Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and non-clinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064320533240903062533
2024-09-19
2025-04-12
Loading full text...

Full text loading...

References

  1. Cancer2022Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. ZnaorA. SoerjomataramI. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588
    [Google Scholar]
  3. MathurP. SathishkumarK. ChaturvediM. DasP. SudarshanK.L. SanthappanS. NallasamyV. JohnA. NarasimhanS. RoselindF.S. Cancer Statistics, 2020: Report from national cancer registry programme, India.JCO Glob. Oncol.2020661063107510.1200/GO.20.00122 32673076
    [Google Scholar]
  4. ErdilN. Cardiovascular disease, signaling, gene/cell therapy and advanced nanobiomaterials.Adv. Biol. Earth Sci.20249Special Issue588010.62476/abes9s58
    [Google Scholar]
  5. KhalilovR.K. BakishzadeA. NasibovaA. future prospects of biomaterials in nanomedicine.Adv. Biol. Earth Sci.20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  6. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Biol. Earth Sci.20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  7. KamelM.M. Megally AbdoN.Y. Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents.Eur. J. Med. Chem.201486758010.1016/j.ejmech.2014.08.047 25147148
    [Google Scholar]
  8. LiangT. SunX. LiW. HouG. GaoF. 1,2,3-triazole-containing compounds as anti–lung cancer agents: Current developments, mechanisms of action, and structure–activity relationship.Front. Pharmacol.20211266117310.3389/fphar.2021.661173 34177578
    [Google Scholar]
  9. AlamM.M. 1,2,3‐triazole hybrids as anticancer agents: A review.Arch. Pharm. (Weinheim)20223551210015810.1002/ardp.202100158 34559414
    [Google Scholar]
  10. BozorovK. ZhaoJ. AisaH.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.Bioorg. Med. Chem.201927163511353110.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  11. MalikM.S. AhmedS.A. AlthagafiI.I. AnsariM.A. KamalA. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents.RSC Med. Chem.202011332734810.1039/C9MD00458K 33479639
    [Google Scholar]
  12. SahuJ.K. GangulyS. KaushikA. Triazoles: A valuable insight into recent developments and biological activities.Chin. J. Nat. Med.201311545646510.1016/S1875‑5364(13)60084‑9 24359767
    [Google Scholar]
  13. JialiM. ChenghZ. XueB. Advances in triazole antimicrobial agents.Chin. J. Antibiot.20073210587593
    [Google Scholar]
  14. ZhouC.H. WangY. Recent researches in triazole compounds as medicinal drugs.Curr. Med. Chem.201219223928010.2174/092986712803414213 22320301
    [Google Scholar]
  15. VatmurgeN.S. HazraB.G. PoreV.S. ShiraziF. ChavanP.S. DeshpandeM.V. Synthesis and antimicrobial activity of β-lactam–bile acid conjugates linked via triazole.Bioorg. Med. Chem. Lett.20081862043204710.1016/j.bmcl.2008.01.102 18267360
    [Google Scholar]
  16. ShaliniK. KumarN. DrabuS. SharmaP.K. Advances in synthetic approach to and antifungal activity of triazoles.Beilstein J. Org. Chem.2011766867710.3762/bjoc.7.79 21804864
    [Google Scholar]
  17. JagasiaR. HolubJ.M. BollingerM. KirshenbaumK. FinnM.G. Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition.J. Org. Chem.20097482964297410.1021/jo802097m 19309103
    [Google Scholar]
  18. HuberD. HübnerH. GmeinerP. 1,1′-Disubstituted ferrocenes as molecular hinges in mono- and bivalent dopamine receptor ligands.J. Med. Chem.200952216860687010.1021/jm901120h 19807103
    [Google Scholar]
  19. ZhangJ. ZhangH. CaiW. YuL. ZhenX. ZhangA. ‘Click’ D1 receptor agonists with a 5-HT1A receptor pharmacophore producing D2 receptor activity.Bioorg. Med. Chem.200917144873488010.1016/j.bmc.2009.06.019 19559623
    [Google Scholar]
  20. BonandiE. ChristodoulouM.S. FumagalliG. PerdicchiaD. RastelliG. PassarellaD. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry.Drug Discov. Today201722101572158110.1016/j.drudis.2017.05.014 28676407
    [Google Scholar]
  21. GiraudoA. KrallJ. NielsenB. SørensenT.E. KongstadK.T. RolandoB. BoschiD. FrølundB. LolliM.L. 4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: A novel scaffold to probe the orthosteric γ-aminobutyric acid receptor binding site.Eur. J. Med. Chem.201815831132110.1016/j.ejmech.2018.08.094 30223119
    [Google Scholar]
  22. ChrysinaE.D. BokorÉ. AlexacouK.M. CharavgiM.D. OikonomakosG.N. ZographosS.E. LeonidasD.D. OikonomakosN.G. SomsákL. Amide-1,2,3-triazole bioisosterism: The glycogen phosphorylase case.Tetrahedron Asymmetry2009206-873374010.1016/j.tetasy.2009.03.021
    [Google Scholar]
  23. XuZ. ZhaoS.J. LiuY. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.Eur. J. Med. Chem.201918311170010.1016/j.ejmech.2019.111700 31546197
    [Google Scholar]
  24. CarmonaA.T. Carrión-JiménezS. PingitoreV. Moreno-ClavijoE. RobinaI. Moreno-VargasA.J. Harnessing pyrrolidine iminosugars into dimeric structures for the rapid discovery of divalent glycosidase inhibitors.Eur. J. Med. Chem.201815176577610.1016/j.ejmech.2018.04.008 29674295
    [Google Scholar]
  25. RajaveluK. SubarajaM. RajakumarP. Synthesis, optical properties, and antioxidant and anticancer activity of benzoheterazole dendrimers with triazole bridging unit.New J. Chem.20184253282329210.1039/C7NJ04060A
    [Google Scholar]
  26. SantoshR. SelvamM.K. KanekarS.U. NagarajaG.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole‐linked chalcone derivatives.ChemistrySelect20183236338634310.1002/slct.201800905
    [Google Scholar]
  27. KumarA.K. KallurayaB. KumarS.M. Synthesis and in-vitro antioxidant activities of some coumarin derivatives containing 1,2,3-triazole ring.2018193-294-299
    [Google Scholar]
  28. AlmasiradA. TabatabaiS.A. FaiziM. KebriaeezadehA. MehrabiN. DalvandiA. ShafieeA. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles.Bioorg. Med. Chem. Lett.200414246057605910.1016/j.bmcl.2004.09.072 15546729
    [Google Scholar]
  29. WalczakK. GondelaA. SuwińskiJ. Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles.Eur. J. Med. Chem.2004391084985310.1016/j.ejmech.2004.06.014 15464618
    [Google Scholar]
  30. AmirM. ShikhaK. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives.Eur. J. Med. Chem.200439653554510.1016/j.ejmech.2004.02.008 15183912
    [Google Scholar]
  31. HugginsJ.W. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug.Clin. Infect. Dis.1989114S750S76110.1093/clinids/11.Supplement_4.S750 2546248
    [Google Scholar]
  32. Gómez-JunyentJ. BenaventE. SierraY. El HajC. SoldevilaL. TorrejónB. Rigo-BonninR. TubauF. ArizaJ. MurilloO. Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant Pseudomonas aeruginosa in an in vitro biofilm pharmacodynamic model.Int. J. Antimicrob. Agents201953561261910.1016/j.ijantimicag.2019.01.010 30682497
    [Google Scholar]
  33. YangY. RasmussenB.A. ShlaesD.M. Class A β-lactamases—enzyme-inhibitor interactions and resistance.Pharmacol. Ther.199983214115110.1016/S0163‑7258(99)00027‑3 10511459
    [Google Scholar]
  34. DonnelleyM.A. ZhuE.S. ThompsonG.R.T.III Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections.Infect. Drug Resist.201697986 27330318
    [Google Scholar]
  35. LedouxM.P. DenisJ. NivoixY. HerbrechtR. Isavuconazole: A new broad-spectrum azole. Part 2: Pharmacokinetics and clinical activity.J. Mycol. Med.2018281152210.1016/j.mycmed.2018.02.002 29551442
    [Google Scholar]
  36. KommidiH. GuoH. NuriliF. VedvyasY. JinM.M. McClureT.D. EhdaieB. SaymanH.B. AkinO. ArasO. TingR. 18 F-positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management.J. Med. Chem.20186194256426210.1021/acs.jmedchem.8b00240 29676909
    [Google Scholar]
  37. HuangS. HanY. ChenM. HuK. QiY. SunP. WangM. WuH. LiG. WangQ. DuZ. ZhangK. ZhaoS. ZhengX. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative (18F-FEA-Erlotinib) as a potential EGFR PET agent.Bioorg. Med. Chem. Lett.20182861143114810.1016/j.bmcl.2017.08.066 29486966
    [Google Scholar]
  38. ValdomirG. FernándezM.Á. LagunesI. PadrónJ.I. MartínV.S. PadrónJ.M. DavytD. Oxa/thiazole-tetrahydropyran triazole-linked hybrids with selective antiproliferative activity against human tumour cells.New J. Chem.20184216137841378910.1039/C8NJ02388C
    [Google Scholar]
  39. EdwardsP.J. Combinatorial library methodology applied to cancer and protease targets.Drug Discov. Today20081323-241107110810.1016/j.drudis.2008.10.004
    [Google Scholar]
  40. BaraniakD. BaranowskiD. RuszkowskiP. BoryskiJ. Nucleoside dimers analogues with a 1,2,3-triazole linkage: conjugation of floxuridine and thymidine provides novel tools for cancer treatment. Part II.Nucleosides Nucleotides Nucleic Acids2019381180783510.1080/15257770.2019.1610891 31177919
    [Google Scholar]
  41. KumarR. VatsL. BuaS. SupuranC.T. SharmaP.K. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors.Eur. J. Med. Chem.201815554555110.1016/j.ejmech.2018.06.021 29909339
    [Google Scholar]
  42. KimE.M. JoungM.H. LeeC.M. JeongH.J. LimS.T. SohnM.H. KimD.W. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.Bioorg. Med. Chem. Lett.201020144240424310.1016/j.bmcl.2010.05.036 20538463
    [Google Scholar]
  43. RöhrigU.F. MajjigapuS.R. CaldelariD. DilekN. ReichenbachP. AscencaoK. IrvingM. CoukosG. VogelP. ZoeteV. MichielinO. 1,2,3-Triazoles as inhibitors of indoleamine 2,3-dioxygenase 2 (IDO2).Bioorg. Med. Chem. Lett.201626174330433310.1016/j.bmcl.2016.07.031 27469130
    [Google Scholar]
  44. BanerjiB. ChandrasekharK. SreenathK. RoyS. NagS. SahaK.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR Blocker and ROS inducer agent.ACS Omega2018311161341614210.1021/acsomega.8b01960 30556027
    [Google Scholar]
  45. SanphanyaK. WattanapitayakulS.K. PhowichitS. FokinV.V. VajraguptaO. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach.Bioorg. Med. Chem. Lett.201323102962296710.1016/j.bmcl.2013.03.042 23562241
    [Google Scholar]
  46. MishraR.K. CatananteG. HayatA. MartyJ.L. Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201633350050810.1080/19440049.2015.1133933 26829387
    [Google Scholar]
  47. MeunierB. Hybrid molecules with a dual mode of action: dream or reality?Acc. Chem. Res.2008411697710.1021/ar7000843 17665872
    [Google Scholar]
  48. LauriaA. DelisiR. MingoiaF. TerenziA. MartoranaA. BaroneG. AlmericoA.M. 1,2,3‐triazole in heterocyclic compounds, endowed with biological activity, through 1,3‐dipolar cycloadditions.Eur. J. Org. Chem.20142014163289330610.1002/ejoc.201301695
    [Google Scholar]
  49. HouJ. LiuX. ShenJ. ZhaoG. WangP.G. The impact of click chemistry in medicinal chemistry.Expert Opin. Drug Discov.20127648950110.1517/17460441.2012.682725 22607210
    [Google Scholar]
  50. LiY.T. WangJ.H. PanC.W. MengF.F. ChuX.Q. DingY. QuW.Z. LiH. YangC. ZhangQ. BaiC.G. ChenY. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib.Bioorg. Med. Chem. Lett.20162651419142710.1016/j.bmcl.2016.01.068 26850004
    [Google Scholar]
  51. ArioliF. BorrelliS. ColomboF. FalchiF. FilippiI. CrespanE. NaldiniA. ScaliaG. SilvaniA. MagaG. CarraroF. BottaM. PassarellaD.N. ‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl] pyrimidin‐2‐amine as a Scaffold for the synthesis of inhibitors of Bcr‐Abl.ChemMedChem20116112009201810.1002/cmdc.201100304 21990039
    [Google Scholar]
  52. PeruzzottiC. BorrelliS. VenturaM. PantanoR. FumagalliG. ChristodoulouM.S. MonticelliD. LuzzaniM. FallacaraA.L. TintoriC. BottaM. PassarellaD. Probing the binding site of abl tyrosine kinase using in situ click chemistry.ACS Med. Chem. Lett.20134227427710.1021/ml300394w 24900659
    [Google Scholar]
  53. PiraliT. PagliaiF. MercurioC. BoggioR. CanonicoP.L. SorbaG. TronG.C. GenazzaniA.A. Triazole-modified histone deacetylase inhibitors as a rapid route to drug discovery.J. Comb. Chem.200810562462710.1021/cc800061c 18598089
    [Google Scholar]
  54. GabbaA. RobakiewiczS. TaciakB. UlewiczK. BrogginiG. RastelliG. KrolM. MurphyP.V. PassarellaD. Synthesis and biological evaluation of migrastatin macrotriazoles.Eur. J. Org. Chem.201720171606910.1002/ejoc.201600988
    [Google Scholar]
  55. NahrwoldM. BognerT. EisslerS. VermaS. SewaldN. “Clicktophycin-52”: A bioactive cryptophycin-52 triazole analogue.Org. Lett.20101251064106710.1021/ol1000473 20131817
    [Google Scholar]
  56. ColomboF. TintoriC. FurlanA. BorrelliS. ChristodoulouM.S. DonoR. MainaF. BottaM. AmatM. BoschJ. PassarellaD. ‘Click’ synthesis of a triazole-based inhibitor of Met functions in cancer cells.Bioorg. Med. Chem. Lett.201222144693469610.1016/j.bmcl.2012.05.078 22738633
    [Google Scholar]
  57. ChristodoulouM.S. MoriM. PantanoR. AlfonsiR. InfanteP. BottaM. DamiaG. RicciF. SotiropoulouP.A. LiekensS. BottaB. PassarellaD. Click reaction as a tool to combine pharmacophores: The case of vismodegib.ChemPlusChem201580693894310.1002/cplu.201402435 31973263
    [Google Scholar]
  58. DemchukD.V. SametA.V. ChernyshevaN.B. UshkarovV.I. StashinaG.A. KonyushkinL.D. RaihstatM.M. FirgangS.I. PhilchenkovA.A. ZavelevichM.P. KuiavaL.M. ChekhunV.F. BlokhinD.Y. KiselyovA.S. SemenovaM.N. SemenovV.V. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines.Bioorg. Med. Chem.201422273875510.1016/j.bmc.2013.12.015 24387982
    [Google Scholar]
  59. BealeT.M. BondP.J. BrentonJ.D. Charnock-JonesD.S. LeyS.V. MyersR.M. Increased endothelial cell selectivity of triazole-bridged dihalogenated A-ring analogues of combretastatin A–1.Bioorg. Med. Chem.20122051749175910.1016/j.bmc.2012.01.010 22304851
    [Google Scholar]
  60. PenthalaN.R. MadhukuriL. ThakkarS. MadadiN.R. LamtureG. EoffR.L. CrooksP.A. Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anti-cancer agents.MedChemComm2015681535154310.1039/C5MD00219B 27066215
    [Google Scholar]
  61. MadadiN.R. PenthalaN.R. HowkK. KetkarA. EoffR.L. BorrelliM.J. CrooksP.A. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4.Eur. J. Med. Chem.201510312313210.1016/j.ejmech.2015.08.041 26352674
    [Google Scholar]
  62. OdloK. HentzenJ. dit Chabert, J.F.; Ducki, S.; Gani, O.A.B.S.M.; Sylte, I.; Skrede, M.; Flørenes, V.A.; Hansen, T.V. 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin.Bioorg. Med. Chem.20081694829483810.1016/j.bmc.2008.03.049 18396050
    [Google Scholar]
  63. OstrowskiT. JanuszczykP. CieslakM. Kazmierczak-BaranskaJ. NawrotB. Bartoszak-AdamskaE. ZeidlerJ. 5-Ethynyl-1-β-d-ribofuranosyl-1H-[1,2,3]triazole-4-carboxylic acid amide (ETCAR) and its analogues: Synthesis and cytotoxic properties.Bioorg. Med. Chem.201119144386439810.1016/j.bmc.2011.05.050 21684167
    [Google Scholar]
  64. MinakawaN. TakedaT. SasakiT. MatsudaA. UedaT. Nucleosides and nucleotides. 96. Synthesis and antitumor activity of 5-ethynyl-1-.beta.-D-ribofuranosylimidazole-4-carboxamide (EICAR) and its derivatives.J. Med. Chem.199134277878610.1021/jm00106a045 1995901
    [Google Scholar]
  65. El AkriK. BougrinK. BalzariniJ. FarajA. BenhidaR. Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides.Bioorg. Med. Chem. Lett.200717236656665910.1016/j.bmcl.2007.08.077 17931862
    [Google Scholar]
  66. VojtičkováM. DobiašJ. HanquetG. AddováG. Cetin-AtalayR. YildirimD.C. BoháčA. Ynamide click chemistry in development of triazole VEGFR2 TK modulators.Eur. J. Med. Chem.201510310512210.1016/j.ejmech.2015.08.012 26344911
    [Google Scholar]
  67. ImperioD. PiraliT. GalliU. PagliaiF. CaficiL. CanonicoP.L. SorbaG. GenazzaniA.A. TronG.C. Replacement of the lactone moiety on podophyllotoxin and steganacin analogues with a 1,5-disubstituted 1,2,3-triazole via ruthenium-catalyzed click chemistry.Bioorg. Med. Chem.200715216748675710.1016/j.bmc.2007.08.020 17765552
    [Google Scholar]
  68. CaprioglioD. TorrettaS. FerrariM. TravelliC. GrollaA.A. CondorelliF. GenazzaniA.A. MinassiA. Triazole-curcuminoids: A new class of derivatives for ‘tuning’ curcumin bioactivities?Bioorg. Med. Chem.201624214015210.1016/j.bmc.2015.11.044 26705144
    [Google Scholar]
  69. KommagallaY. CorneaS. RiehleR. TorchilinV. DegterevA. RamanaC.V. Optimization of the anti-cancer activity of the phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: Switching thiourea with 1,2,3-triazole.MedChemComm2014591359136310.1039/C4MD00109E 25505943
    [Google Scholar]
  70. XiaY. LiuY. RocchiP. WangM. FanY. QuF. IovannaJ.L. PengL. Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer.Cancer Lett.2012318214515310.1016/j.canlet.2011.09.043 22266185
    [Google Scholar]
  71. TianY. LiangZ. XuH. MouY. GuoC. Design, synthesis and cytotoxicity of novel dihydroartemisinin-coumarin hybrids via click chemistry.Molecules201621675810.3390/molecules21060758 27294901
    [Google Scholar]
  72. GuptaA. Sathish KumarB. NegiA.S. Current status on development of steroids as anticancer agents.J. Steroid Biochem. Mol. Biol.201313724227010.1016/j.jsbmb.2013.05.011 23727548
    [Google Scholar]
  73. MinoricsR. ZupkoI. Steroidal anticancer agents: An overview of estradiol-related compounds.Anticancer. Agents Med. Chem.201818565266610.2174/1871520617666171114111721 29141561
    [Google Scholar]
  74. NjarV.C.O. BrodieA.M.H. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer.J. Med. Chem.20155852077208710.1021/jm501239f 25591066
    [Google Scholar]
  75. Masood-ur-RahmanMohammad, Y.; Fazili, K.M.; Bhat, K.A.; Ara, T. Synthesis and biological evaluation of novel 3- O -tethered triazoles of diosgenin as potent antiproliferative agents.Steroids20171181810.1016/j.steroids.2016.11.003 27864018
    [Google Scholar]
  76. MernyákE. KovácsI. MinoricsR. SereP. CzégányD. SinkaI. WölflingJ. SchneiderG. ÚjfaludiZ. BorosI. OcsovszkiI. VargaM. ZupkóI. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities.J. Steroid Biochem. Mol. Biol.201515012313410.1016/j.jsbmb.2015.04.001 25845933
    [Google Scholar]
  77. ZucoV. SupinoR. RighettiS.C. ClerisL. MarchesiE. Gambacorti-PasseriniC. FormelliF. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells.Cancer Lett.20021751172510.1016/S0304‑3835(01)00718‑2 11734332
    [Google Scholar]
  78. BębenekE. JastrzębskaM. Kadela-TomanekM. ChrobakE. OrzechowskaB. ZwolińskaK. LatochaM. MertasA. CzubaZ. BoryczkaS. Novel triazole hybrids of betulin: Synthesis and biological activity profile.Molecules20172211187610.3390/molecules22111876 29104263
    [Google Scholar]
  79. MajeedR. HussainA. SangwanP.L. ChinthakindiP.K. KhanI. SharmaP.R. KoulS. SaxenaA.K. HamidA. PI3K target based novel cyano derivative of betulinic acid induces its signalling inhibition by down-regulation of pGSK3β and cyclin D1 and potentially checks cancer cell proliferation.Mol. Carcinog.201655596497610.1002/mc.22339 26013878
    [Google Scholar]
  80. JurášekM. ČernohorskáM. ŘehulkaJ. SpiwokV. SulimenkoT. DráberováE. DarmostukM. GurskáS. FrydrychI. BuriánováR. RumlT. HajdúchM. BartůněkP. DráberP. DžubákP. DrašarP.B. SedlákD. Estradiol dimer inhibits tubulin polymerization and microtubule dynamics.J. Steroid Biochem. Mol. Biol.2018183687910.1016/j.jsbmb.2018.05.008 29803726
    [Google Scholar]
  81. PattnaikB. LakshmiJ.K. KavithaR. JagadeeshB. BhattacharjeeD. JainN. MallavadhaniU.V. Synthesis, structural studies, and cytotoxic evaluation of novel ursolic acid hybrids with capabilities to arrest breast cancer cells in mitosis.J. Asian Nat. Prod. Res.201719326027110.1080/10286020.2016.1240169 27762142
    [Google Scholar]
  82. LamN.S. LongX. WongJ.W. GriffinR.C. DoeryJ.C.G. Artemisinin and its derivatives.Anticancer Drugs201930111810.1097/CAD.0000000000000697 30540593
    [Google Scholar]
  83. WongY.K. XuC. KaleshK.A. HeY. LinQ. WongW.S.F. ShenH.M. WangJ. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action.Med. Res. Rev.20173761492151710.1002/med.21446 28643446
    [Google Scholar]
  84. LiuX. CaoJ. HuangG. ZhaoQ. ShenJ. Biological activities of artemisinin derivatives beyond malaria.Curr. Top. Med. Chem.201919320522210.2174/1568026619666190122144217 30674260
    [Google Scholar]
  85. BinhL.H. VanN.T.T. KienV.T. MyN.T.T. Van ChinhL. NgaN.T. TienH.X. ThaoD.T. VuT.K. Synthesis and in vitro cytotoxic evaluation of new triazole derivatives based on artemisinin via click chemistry.Med. Chem. Res.201625473875010.1007/s00044‑016‑1524‑z
    [Google Scholar]
  86. KapkotiD.S. SinghS. LuqmanS. BhakuniR.S. Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiproliferative activity.New J. Chem.20184285978599510.1039/C7NJ04271J
    [Google Scholar]
  87. TienD.D. GiangL.N.T. AnhD.T.T. DungN.T. HaT.N. HaN.T.T. PhuongH.T. ChinhP.T. Van KiemP. Van TuyenN. Synthesis and cytotoxic evaluation of artemisinin-triazole hybrids.Nat. Prod. Commun.201611217891792 30508334
    [Google Scholar]
  88. YuH. HouZ. TianY. MouY. GuoC. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents.Eur. J. Med. Chem.201815143444910.1016/j.ejmech.2018.04.005 29649740
    [Google Scholar]
  89. YadavV.R. PrasadS. SungB. AggarwalB.B. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer.Int. Immunopharmacol.201111329530910.1016/j.intimp.2010.12.006 21184860
    [Google Scholar]
  90. TeilletF. BoumendjelA. BoutonnatJ. RonotX. Flavonoids as RTK inhibitors and potential anticancer agents.Med. Res. Rev.200828571574510.1002/med.20122 18080331
    [Google Scholar]
  91. FuD.J. ZhangS.Y. LiuY.C. YueX.X. LiuJ.J. SongJ. ZhaoR.H. LiF. SunH.H. ZhangY.B. LiuH.M. Design, synthesis and antiproliferative activity studies of 1,2,3-triazole–chalcones.MedChemComm2016781664167110.1039/C6MD00169F
    [Google Scholar]
  92. AnejaB. ArifR. PerwezA. NapoleonJ.V. HasanP. RizviM.M.A. AzamA. Rahisuddin; Abid, M. N‐Substituted 1,2,3‐triazolyl‐appended indole‐chalcone hybrids as potential DNA intercalators endowed with antioxidant and anticancer properties.ChemistrySelect2018392638264510.1002/slct.201702913
    [Google Scholar]
  93. YadavP. LalK. KumarA. GuruS.K. JaglanS. BhushanS. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.Eur. J. Med. Chem.201712694495310.1016/j.ejmech.2016.11.030 28011424
    [Google Scholar]
  94. HussainiS.M.A. YedlaP. BabuK.S. ShaikT.B. ChityalG.K. KamalA. Synthesis and biological evaluation of 1,2,3‐triazole tethered pyrazoline and chalcone derivatives.Chem. Biol. Drug Des.20168819710910.1111/cbdd.12738 26854643
    [Google Scholar]
  95. SowjanyaT. Jayaprakash RaoY. MurthyN.Y.S. Synthesis and antiproliferative activity of new 1,2,3-triazole/flavone hybrid heterocycles against human cancer cell lines.Russ. J. Gen. Chem.20178781864187110.1134/S1070363217080357
    [Google Scholar]
  96. QiY. DingZ. YaoY. MaD. RenF. YangH. ChenA. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis.Exp. Ther. Med.201917316701676 30783435
    [Google Scholar]
  97. RaoY.J. SowjanyaT. ThirupathiG. MurthyN.Y.S. KotapalliS.S. Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents.Mol. Divers.201822480381410.1007/s11030‑018‑9833‑4 29869169
    [Google Scholar]
  98. WuJ. ChenY. LiuX. GaoY. HuJ. ChenH. Discovery of novel negletein derivatives as potent anticancer agents for acute myeloid leukemia.Chem. Biol. Drug Des.201891492493210.1111/cbdd.13159 29240303
    [Google Scholar]
  99. FuD.J. SongJ. ZhaoR.H. LiuY.C. ZhangY.B. LiuH.M. Synthesis of novel antiproliferative 1,2,3-triazole hybrids using the molecular hybridisation approach.J. Chem. Res.2016401167467710.3184/174751916X14761050193688
    [Google Scholar]
  100. ZhangS.Y. FuD.J. YueX.X. LiuY.C. SongJ. SunH.H. LiuH.M. ZhangY.B. design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents.Molecules201621565310.3390/molecules21050653 27213317
    [Google Scholar]
  101. ZhaoL. MaoL. HongG. YangX. LiuT. Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates.Bioorg. Med. Chem. Lett.201525122540254410.1016/j.bmcl.2015.04.051 25959813
    [Google Scholar]
  102. TruongV.V. NamT.D. HungT.N. NgaN.T. QuanP.M. ChinhL.V. JungS.H. Synthesis and anti-proliferative activity of novel azazerumbone conjugates with chalcones.Bioorg. Med. Chem. Lett.201525225182518510.1016/j.bmcl.2015.09.069 26459207
    [Google Scholar]
  103. PinhoS.S. ReisC.A. Glycosylation in cancer: Mechanisms and clinical implications.Nat. Rev. Cancer201515954055510.1038/nrc3982 26289314
    [Google Scholar]
  104. LiH. WangH. WangZ. YanH. ZhangM. LiuY. ChengM. Synthesis, antitumor activity evaluation and mechanistic study of novel hederacolchiside A1 derivatives bearing an aryl triazole moiety.Bioorg. Med. Chem.201826144025403310.1016/j.bmc.2018.06.026 29958763
    [Google Scholar]
  105. AmdouniH. RobertG. DriowyaM. FurstossN. MétierC. DuboisA. DufiesM. ZerhouniM. OrangeF. Lacas-GervaisS. BougrinK. MartinA.R. AubergerP. BenhidaR. In vitro and in vivo evaluation of fully substituted (5-(3-ethoxy-3-oxopropynyl)-4-(ethoxycarbonyl)-1,2,3-triazolyl-glycosides as original nucleoside analogues to circumvent resistance in myeloid malignancies.J. Med. Chem.20176041523153310.1021/acs.jmedchem.6b01803 28094938
    [Google Scholar]
  106. ZiC.T. YangL. GaoW. LiY. ZhouJ. DingZ.T. HuJ.M. JiangZ.H. Click glycosylation for the synthesis of 1,2,3‐triazole‐linked picropodophyllotoxin glycoconjugates and their anticancer activity.ChemistrySelect20172185038504410.1002/slct.201700347
    [Google Scholar]
  107. ZiC.T. LiuZ.H. LiG.T. LiY. ZhouJ. DingZ.T. HuJ.M. JiangZ.H. Design, synthesis, and cytotoxicity of perbutyrylated glycosides of 4β-triazolopodophyllotoxin derivatives.Molecules20152023255328010.3390/molecules20023255 25690288
    [Google Scholar]
  108. AkhtarJ. KhanA.A. AliZ. HaiderR. Shahar YarM. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur. J. Med. Chem.201712514318910.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  109. PrachayasittikulS. PingaewR. WorachartcheewanA. SinthupoomN. PrachayasittikulV. RuchirawatS. PrachayasittikulV. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents.Mini Rev. Med. Chem.20171710869901 27670581
    [Google Scholar]
  110. CherukupalliS. KarpoormathR. ChandrasekaranB. HampannavarG.A. ThapliyalN. PalakolluV.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold.Eur. J. Med. Chem.201712629835210.1016/j.ejmech.2016.11.019 27894044
    [Google Scholar]
  111. KamalA. Subba RaoA.V. VishnuvardhanM.V.P.S. Srinivas ReddyT. SwapnaK. BagulC. Subba ReddyN.V. SrinivasuluV. Synthesis of 2-anilinopyridyl–triazole conjugates as antimitotic agents.Org. Biomol. Chem.201513174879489510.1039/C5OB00232J 25765224
    [Google Scholar]
  112. PrasadB. Lakshma NayakV. SrikanthP.S. BaigM.F. Subba ReddyN.V. BabuK.S. KamalA. Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents.Bioorg. Chem.20198353554810.1016/j.bioorg.2018.11.002 30472555
    [Google Scholar]
  113. AllamM. BhavaniA.K.D. MudirajA. RanjanN. ThippanaM. BabuP.P. Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents.Eur. J. Med. Chem.2018156435210.1016/j.ejmech.2018.06.055 30006173
    [Google Scholar]
  114. LuG. LiX. MohamedO.K. WangD. MengF. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs.Eur. J. Med. Chem.201917128229610.1016/j.ejmech.2019.03.047 30927565
    [Google Scholar]
  115. Naresh KumarR. Jitender DevG. RavikumarN. Krishna SwaroopD. DebanjanB. BharathG. NarsaiahB. Nishant JainS. Gangagni RaoA. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents.Bioorg. Med. Chem. Lett.201626122927293010.1016/j.bmcl.2016.04.038 27130357
    [Google Scholar]
  116. GregorićT. SedićM. GrbčićP. Tomljenović ParavićA. Kraljević PavelićS. CetinaM. VianelloR. Raić-MalićS. Novel pyrimidine-2,4-dione–1,2,3-triazole and furo[2,3-d]pyrimidine-2-one–1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation.Eur. J. Med. Chem.20171251247126710.1016/j.ejmech.2016.11.028 27875779
    [Google Scholar]
  117. XuZ. ZhangS. GaoC. FanJ. ZhaoF. LvZ.S. FengL.S. Isatin hybrids and their anti-tuberculosis activity.Chin. Chem. Lett.201728215916710.1016/j.cclet.2016.07.032
    [Google Scholar]
  118. PatilS.A. PatilR. MillerD.D. Indole molecules as inhibitors of tubulin polymerization: Potential new anticancer agents.Future Med. Chem.20124162085211510.4155/fmc.12.141 23157240
    [Google Scholar]
  119. PanathurN. GokhaleN. DalimbaU. KoushikP.V. YogeeswariP. SriramD. NaiduV.G.M. SathishM. KamalA. Synthesis of novel 5-[(1,2,3-triazol-4-yl)methyl]-1-methyl-3H-pyridazino[4,5-b]indol-4-one derivatives by click reaction and exploration of their anticancer activity.Med. Chem. Res.201625113514810.1007/s00044‑015‑1473‑y
    [Google Scholar]
  120. ShankaraiahN. JadalaC. NekkantiS. SenwarK.R. NageshN. ShrivastavaS. NaiduV.G.M. SathishM. KamalA. Design and synthesis of C3-tethered 1,2,3-triazolo-β-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies.Bioorg. Chem.201664425010.1016/j.bioorg.2015.11.005 26657602
    [Google Scholar]
  121. HuW.P. KuoK.K. SenadiG.C. ChangL.S. WangJ.J. Photodynamic therapy using indolines-fused-triazoles induces mitochondrial apoptosis in human non-melanoma BCC cells.Anticancer Res.2017371054995505 28982862
    [Google Scholar]
  122. JainR. GahlyanP. DwivediS. KonwarR. KumarS. BhandariM. AroraR. KakkarR. KumarR. PrasadA.K. Design, synthesis and evaluation of 1 H ‐1,2,3‐triazol‐4‐yl‐methyl tethered 3‐pyrrolylisatins as potent anti‐breast cancer agents.ChemistrySelect20183195263526810.1002/slct.201800420
    [Google Scholar]
  123. LuY. WangL. WangX. XiT. LiaoJ. WangZ. JiangF. Design, combinatorial synthesis and biological evaluations of novel 3-amino-1′-((1-aryl-1H-1,2,3-triazol-5-yl)methyl)-2′-oxospiro [benzo[a]pyrano[2,3-c]phenazine-1,3′-indoline]-2-carbonitrile antitumor hybrid molecules.Eur. J. Med. Chem.201713512514110.1016/j.ejmech.2017.04.040 28441581
    [Google Scholar]
  124. Humphries-BickleyT. Castillo-PichardoL. Hernandez-O’FarrillE. Borrero-GarciaL.D. Forestier-RomanI. GerenaY. BlancoM. Rivera-RoblesM.J. Rodriguez-MedinaJ.R. CubanoL.A. VlaarC.P. DharmawardhaneS. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer.Mol. Cancer Ther.201716580581810.1158/1535‑7163.MCT‑16‑0442 28450422
    [Google Scholar]
  125. Pavan KumarC. DeviA. Ashok YadavP. Rao VadaparthiR. ShankaraiahG. SowjanyaP. JainN. Suresh BabuK. “Click” reaction mediated synthesis of costunolide and dehydrocostuslactone derivatives and evaluation of their cytotoxic activity.J. Asian Nat. Prod. Res.201618111063107810.1080/10286020.2016.1193012 27329166
    [Google Scholar]
  126. NagarsenkarA. PrajaptiS.K. GuggilapuS.D. BirineniS. Sravanti KotapalliS. UmmanniR. BabuB.N. Investigation of triazole-linked indole and oxindole glycoconjugates as potential anticancer agents: novel Akt/PKB signaling pathway inhibitors.MedChemComm20167464665310.1039/C5MD00513B
    [Google Scholar]
  127. BaltusC.B. JordaR. MarotC. BerkaK. BazgierV. KryštofV. PriéG. Viaud-MassuardM.C. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.Eur. J. Med. Chem.201610870171910.1016/j.ejmech.2015.12.023 26741853
    [Google Scholar]
  128. CaiM. HuJ. TianJ.L. YanH. ZhengC.G. HuW.L. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities.Chin. Chem. Lett.201526667568010.1016/j.cclet.2015.03.015
    [Google Scholar]
  129. DandriyalJ. SinglaR. KumarM. JaitakV. Recent developments of C-4 substituted coumarin derivatives as anticancer agents.Eur. J. Med. Chem.201611914116810.1016/j.ejmech.2016.03.087 27155469
    [Google Scholar]
  130. ThakurA. SinglaR. JaitakV. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies.Eur. J. Med. Chem.201510147649510.1016/j.ejmech.2015.07.010 26188907
    [Google Scholar]
  131. FanY.L. KeX. LiuM. Coumarin–triazole hybrids and their biological activities.J. Heterocycl. Chem.201855479180210.1002/jhet.3112
    [Google Scholar]
  132. AnR. HouZ. LiJ.T. YuH.N. MouY.H. GuoC. Design, synthesis and biological evaluation of novel 4-substituted coumarin derivatives as antitumor agents.Molecules2018239228110.3390/molecules23092281 30200625
    [Google Scholar]
  133. FuD.J. LiP. WuB.W. CuiX.X. ZhaoC.B. ZhangS.Y. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors.Eur. J. Med. Chem.201916530932210.1016/j.ejmech.2019.01.033 30690300
    [Google Scholar]
  134. DuanY.C. MaY.C. ZhangE. ShiX.J. WangM.M. YeX.W. LiuH.M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents.Eur. J. Med. Chem.201362111910.1016/j.ejmech.2012.12.046 23353743
    [Google Scholar]
  135. ShenQ.K. LiuC.F. ZhangH.J. TianY.S. QuanZ.S. Design and synthesis of new triazoles linked to xanthotoxin for potent and highly selective anti-gastric cancer agents.Bioorg. Med. Chem. Lett.201727214871487510.1016/j.bmcl.2017.09.040 28947149
    [Google Scholar]
  136. SinhaS. KumaranA.P. MishraD. PairaP. Synthesis and cytotoxicity study of novel 3-(triazolyl)coumarins based fluorescent scaffolds.Bioorg. Med. Chem. Lett.201626225557556110.1016/j.bmcl.2016.09.078 27769619
    [Google Scholar]
  137. GuoS. ZhenY. GuoM. ZhangL. ZhouG. Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors.Invest. New Drugs20183661147115710.1007/s10637‑018‑0632‑7 30019099
    [Google Scholar]
  138. ChekirS. DebbabiM. RegazzettiA. DargèreD. LaprévoteO. Ben JannetH. GharbiR. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents.Bioorg. Chem.20188018919410.1016/j.bioorg.2018.06.005 29940340
    [Google Scholar]
  139. PathoorR. BahulayanD. MCR-click synthesis, molecular docking and cytotoxicity evaluation of a new series of indole–triazole–coumarin hybrid peptidomimetics.New J. Chem.20184296810681610.1039/C8NJ00032H
    [Google Scholar]
  140. LiY. GengJ. LiuY. YuS. ZhaoG. Thiadiazole-A promising structure in medicinal chemistry.ChemMedChem201381274110.1002/cmdc.201200355 23208773
    [Google Scholar]
  141. FanY.L. JinX.H. HuangZ.P. YuH.F. ZengZ.G. GaoT. FengL.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents.Eur. J. Med. Chem.201815034736510.1016/j.ejmech.2018.03.016 29544148
    [Google Scholar]
  142. SayeedI.B. VishnuvardhanM.V.P.S. NagarajanA. KantevariS. KamalA. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line.Bioorg. Chem.20188071472010.1016/j.bioorg.2018.07.026 30075408
    [Google Scholar]
  143. SahayI.I. GhalsasiP.S. Synthesis of new 1,2,3-triazole linked benzimidazole molecules as anti-proliferative agents.Synth. Commun.201747882583410.1080/00397911.2017.1289412
    [Google Scholar]
  144. BistrovićA. KrstulovićL. HarejA. GrbčićP. SedićM. KoštrunS. PavelićS.K. BajićM. Raić-MalićS. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer.Eur. J. Med. Chem.20181431616163410.1016/j.ejmech.2017.10.061 29133046
    [Google Scholar]
  145. AshwiniN. GargM. MohanC.D. FuchsJ.E. RangappaS. AnushaS. SwaroopT.R. RakeshK.S. KanojiaD. MadanV. BenderA. KoefflerH.P. Basappa; Rangappa, K.S. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation.Bioorg. Med. Chem.201523186157616510.1016/j.bmc.2015.07.069 26299825
    [Google Scholar]
  146. Srinivasa ReddyT. KulhariH. Ganga ReddyV. Subba RaoA.V. BansalV. KamalA. ShuklaR. Synthesis and biological evaluation of pyrazolo–triazole hybrids as cytotoxic and apoptosis inducing agents.Org. Biomol. Chem.20151340101361014910.1039/C5OB00842E 26346902
    [Google Scholar]
  147. AminS. AdhikariN. AgrawalR. JhaT. GayenS. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches.Lett. Drug Des. Discov.201714551552710.2174/1570180813666160916153017
    [Google Scholar]
  148. Ganga ReddyV. Srinivasa ReddyT. Lakshma NayakV. PrasadB. ReddyA.P. RavikumarA. TajS. KamalA. Design, synthesis and biological evaluation of N -((1-benzyl-1 H -1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1 H -pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors.Eur. J. Med. Chem.201612216417710.1016/j.ejmech.2016.06.011 27344493
    [Google Scholar]
  149. KumbhareR.M. DadmalT.L. RamaiahM.J. KishoreK.S.V. Pushpa ValliS.N.C.V.L. TiwariS.K. AppalanaiduK. RaoY.K. BhadraM. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells.Bioorg. Med. Chem. Lett.201525365465810.1016/j.bmcl.2014.11.083 25563891
    [Google Scholar]
  150. RavezS. Castillo-AguileraO. DepreuxP. GoossensL. Quinazoline derivatives as anticancer drugs: A patent review (2011 – present).Expert Opin. Ther. Pat.201525778980410.1517/13543776.2015.1039512 25910402
    [Google Scholar]
  151. HameedA. Al-RashidaM. UroosM. AliS.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011–2016).Expert Opin. Ther. Pat.201828428129710.1080/13543776.2018.1432596 29368977
    [Google Scholar]
  152. VenkateshR. RamaiahM.J. GaikwadH.K. JanardhanS. BantuR. NagarapuL. SastryG.N. GaneshA.R. BhadraM. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells.Eur. J. Med. Chem.2015948710110.1016/j.ejmech.2015.02.057 25757092
    [Google Scholar]
  153. VasuK.K. IngawaleH.D. SagarS.R. SharmaJ.A. PandyaD.H. AgarwalM. 2-((1H-1,2,3-triazol-1-yl)methyl)-3-phenylquinazolin-4(3H)-ones: Design, synthesis and evaluation as anti-cancer agents.Curr. Bioact. Compd.201814325426310.2174/1573407213666170329131557
    [Google Scholar]
  154. SafaviM. AshtariA. KhaliliF. MirfazliS.S. SaeediM. ArdestaniS.K. Rashidi RanjbarP. Barazandeh TehraniM. LarijaniB. MahdaviM. Novel quinazolin‐4(3 H)‐one linked to 1,2,3‐triazoles: Synthesis and anticancer activity.Chem. Biol. Drug Des.20189211373138110.1111/cbdd.13203 29637699
    [Google Scholar]
  155. SongP. CuiF. LiN. XinJ. MaQ. MengX. WangC. CaoQ. GuY. KeY. ZhangQ. LiuH. Synthesis, cytotoxic activity evaluation of novel 1,2,3‐triazole linked quinazoline derivatives.Chin. J. Chem.201735101633163910.1002/cjoc.201700005
    [Google Scholar]
  156. Le-Nhat-ThuyG. DinhT.V. Pham-TheH. Nguyen QuangH. Nguyen ThiN. Dang ThiT.A. Hoang ThiP. Le ThiT.A. NguyenH.T. Nguyen ThanhP. Le DucT. NguyenT.V. Design, synthesis and evaluation of novel hybrids between 4-anilinoquinazolines and substituted triazoles as potent cytotoxic agents.Bioorg. Med. Chem. Lett.20182823-243741374710.1016/j.bmcl.2018.10.016 30337229
    [Google Scholar]
  157. ShiY. ZhangW. LiL. TongZ. BaiC. Design and synthesis of novel triazolo-lapatinib hybrids as inhibitors of breast cancer cells.Med. Chem. Res.20182711-122437244510.1007/s00044‑018‑2247‑0
    [Google Scholar]
  158. DingC. ChenS. ZhangC. HuG. ZhangW. LiL. ChenY.Z. TanC. JiangY. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy.Bioorg. Med. Chem.2017251273710.1016/j.bmc.2016.10.006 27769671
    [Google Scholar]
  159. GiangL.N.T. NgaN.T. VanD.T. AnhD.T.T. PhuongH.T. ThanhN.H. AnhL.T.T. TrungV.Q. Van TuyenN. Van KiemP. Design, synthesis and cytotoxic evaluation of 4-anilinoquinazoline–triazole–azt hybrids as anticancer agents.Nat. Prod. Commun.201813121633163610.1177/1934578X1801301215
    [Google Scholar]
  160. DingC. LiD. WangY.W. HanS.S. GaoC.M. TanC.Y. JiangY.Y. Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285.Chin. Chem. Lett.20172861220122710.1016/j.cclet.2017.01.003
    [Google Scholar]
  161. ReichartF. HornM. NeundorfI. Cyclization of a cell‐penetrating peptide via click‐chemistry increases proteolytic resistance and improves drug delivery.J. Pept. Sci.201622642142610.1002/psc.2885 27197760
    [Google Scholar]
  162. Hemi CummingA. BrownS.L. TaoX. CuyamendousC. FieldJ.J. MillerJ.H. HarveyJ.E. Teesdale-SpittleP.H. Synthesis of a simplified triazole analogue of pateamine A.Org. Biomol. Chem.201614225117512710.1039/C6OB00086J 27180995
    [Google Scholar]
  163. Hernández-VázquezE. Chávez-RiverosA. Romo-PérezA. Ramírez-ApánM.T. Chávez-BlancoA.D. Morales-BárcenasR. Dueñas-GonzálezA. MirandaL.D. Cytotoxic activity and structure–activity relationship of triazole‐containing Bis(Aryl Ether) macrocycles.ChemMedChem201813121193120910.1002/cmdc.201800075 29771004
    [Google Scholar]
  164. TapadarS. FathiS. RajiI. OmesieteW. KornackiJ.R. MwakwariS.C. MiyataM. MitsutakeK. LiJ.D. MrksichM. OyelereA.K. A structure–activity relationship of non-peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-inflammatory activities.Bioorg. Med. Chem.201523247543756410.1016/j.bmc.2015.10.045 26585275
    [Google Scholar]
  165. XieL. HuangJ. ChenX. YuH. LiK. YangD. ChenX. YingJ. PanF. LvY. ChengY. Synthesis of rapamycin derivatives containing the triazole moiety used as potential mtor‐targeted anticancer agents.Arch. Pharm. (Weinheim)2016349642844110.1002/ardp.201500457 27150260
    [Google Scholar]
  166. HuangQ. XieL. ChenX. YuH. LvY. HuangX. YingJ. ZhengC. ChengY. HuangJ. Synthesis and anticancer activity of novel rapamycin C‐28 containing triazole moiety compounds.Arch. Pharm. (Weinheim)201835111180012310.1002/ardp.201800123 30357890
    [Google Scholar]
  167. ZiC.T. YangL. XuF.Q. DongF.W. YangD. LiY. DingZ.T. ZhouJ. JiangZ.H. HuJ.M. Synthesis and anticancer activity of dimeric podophyllotoxin derivatives.Drug Des. Devel. Ther.2018123393340610.2147/DDDT.S167382 30349193
    [Google Scholar]
  168. ShenQ.K. DengH. WangS.B. TianY.S. QuanZ.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway.Eur. J. Med. Chem.2019173153110.1016/j.ejmech.2019.04.005 30981113
    [Google Scholar]
  169. PoornimaB. SivaB. VenkannaA. ShankaraiahG. JainN. YadavD.K. MisraS. BabuK.S. Novel gomisin B analogues as potential cytotoxic agents: Design, synthesis, biological evaluation and docking studies.Eur. J. Med. Chem.201713944145310.1016/j.ejmech.2017.07.076 28818768
    [Google Scholar]
  170. CaoJ. ZangJ. KongX. ZhaoC. ChenT. RanY. DongH. XuW. ZhangY. Leucine ureido derivatives as aminopeptidase N inhibitors using click chemistry. Part II.Bioorg. Med. Chem.201927697899010.1016/j.bmc.2019.01.041 30737134
    [Google Scholar]
  171. DingY. GuoH. GeW. ChenX. LiS. WangM. ChenY. ZhangQ. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities.Eur. J. Med. Chem.201815621622910.1016/j.ejmech.2018.06.058 30006167
    [Google Scholar]
  172. JanganatiV. PonderJ. BalasubramaniamM. Bhat-NakshatriP. BarE.E. NakshatriH. JordanC.T. CrooksP.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells.Eur. J. Med. Chem.201815756258110.1016/j.ejmech.2018.08.010 30121494
    [Google Scholar]
  173. ZakiM. AllouchiH. El BouakherA. DuvergerE. El HakmaouiA. DaniellouR. GuillaumetG. AkssiraM. Synthesis and anticancer evaluation of novel 9α-substituted-13-(1,2,3-triazolo)-parthenolides.Tetrahedron Lett.201657242591259410.1016/j.tetlet.2016.04.115
    [Google Scholar]
  174. LiuN. JinZ. ZhangJ. JinJ. Antitumor evaluation of novel phenothiazine derivatives that inhibit migration and tubulin polymerization against gastric cancer MGC-803 cells.Invest. New Drugs201937118819810.1007/s10637‑018‑0682‑x 30345465
    [Google Scholar]
  175. MaX.H. LiuN. LuJ-L. ZhaoJ. ZhangX-J. Design, synthesis and antiproliferative activity of novel phenothiazine-1,2,3-triazole analogues.J. Chem. Res.2017411269669810.3184/174751917X15122516000140
    [Google Scholar]
/content/journals/mc/10.2174/0115734064320533240903062533
Loading
/content/journals/mc/10.2174/0115734064320533240903062533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test