X. Chen J. Fu Y. Wang Y. Liu Y. Wang X. Synthesis, characterization and studies on the antitumor activity of novel dibenzoxanthene derivatives. J. Mol. Struct. 2024 1304 137668 10.1016/j.molstruc.2024.137668
    [Google Scholar]
  52. One-way ANOVA test was performed using GraphPad Prism version 8.0.1 for Windows, GraphPad Software 2018 Available from: www.graphpad.com
  53. Ibrahim I.A.A. Alzahrani A.R. Alanazi I. Shahzad N. Shahid I. Falemban A. Nur Azlina M.F. Arulselvan P. Synthesis and characterization of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites and Their anticancer activity on HepG2 Cells. Int. J. Nanomedicine 2024 19 1109 1124 10.2147/IJN.S445206 38344441
    [Google Scholar]
  54. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  55. Daina A. Michielin O. Zoete V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014 54 12 3284 3301 10.1021/ci500467k 25382374
    [Google Scholar]
  56. Mahal A. Al-Janabi M. Eyüpoğlu V. Alkhouri A. Chtita S. Kadhim M.M. Obaidullah A.J. Alotaibi J.M. Wei X. Pratama M.R.F. Molecular docking, drug-likeness and DFT study of some modified tetrahydrocurcumins as potential anticancer agents. Saudi Pharm. J. 2024 32 1 101889 10.1016/j.jsps.2023.101889 38090737
    [Google Scholar]
  57. Sander T. OSIRIS property explorer. 2017 Available from: https://www.organic-chemistry.org/prog/peo
  58. Abd Elhameed A.A. Ali A.R. Ghabbour H.A. Bayomi S.M. El-Gohary N.S. Design, synthesis, and antitumor screening of new thiazole, thiazolopyrimidine, and thiazolotriazine derivatives as potent inhibitors of VEGFR‐2. Drug Dev. Res. 2023 84 8 1664 1698 10.1002/ddr.22109 37661648
    [Google Scholar]
  59. Schmidt H.R. Zheng S. Gurpinar E. Koehl A. Manglik A. Kruse A.C. Crystal structure of the human σ1 receptor. Nature 2016 532 7600 527 530 10.1038/nature17391 27042935
    [Google Scholar]
  60. Seth P. Ganapathy M.E. Conway S.J. Bridges C.D. Smith S.B. Casellas P. Ganapathy V. Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor. Biochim. Biophys. Acta Mol. Cell Res. 2001 1540 1 59 67 10.1016/S0167‑4889(01)00117‑3 11476895
    [Google Scholar]
  61. Ablordeppey S.Y. El-Ashmawy M. Fischer J.B. Glennon R.A. A CoMFA investigation of sigma receptor binding affinity: Reexamination of a spurious sigma ligand. Eur. J. Med. Chem. 1998 33 7-8 625 633 10.1016/S0223‑5234(98)80021‑4
    [Google Scholar]
  62. Gund T.M. Floyd J. Jung D. Molecular modeling of σ1 receptor ligands: A model of binding conformational and electrostatic considerations. J. Mol. Graph. Model. 2004 22 3 221 230 10.1016/j.jmgm.2003.08.001 14629980
    [Google Scholar]
  63. Masters J.R. HeLa cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002 2 4 315 319 10.1038/nrc775 12001993
    [Google Scholar]
  64. Takara K. Obata Y. Yoshikawa E. Kitada N. Sakaeda T. Ohnishi N. Yokoyama T. Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemother. Pharmacol. 2006 58 6 785 793 10.1007/s00280‑006‑0226‑5 16534613
    [Google Scholar]
  65. Holtschulte C. Börgel F. Westphälinger S. Schepmann D. Civenni G. Laurini E. Marson D. Catapano C.V. Pricl S. Wünsch B. Synthesis of aminoethyl‐substituted piperidine derivatives as σ 1 receptor ligands with antiproliferative properties. ChemMedChem 2022 17 7 e202100735 10.1002/cmdc.202100735 35077612
    [Google Scholar]
  66. Fallica A.N. Pittalà V. Modica M.N. Salerno L. Romeo G. Marrazzo A. Helal M.A. Intagliata S. Recent advances in the development of sigma receptor ligands as cytotoxic agents: A medicinal chemistry perspective. J. Med. Chem. 2021 64 12 7926 7962 10.1021/acs.jmedchem.0c02265 34076441
    [Google Scholar]
  67. Agha H. McCurdy C.R. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med. Chem. 2021 12 2 154 177 10.1039/D0MD00186D 34046607
    [Google Scholar]
  68. Hayashi T. Su T. The sigma receptor: Evolution of the concept in neuropsychopharmacology. Curr. Neuropharmacol. 2005 3 4 267 280 10.2174/157015905774322516 18369400
    [Google Scholar]
  69. Kim F.J. Kim F. Pasternak G. Introduction to sigma proteins: Evolution of the concept of sigma receptors. Handb Exp Pharmacol. 2017 244 1 11 10.1007/164_2017_41
    [Google Scholar]
  70. Hayashi T. Su T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007 131 3 596 610 10.1016/j.cell.2007.08.036 17981125
    [Google Scholar]
  71. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  72. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  73. Daina A. Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  74. Lin J.H. Yamazaki M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharmacokinet. 2003 42 1 59 98 10.2165/00003088‑200342010‑00003 12489979
    [Google Scholar]
  75. Toxicity assessment 2024 Available from: https://openmolecules.org/propertyexplorer/toxicity-assessment.html
  76. Cisplatin; SDS No. D44185; Sigma-Aldrich Quimica S de RL de CV: Toluca, México 2022 Available from: https://www.emdmillipore.com/Web-PR-Site/en_CA/-/USD/ShowDocument-File?ProductSKU=EMD_BIO-232120&DocumentType=MSD&DocumentId=D44185_SDS_CA_Z8.PDF&DocumentUID=50196055&Language=Z8&Country=CA&Origin=null&Display=inline
  77. Perše M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines 2021 9 10 1406 10.3390/biomedicines9101406 34680523
    [Google Scholar]
  78. Wang M. Rakesh K.P. Leng J. Fang W.Y. Ravindar L. Channe Gowda D. Qin H.L. Amino acids/peptides conjugated heterocycles: A tool for the recent development of novel therapeutic agents. Bioorg. Chem. 2018 76 113 129 10.1016/j.bioorg.2017.11.007 29169078
    [Google Scholar]
  79. Moku B. Ravindar L. Rakesh K.P. Qin H.L. The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem. 2019 86 513 537 10.1016/j.bioorg.2019.02.030 30782571
    [Google Scholar]
  80. Zha G.F. Rakesh K.P. Manukumar H.M. Shantharam C.S. Long S. Pharmaceutical significance of azepane based motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019 162 465 494 10.1016/j.ejmech.2018.11.031 30469042
    [Google Scholar]
/content/journals/mc/10.2174/0115734064321632241022082028
Loading
/content/journals/mc/10.2174/0115734064321632241022082028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test