Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Considering the necessity for broad synthetic operations, integrating various reactions into a single pot operation is an intriguing approach to improve synthetic efficiency. One-pot operations may serve as an effective way to minimize the amount of chemical waste generated, save time, avoid multiple purification processes, accomplish numerous transformations, and make multiple bonds in one pot. Therefore, “pot economy” should be considered while designing a synthesis process, since a one-pot reaction can be effective and environmentally safe. Outstanding synthesis has rapidly increased over the last ten years. This study's main goal was to illustrate various one-pot methods that lead to advantageous synthesis.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064326002240912102121
2024-09-25
2025-06-20
Loading full text...

Full text loading...

References

  1. EmmanuelK. MonirU. A review on biological and medicinal impact of heterocyclic compounds.Res. in Chem.2022422117156
    [Google Scholar]
  2. PragiA. VarunA. LambaH.S. DeepakW. Importance of heterocyclic chemistry: a review.IJPSR20123929472954
    [Google Scholar]
  3. TrostB.M. The atom economy--a search for synthetic efficiency.Science199125450371471147710.1126/science.1962206 1962206
    [Google Scholar]
  4. RakeshK.P. ShantharamC.S. SridharaM.B. ManukumarH.M. QinH.L. Benzisoxazole: a privileged scaffold for medicinal chemistry.MedChemComm20178112023203910.1039/C7MD00449D 30108720
    [Google Scholar]
  5. SaloniK. SumitT. SiongM. Lim.; Kalavathy, R.; Vasudevan, M, Benzoxazole derivatives: design, synthesis and biological evaluation.Chem. Cent. J.20181292116
    [Google Scholar]
  6. HayashiY. Time and pot economy in total synthesis.Acc. Chem. Res.20215461385139810.1021/acs.accounts.0c00803 33617234
    [Google Scholar]
  7. ZhaoW. ChenF.E. One-pot synthesis and its practical application in pharmaceutical industry.Curr. Org. Synth.20129687389710.2174/157017912803901619
    [Google Scholar]
  8. BurnsN.Z. BaranP.S. HoffmannR.W. Redox economy in organic synthesis.Angew. Chem. Int. Ed.200948162854286710.1002/anie.200806086 19294720
    [Google Scholar]
  9. TrostB.M. Atom economy a challenge for organic synthesis: homogeneous catalysis leads the way.Angew. Chem. Int. Ed. Engl.199534325928110.1002/anie.199502591
    [Google Scholar]
  10. QuilicoA. GazzM.F. Gold(III)-catalyzed one-pot synthesis of isoxazoles from terminal alkynes and nitric acid.Chim. Ital.193060172174
    [Google Scholar]
  11. YadavR.N. SrivastavaA.K. BanikB.K. One-pot strategy: A highly economical tool in organic synthesis and medicinal chemistry. Green App. in Med. Chem. for Sust.Drug Des.202012353425
    [Google Scholar]
  12. Van ParijsR. LambeinF. KuoY-H. Isoxazolin-5-ones, chemistry, and biology of a new class of plant products.Heterocycles19764356759310.3987/R‑1976‑03‑0567
    [Google Scholar]
  13. SagarP. VilasraoK. RameshB. SachinS.M. VijayP. Synthesis and evaluation of isoxazole for their antimicrobial activity.Int. J. Compre. Adv. Pharmacol.201721926
    [Google Scholar]
  14. MistryB.D. DesaiK.R. RanaP.B. Conventional and microwave induced synthesis of various pyrimidine and isoxazole derivatives were synthesized from 1-{4′-[(4”-methyl piperazinyl)diazenyl] phenyl}-3-(substituted phenyl)prop-2-en-1-one and studies of their antimicrobial activity.Indian J. Chem.201150627633
    [Google Scholar]
  15. ValizadehH. AmiriM. GholipurH. Efficient and convenient method for the synthesis of isoxazoles in ionic liquid.J. Heterocycl. Chem.200946110811010.1002/jhet.20
    [Google Scholar]
  16. KalchevaV. MinchevaZ. AndreevaP. Synthesis and in vitro activity of new cephalosporin derivatives containing a benzoxazolone ring.Arzneimittelforschung199040910301034 2080938
    [Google Scholar]
  17. IvanovaY.B. MomekovG.T. PetrovO.I. New heterocyclic chalcones. Part 6. Synthesis and cytotoxic activities of 5- or 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones.Heterocycl. Commun.2013191232810.1515/hc‑2012‑0081
    [Google Scholar]
  18. ErolD.D. RosenA. ErdoganH. YulugN. Synthesis of some new Mannich bases derived from 6-acyl-3-(3,5-dimethylpiperidinomethyl)-2(3H)-benzoxazolones+ ++ and their biological activities.Arzneimittelforschung1989398851853 2818673
    [Google Scholar]
  19. Brown-ProctorC. SnyderS.E. ShermanP.S. KilbournM.R. Synthesis and evaluation of 6-[11C]Methoxy-3-[2- [1-(phenylmethyl)-4-piperidinyl]ethyl]-1,2-benzisoxazole as an in vivo radioligand for acetylcholinesterase.Nucl. Med. Biol.19992619910310.1016/S0969‑8051(98)00078‑X 10096508
    [Google Scholar]
  20. BasappaM.K. SadashivaM.P. RangappaK.S. A simple and efficient method for the synthesis of 1,2-benzisoxazoles: a series of its potent acetylcholinesterase inhibitors.Indian J. Chem.20044319541957
    [Google Scholar]
  21. MuthukumarV.A. RamasamyS. YadavS.K. Synthesis, characterization and molecular docking studies of novel 2,5-disubstitutedthiadiazole and oxadiazole derivatives.J. Pharm. Res.20111246584660
    [Google Scholar]
  22. WeiC.X. GuanL.P. JiaJ.H. ChaiK.Y. QuanZ.S. Synthesis of 2-substituted-6-(4H-1,2,4-triazol-4-yl)benzo[d]oxazoles as potential anticonvulsant agents.Arch. Pharm. Res.2009321233110.1007/s12272‑009‑1114‑4 19183873
    [Google Scholar]
  23. El-AdlK. Design and synthesis of some novel 2-(5- methylbenzoxazol-2-ylsalfanyl)-N-(4-substitutedphenyl)acetamide derivatives with potential anticonvulsant activity.Az. J. Pharm. Sci.201144183204
    [Google Scholar]
  24. El-HelbyA.A. IbrahimM.K. Abdel-RahmanA.A. Synthesis, molecular modeling and anticonvulsant activity of benzoxazole derivatives.Med. Chem. Res.20152499114
    [Google Scholar]
  25. ShivaprasadC.M. JagadishS. SwaroopT.R. MohanC.D. RoopashreeR. KumarK.S.S. RangappaK.S. Synthesis of new benzisoxazole derivatives and their antimicrobial, antioxidant and anti-inflammatory activities.Eur. J. Chem.201451919510.5155/eurjchem.5.1.91‑95.866
    [Google Scholar]
  26. DavisL. EfflandR.C. KleinJ.T. DunnR.W. GeyerH.M.III PetkoW.W. 3-substituted-1,2-benzisoxazoles: novel antipsychotic agents.Drug Des. Discov.199283225240 1356026
    [Google Scholar]
  27. AnandM. SelvarajV. AlagarM. Synthesis, characterization and evaluation of antioxidant and anticancer activities of novel benzisoxazole-substituted-allyl derivatives.Korean J. Chem. Eng.201431465966310.1007/s11814‑013‑0252‑z
    [Google Scholar]
  28. UtoY. 1,2-Benzisoxazole compounds: a patent review (2009 – 2014).Expert Opin. Ther. Pat.201525664366210.1517/13543776.2015.1027192 25800253
    [Google Scholar]
  29. UtoY. 1 2-Benzisoxazole: a privileged structure with potential for polypharmacology.Curr. Pharm. Des.201622213201321110.2174/1381612822666160224142648 26907942
    [Google Scholar]
  30. PurohitS.S. VeerapurV.P. Benzisoxazole containing thiazolidinediones as peroxisome proliferator-activated receptor-γ agonists: design, molecular docking, synthesis & antidiabetic studies.Sch. Acad. J. Pharm.201432637
    [Google Scholar]
  31. GeorgeS. SreekumarK. Heterogeneous palladium (II)‐complexed dendronized polymer: A rare palladium catalyst for the one‐pot synthesis of 2‐arylbenzoxazoles.Appl. Organomet. Chem.2020352114
    [Google Scholar]
  32. LiuY. MaoD. LouS. QianJ. XuZ. Facile and efficient one-pot synthesis of 2-arylbenzoxazoles using hydrogen tetrachloroaurate as catalyst under oxygen atmosphere.J. Zhejiang Univ. Sci. B200910647247810.1631/jzus.B0820366 19489113
    [Google Scholar]
  33. RamineniS. KannasaniR.K. PeruriV.V.S. Efficient one-pot synthesis of benzoxazole derivatives catalyzed by Zinc triflate.Green Chem. Lett. Rev.201471858910.1080/17518253.2014.895862
    [Google Scholar]
  34. ChangW. SunY. HuangY. One‐pot green synthesis of benzoxazole derivatives through molecular sieve‐catalyzed oxidative cyclization reaction.Heteroatom Chem.2017282e2136010.1002/hc.21360
    [Google Scholar]
  35. PalermoM.G. Novel one-pot cyclization of ortho substituted benzonitriles to 3-amino-1,2-benzisoxazoles.Tetrahedron Lett.199637172885288610.1016/0040‑4039(96)00425‑X
    [Google Scholar]
  36. GongZ.Y. YangC.L. WangD. HuangL. DongZ.B. One-pot synthesis of benzoxazole/benzothiazole-substituted esters by michael addition: a selective construction of C-N/C-S bonds.Catalysts202313465810.3390/catal13040658
    [Google Scholar]
  37. PatelG. LambatT.L. BanerjeeS. Direct one-pot synthesis of imines/benzothiazoles/benzoxazoles from nitroarenes via sequential hydrogenation-condensation using Nano-NiFe2O4 as catalyst under microwave irradiation.Curr. Res. Green Sust. Chem20214100149
    [Google Scholar]
  38. KiranF. SuryakantB. Sapkal, Nana, V.; Shitole.; Bapurao, B.; Murlidhar, S. S, Microwave-assisted synthesis of 1,2-benzisoxazole derivatives in ionic liquid.Org. Commun.2009237278
    [Google Scholar]
  39. UmamaheswariJ. RamanathanP. NadarajV. Efficient antimicrobial activities of microwave-assisted synthesis of benzisoxazole derivatives.Orient. J. Chem.202036341041410.13005/ojc/360307
    [Google Scholar]
  40. WiȩcławM. BobinM. KwastA. BujokR. WróbelZ. WojciechowskiK. General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C–H acids in aprotic media promoted by combination of strong bases and silylating agents.Mol. Divers.201519480781610.1007/s11030‑015‑9627‑x 26260266
    [Google Scholar]
  41. ChenG. LiuH. LiS. TangY. LuP. XuK. ZhangY. A novel PPh3 mediated one-pot method for synthesis of 3-aryl or alkyl 1,2-benzisoxazoles.Org. Lett.20171971792179510.1021/acs.orglett.7b00563 28357871
    [Google Scholar]
  42. SpiteriC. SharmaP. ZhangF. MacdonaldS.J.F. KeelingS. MosesJ.E. An improved synthesis of 1,2-benzisoxazoles: TBAF mediated 1,3-dipolar cycloaddition of nitrile oxides and benzyne.Chem. Commun. (Camb.)20104681272127410.1039/b922489k 20449274
    [Google Scholar]
  43. LeeJ.J. KimJ. JunY.M. LeeB.M. KimB.H. Indium-mediated one-pot synthesis of benzoxazoles or oxazoles from 2-nitrophenols or 1-aryl-2-nitroethanones.Tetrahedron200965438821883110.1016/j.tet.2009.08.059
    [Google Scholar]
  44. AlterN. StephanieL. StefanH. Microwave-assisted one-pot synthesis of 2-substituted benzoxazoles from 2-aminophenol and carboxylic acids.Res. Chem2022422117156
    [Google Scholar]
  45. HosseinN. ZahraR. Soraya, Sonocatalyzed facile synthesis of 2-aryl benzoxazoles using MnO2 nanoparticles as oxidant agent under mild conditions.Synth. Commun.20172220872095
    [Google Scholar]
  46. TianQ. WenL. YuanJ. Eco-friendly synthesis of 2-substituted benzoxazoles and 2-substituted benzothiazoles from 2-aminophenols, 2-aminothiophenols and DMF derivatives in the presence of imidazolium chloride.Molecules2019174212
    [Google Scholar]
  47. LiuM. ZengM.T. XuW. WuL. DongZ-B. Selective synthesis of 2-aminobenzoxazoles and 2-mercaptobenzoxazoles by using o-aminophenols as starting material.Tetrahedron Lett.201758464352435610.1016/j.tetlet.2017.09.092
    [Google Scholar]
  48. OtleyK.D. EllmanJ.A. A Lewis Acid Catalyzed Annulation to 2,1-Benzisoxazoles.J. Org. Chem.201479178296830310.1021/jo5015432 25157596
    [Google Scholar]
  49. StewartG.W. BaxterC.A. CleatorE. SheenF.J. A mild and efficient one-pot synthesis of 2-aminated benzoxazoles and benzothiazoles.J. Org. Chem.20097483229323110.1021/jo900308t 19317430
    [Google Scholar]
  50. AvneetK. Sharad, Wakode, D.P.P, Benzoxazole: the molecule of diverse pharmacological importance.Int. J. Pharma Sci.2015711623
    [Google Scholar]
  51. SiddiquiN. SarafrozM. AlamM.M. AhsanW. Synthesis, anticonvulsant and neurotoxicity evaluation of 5-carbomethoxybenzoxazole derivatives.Acta Pol. Pharm.2008654449455 19051586
    [Google Scholar]
  52. AmpatiS. VidyasagarJ.V. SwathiK. SarangapaniM. Synthesis and in vitro evaluation of novel benzoxazole derivatives as specific cyclooxygenase–2 inhibitors.J. Chem. Pharm. Res.201022213219
    [Google Scholar]
  53. SrinivasA. SagarJ.V. SarangapaniM. Design, synthesis and biological evaluation of benzoxazole derivatives as cyclooxygensase-2 inhibitors.Int. J. Pharma Sci.201021712
    [Google Scholar]
  54. SenerE. YalçinI. TemizO. OrenI. AkinA. UçartürkN. Synthesis and structure-activity relationships of some 2,5-disubstituted benzoxazoles and benzimidazoles as antimicrobial agents.Farmaco199752299103 9181690
    [Google Scholar]
  55. ErtanT. YildizI. Tekiner-GulbasB. BolelliK. Temiz-ArpaciO. OzkanS. KaynakF. YalcinI. AkiE. Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents.Eur. J. Med. Chem.200944250151010.1016/j.ejmech.2008.04.001 18524419
    [Google Scholar]
  56. Turan-ZitouniG. DemirayakŞ. ÖzdemirA. KaplancıklıZ.A. YıldızM.T. Synthesis of some 2-[(benzazole-2-yl)thioacetylamino]thiazole derivatives and their antimicrobial activity and toxicity.Eur. J. Med. Chem.200439326727210.1016/j.ejmech.2003.11.001 15051175
    [Google Scholar]
  57. KimB.J. KimJ.A. KimY.K. ChoiS.Y. ParkChoo, H-Y. Synthesis of benzoxazole amides as novel antifungal agents against. Malassezia furfur.Bull. Korean Chem. Soc.20103151270127410.5012/bkcs.2010.31.5.1270
    [Google Scholar]
  58. RamalinganC. BalasubramanianS. KabilanS. VasudevanM. Synthesis and study of antibacterial and antifungal activities of novel 1-[2-(benzoxazol-2-yl)ethoxy]- 2,6-diarylpiperidin-4-ones.Eur. J. Med. Chem.200439652753310.1016/j.ejmech.2004.02.005 15183911
    [Google Scholar]
  59. SmithC.J. AliC.L. HammondaM.L. AndersonM.S. 2-Arylbenzoxazoles as CETP inhibitors: substitution of the benzoxazole moiety.Bioorg. Med. Chem. Lett.201020346349
    [Google Scholar]
  60. HuntJ.A. GonzalezS. KallashiF. HammondM.L. PivnichnyJ.V. TongX. XuS.S. AndersonM.S. ChenY. EvelandS.S. GuoQ. HylandS.A. MilotD.P. SparrowC.P. WrightS.D. SinclairP.J. 2-Arylbenzoxazoles as CETP inhibitors: Substitution and modification of the α-alkoxyamide moiety.Bioorg. Med. Chem. Lett.20102031019102210.1016/j.bmcl.2009.12.046 20036121
    [Google Scholar]
  61. KamalA. ReddyK.S. KhanM.N.A. ShettiR.V.C.R.N.C. RamaiahM.J. PushpavalliS.N.C.V.L. SrinivasC. Pal-BhadraM. ChourasiaM. SastryG.N. JuvekarA. ZingdeS. BarkumeM. Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole–pyrrolo[2,1-c][1,4]benzodiazepine conjugates.Bioorg. Med. Chem.201018134747476110.1016/j.bmc.2010.05.007 20627593
    [Google Scholar]
  62. MurtyM.S.R. RamK.R. RaoR.V. YadavJ.S. RaoJ.V. CheriyanV.T. AntoR.J. Synthesis and preliminary evaluation of 2-substituted-1,3-benzoxazole and 3-[(3-substituted)propyl]-1,3-benzoxazol-2(3H)-one derivatives as potent anticancer agents.Med. Chem. Res.201120557658610.1007/s00044‑010‑9353‑y
    [Google Scholar]
  63. PujarG.V. SyneshC. PurohitM.N. SrinivasaluN. UdupiR.H. Synthesis, anticonvulsant and antibacterial activities of some novel pyrrolines derived from benzaxazole and benzimidazoles.Ind. J. Hetero. Chem.200817387388
    [Google Scholar]
  64. SondhiS.M. SinghN. KumarA. LozachO. MeijerL. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases.Bioorg. Med. Chem.200614113758376510.1016/j.bmc.2006.01.054 16480879
    [Google Scholar]
  65. FanL. LuoZ. YangC. GuoB. MiaoJ. ChenY. TangL. LiY. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi.Mol. Divers.202226298199210.1007/s11030‑021‑10213‑7 33811571
    [Google Scholar]
  66. MedebielleM. Ait-MohandS. BurkhloderC. DolbierW.R.Jr LaumondG. AubertinA-M. Syntheses of new difluoromethylene benzoxazole and 1,2,4-oxadiazole derivatives, as potent non-nucleoside HIV-1 reverse transcriptase inhibitors.J. Fluor. Chem.2005126453354010.1016/j.jfluchem.2004.12.016
    [Google Scholar]
  67. DeepikaD. AnandaK. BasappaB. ZhangX. Synthesis, computational studies and evaluation of benzisoxazole tethered 1,2,4-triazoles as anticancer and antimicrobial agents.J. Mol. Str.20241308222860
    [Google Scholar]
  68. KöksalM. GökhanN. KüpeliE. YesiladaE. ErdoganH. Analgesic and antiinflammatory activities of some new mannich bases of 5-nitro-2-benzoxazolinones.Arch. Pharm. Res.200730441942410.1007/BF02980214 17489356
    [Google Scholar]
  69. QiuR. LuoG. LiX. ZhengF. LiH. ZhangJ. YouQ. XiangH. Lipid accumulation inhibitory activities of novel isoxazole-based chenodeoxycholic acids: Design, synthesis and preliminary mechanism study.Bioorg. Med. Chem. Lett.201828172879288410.1016/j.bmcl.2018.07.026 30031618
    [Google Scholar]
  70. MokaleS.N. NevaseM.C. SakleN.S. DubeP.N. ShelkeV.R. BhavaleS.A. BegumA. Synthesis and in-vivo hypolipidemic activity of some novel substituted phenyl isoxazol phenoxy acetic acid derivatives.Bioorg. Med. Chem. Lett.20142492155215810.1016/j.bmcl.2014.03.030 24703232
    [Google Scholar]
  71. KovácsF. AdameczD.I. NagyF.I. PappB. KiricsiM. FrankÉ. Substitutional diversity-oriented synthesis and in vitro anticancer activity of framework-integrated estradiol-benzisoxazole.Molecules20222721745610.3390/molecules27217456 36364293
    [Google Scholar]
  72. GajananR.N. KondapalliV. SekharG.C. Design, synthesis and biological evaluation of 5-(2-(4-(substituted benzo [d] isoxazol-3-yl) piperazin-1-yl)acetyl) Indolin-2-one and 5-(2-(4-substitutedpiperazin-1-yl)acetyl)indolin-2-one analogues as novel anti-tubercular agents.Arab. J. Chem.2015258785352
    [Google Scholar]
  73. ChenY. LanY. CaoX. XuX. ZhangJ. YuM. LiuX. LiuB-F. ZhangG. Synthesis and evaluation of amide, sulfonamide and urea – benzisoxazole derivatives as potential atypical antipsychotics.MedChemComm20156583183810.1039/C4MD00578C
    [Google Scholar]
  74. YoussefM.A. SherifS.M.A. ElkadyA.M.A. HamoudaS.E.S. Synthesis of some new benzoxazole acetonitrile derivatives and evaluation of their herbicidal efficiency.J. Am. Sci.201012610801089
    [Google Scholar]
/content/journals/mc/10.2174/0115734064326002240912102121
Loading
/content/journals/mc/10.2174/0115734064326002240912102121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test