Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Monkeypox, a viral zoonotic disease akin to smallpox, has posed significant public health challenges, particularly in Africa. Recent outbreaks, including those in India, underscore the global threat it poses.

Objective

In this study, we explore a novel approach to combat monkeypox virus (MPXV) infection by targeting its surface proteins, crucial for viral entry and fusion.

Methods

Employing advanced computational techniques, we predict and refine the 3D structures of MPXV surface proteins and human antimicrobial peptides (hAMPs), specifically Histatin 1, 3, and their cleaved product, Histatin 5 (HIS 5). Further, molecular docking was carried out for MPXV surface proteins with hAMP HIS using HDOCK and Cluspro 2.0. Protein-peptide interactions were analyzed using PdbSum. Finally, the physicochemical properties of HIS peptides were determined using CamSol.

Results

Our findings suggest HIS 5 as a potential therapeutic peptide against MPXV, warranting further investigation through and studies.

Conclusion

This study sheds light on the efficacy of the HIS family in targeting MPXV and advocates for continued exploration of HIS 5's antiviral effects.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064312418240614104220
2024-09-20
2025-04-19
Loading full text...

Full text loading...

References

  1. UpadhayayS. ArthurR. SoniD. YadavP. NavikU. SinghR. Gurjeet SinghT. KumarP. Monkeypox infection: The past, present, and future.Int. Immunopharmacol.2022113Pt A10938210.1016/j.intimp.2022.109382 36330915
    [Google Scholar]
  2. TrovatoM. SartoriusR. D’ApiceL. MancoR. De BerardinisP. Viral emerging diseases: Challenges in developing vaccination strategies.Front. Immunol.202011213010.3389/fimmu.2020.02130 33013898
    [Google Scholar]
  3. SinghalT. KabraS.K. LodhaR. Monkeypox: A review.Indian J. Pediatr.2022891095596010.1007/s12098‑022‑04348‑0 35947269
    [Google Scholar]
  4. KhodakevichL. JezekZ. KinzanzkaK. Isolation of monkeypox virus from wild squirrel infected in nature.Lancet19863278472989910.1016/S0140‑6736(86)90748‑8 2867342
    [Google Scholar]
  5. RadonićA. MetzgerS. DabrowskiP.W. Couacy-HymannE. SchuenadelL. KurthA. Mätz-RensingK. BoeschC. LeendertzF.H. NitscheA. Fatal monkeypox in wild-living sooty mangabey, Côte d’Ivoire, 2012.Emerg. Infect. Dis.20142061009101110.3201/eid2006.131329 24857667
    [Google Scholar]
  6. AlakunleE. MoensU. NchindaG. OkekeM.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution.Viruses20201211125710.3390/v12111257 33167496
    [Google Scholar]
  7. BrownK. LeggatP. Human monkeypox: Current state of knowledge and implications for the future.Trop. Med. Infect. Dis.201611810.3390/tropicalmed1010008 30270859
    [Google Scholar]
  8. JezekZ. SzczeniowskiM. PalukuK.M. MutomboM. Human monkeypox: Clinical features of 282 patients.J. Infect. Dis.1987156229329810.1093/infdis/156.2.293 3036967
    [Google Scholar]
  9. SaravananM. BeleteM.A. MadhavanY. Monkeypox virus outbreaks in the African continent: A new zoonotic alert – Correspondence.Int. J. Surg.202210810699810.1016/j.ijsu.2022.106998 36368418
    [Google Scholar]
  10. VaughanA. AaronsE. AstburyJ. BalasegaramS. BeadsworthM. BeckC.R. ChandM. O’ConnorC. DunningJ. GhebrehewetS. HarperN. Howlett-ShipleyR. IhekweazuC. JacobsM. KaindamaL. KatwaP. KhooS. LambL. MawdsleyS. MorganD. PalmerR. PhinN. RussellK. SaidB. SimpsonA. VivancosR. WadeM. WalshA. WilburnJ. Two cases of monkeypox imported to the United Kingdom, September 2018.Euro Surveill.201823382310.2807/1560‑7917.ES.2018.23.38.1800509 30255836
    [Google Scholar]
  11. ErezN. AchdoutH. MilrotE. SchwartzY. Wiener-WellY. ParanN. PolitiB. TamirH. IsraelyT. WeissS. Beth-DinA. ShifmanO. IsraeliO. YitzhakiS. ShapiraS.C. MelamedS. SchwartzE. Diagnosis of imported monkeypox, Israel, 2018.Emerg. Infect. Dis.201925598098310.3201/eid2505.190076 30848724
    [Google Scholar]
  12. YongS.E.F. NgO.T. HoZ.J.M. MakT.M. MarimuthuK. VasooS. YeoT.W. NgY.K. CuiL. FerdousZ. ChiaP.Y. AwB.J.W. ManauisC.M. LowC.K.K. ChanG. PehX. LimP.L. ChowL.P.A. ChanM. LeeV.J.M. LinR.T.P. HengM.K.D. LeoY.S. Imported monkeypox, Singapore.Emerg. Infect. Dis.20202681826183010.3201/eid2608.191387 32338590
    [Google Scholar]
  13. RimoinA.W. MulembakaniP.M. JohnstonS.C. Lloyd SmithJ.O. KisaluN.K. KinkelaT.L. BlumbergS. ThomassenH.A. PikeB.L. FairJ.N. WolfeN.D. ShongoR.L. GrahamB.S. FormentyP. OkitolondaE. HensleyL.E. MeyerH. WrightL.L. MuyembeJ.J. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo.Proc. Natl. Acad. Sci. USA201010737162621626710.1073/pnas.1005769107 20805472
    [Google Scholar]
  14. PetersenB.W. KabambaJ. McCollumA.M. LushimaR.S. WemakoyE.O. Muyembe TamfumJ.J. NgueteB. HughesC.M. MonroeB.P. ReynoldsM.G. Vaccinating against monkeypox in the Democratic Republic of the Congo.Antiviral Res.201916217117710.1016/j.antiviral.2018.11.004 30445121
    [Google Scholar]
  15. HaiderN. GuitianJ. SimonsD. AsogunD. AnsumanaR. HoneyborneI. VelavanT.P. NtoumiF. ValdoleirosS.R. PetersenE. KockR. ZumlaA. Increased outbreaks of monkeypox highlight gaps in actual disease burden in Sub-Saharan Africa and in animal reservoirs.Int. J. Infect. Dis.202212210711110.1016/j.ijid.2022.05.058 35640830
    [Google Scholar]
  16. KhodakevichL. SzczeniowskiM. Nambu-ma-Disu; Jezek, Z.; Marennikova, S.; Nakano, J.; Meier, F. Monkeypox virus in relation to the ecological features surrounding human settlements in Bumba zone.Zaire. Trop. Geogr. Med.19873915663 3037740
    [Google Scholar]
  17. ZacharyK.C. ShenoyE.S. Monkeypox transmission following exposure in healthcare facilities in nonendemic settings: Low risk but limited literature.Infect. Control Hosp. Epidemiol.202243792092410.1017/ice.2022.152 35676244
    [Google Scholar]
  18. SallamM. Al-MahzoumK. DardasL.A. Al-TammemiA.B. Al-MajaliL. Al-NaimatH. JardanehL. AlHadidiF. Al-SalahatK. Al-AjlouniE. AlHadidiN.M. BakriF.G. MahafzahA. HarapanH. Knowledge of human monkeypox and its relation to conspiracy beliefs among students in Jordanian Health Schools: Filling the knowledge gap on emerging zoonotic viruses.Medicina202258792410.3390/medicina58070924 35888642
    [Google Scholar]
  19. AlshahraniN.Z. AlzahraniF. AlarifiA.M. AlgethamiM.R. AlhumamM.N. AyiedH.A.M. AwanA.Z. AlmutairiA.F. BamakhramaS.A. AlmushariB.S. SahR. Assessment of knowledge of monkeypox viral infection among the general population in Saudi Arabia.Pathogens202211890410.3390/pathogens11080904 36015025
    [Google Scholar]
  20. SklenovskáN. Van RanstM. Emergence of monkeypox as the most important orthopoxvirus infection in humans.Front. Public Health2018624110.3389/fpubh.2018.00241 30234087
    [Google Scholar]
  21. WangJ. LongS. LiuZ. RakeshK.P. VermaR. VermaS.K. Sharath KumarK.S. Structure-activity relationship studies of thiazole agents with potential anti methicillin-resistance Staphylococcus aureus (MRSA) activity.Process Biochem.2023132132910.1016/j.procbio.2023.06.013
    [Google Scholar]
  22. RakeshK.P. RameshS. Effect of low charge and high hydrophobicity on antimicrobial activity of the quinazolinone-peptide conjugates.Russ. J. Bioorganic Chem.20184415816410.1134/S1068162018020036
    [Google Scholar]
  23. VermaR. VermaS.K. VermaS. VaishnavY. BanjareL. YadavR. SridharaM.B. RakeshK.P. Sharath KumarK.S. Azole and chlorine: An effective combination in battle against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR studies.J. Mol. Struct.2024130013728310.1016/j.molstruc.2023.137283
    [Google Scholar]
  24. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial peptides: An emerging category of therapeutic agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.00194 28083516
    [Google Scholar]
  25. KhurshidZ. NajeebS. MaliM. MoinS.F. RazaS.Q. ZohaibS. SefatF. ZafarM.S. Histatin peptides: Pharmacological functions and their applications in dentistry.Saudi Pharm. J.2017251253110.1016/j.jsps.2016.04.027 28223859
    [Google Scholar]
  26. LuccheseA. GuidaA. PetruzziM. CaponeG. LainoL. SerpicoR. Peptides in oral diseases.Curr. Pharm. Des.201218678278810.2174/138161212799277842 22236124
    [Google Scholar]
  27. ShahD. SonK.N. KalmodiaS. LeeB.S. AliM. BalasubramaniamA. ShuklaD. AakaluV.K. Wound Healing properties of histatin-5 and identification of a functional domain required for histatin-5-induced cell migration.Mol. Ther. Methods Clin. Dev.20201770971610.1016/j.omtm.2020.03.027 32346548
    [Google Scholar]
  28. PanL. ZhangX. GaoQ. Effects and mechanisms of histatins as novel skin wound-healing agents.J. Tissue Viability202130219019510.1016/j.jtv.2021.01.005 33551241
    [Google Scholar]
  29. OmasitsU. AhrensC.H. MüllerS. WollscheidB. Protter: Interactive protein feature visualization and integration with experimental proteomic data.Bioinformatics201430688488610.1093/bioinformatics/btt607 24162465
    [Google Scholar]
  30. DuZ. SuH. WangW. YeL. WeiH. PengZ. AnishchenkoI. BakerD. YangJ. The trRosetta server for fast and accurate protein structure prediction.Nat. Protoc.202116125634565110.1038/s41596‑021‑00628‑9 34759384
    [Google Scholar]
  31. HeoL. ParkH. SeokC. GalaxyRefine: Protein structure refinement driven by side-chain repacking.Nucleic Acids Res.201341W1W384W38810.1093/nar/gkt458 23737448
    [Google Scholar]
  32. LeeG.R. WonJ. HeoL. SeokC. GalaxyRefine2: Simultaneous refinement of inaccurate local regions and overall protein structure.Nucleic Acids Res.201947W1W451W45510.1093/nar/gkz288 31001635
    [Google Scholar]
  33. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.5560020916 8401235
    [Google Scholar]
  34. PontiusJ. RichelleJ. WodakS.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures.J. Mol. Biol.1996264112113610.1006/jmbi.1996.0628 8950272
    [Google Scholar]
  35. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a0 1538787
    [Google Scholar]
  36. HooftR.W.W. VriendG. SanderC. AbolaE.E. Errors in protein structures.Nature1996381658027210.1038/381272a0 8692262
    [Google Scholar]
  37. NeneT. YadavM. YadavH.S. Plant catalase in silico characterization and phylogenetic analysis with structural modeling.J. Genet. Eng. Biotechnol.202220112510.1186/s43141‑022‑00404‑6 35984536
    [Google Scholar]
  38. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  39. BlaszczykM. KurcinskiM. KouzaM. WieteskaL. DebinskiA. KolinskiA. KmiecikS. Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking.Methods201693728310.1016/j.ymeth.2015.07.004 26165956
    [Google Scholar]
  40. DestaI.T. PorterK.A. XiaB. KozakovD. VajdaS. Performance and its limits in rigid body protein-protein docking.Structure202028910711081.e310.1016/j.str.2020.06.006 32649857
    [Google Scholar]
  41. LaskowskiR.A. Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature.Bioinformatics200723141824182710.1093/bioinformatics/btm085 17384425
    [Google Scholar]
  42. ClementelD. Del ConteA. MonzonA.M. CamagniG.F. MinerviniG. PiovesanD. TosattoS.C.E. RING 3.0: Fast generation of probabilistic residue interaction networks from structural ensembles.Nucleic Acids Res.202250W1W651W65610.1093/nar/gkac365 35554554
    [Google Scholar]
  43. SormanniP. AprileF.A. VendruscoloM. The CamSol method of rational design of protein mutants with enhanced solubility.J. Mol. Biol.2015427247849010.1016/j.jmb.2014.09.026 25451785
    [Google Scholar]
  44. de OliveiraE.C.L. SantanaK. JosinoL. Lima e LimaA.H. de Souza de Sales JúniorC. Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space.Sci. Rep.2021111762810.1038/s41598‑021‑87134‑w 33828175
    [Google Scholar]
  45. BachmairA. FinleyD. VarshavskyA. In vivo half-life of a protein is a function of its amino-terminal residue.Science1986234477317918610.1126/science.3018930
    [Google Scholar]
  46. MortuzaS.M. ZhengW. ZhangC. LiY. PearceR. ZhangY. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions.Nat. Commun.2021121501110.1038/s41467‑021‑25316‑w 34408149
    [Google Scholar]
  47. MiahM.M. TabassumN. Afroj ZinniaM. IslamA.B.M.M.K. Drug and anti-viral peptide design to inhibit the monkeypox virus by restricting A36R protein.Bioinform. Biol. Insights20221610.1177/11779322221141164 36570327
    [Google Scholar]
  48. OlechnovičK. MonastyrskyyB. KryshtafovychA. VenclovasČ. Comparative analysis of methods for evaluation of protein models against native structures.Bioinformatics201935693794410.1093/bioinformatics/bty760 30169622
    [Google Scholar]
  49. IkonomovaS.P. Moghaddam-TaaheriP. WangY. DoolinM.T. StrokaK.M. HubeB. KarlssonA.J. Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis.Protein Sci.202029248049310.1002/pro.3767 31675138
    [Google Scholar]
  50. OellerM. KangR. BellR. AusserwögerH. SormanniP. VendruscoloM. Sequence-based prediction of pH-dependent protein solubility using CamSol.Brief. Bioinform.2023242bbad00410.1093/bib/bbad004 36719110
    [Google Scholar]
  51. PirtskhalavaM. VishnepolskyB. GrigolavaM. ManagadzeG. Physicochemical features and peculiarities of interaction of AMP with the membrane.Pharmaceuticals202114547110.3390/ph14050471 34067510
    [Google Scholar]
  52. ZolinG.V.S. FonsecaF.H. ZambomC.R. GarridoS.S. Histatin 5 metallopeptides and their potential against Candida albicans pathogenicity and drug resistance.Biomolecules2021118120910.3390/biom11081209 34439875
    [Google Scholar]
  53. KmiecD. KirchhoffF. Monkeypox: A new threat?Int. J. Mol. Sci.20222314786610.3390/ijms23147866 35887214
    [Google Scholar]
  54. McCarthyM.W. Therapeutic strategies to address monkeypox.Expert Rev. Anti Infect. Ther.202220101249125210.1080/14787210.2022.2113058 35953443
    [Google Scholar]
  55. ChakrabortyC. BhattacharyaM. Ranjan SharmaA. DhamaK. Monkeypox virus vaccine evolution and global preparedness for vaccination.Int. Immunopharmacol.2022113Pt A10934610.1016/j.intimp.2022.109346 36274490
    [Google Scholar]
  56. MossB. Membrane fusion during poxvirus entry.Semin. Cell Dev. Biol.201660899610.1016/j.semcdb.2016.07.015 27423915
    [Google Scholar]
  57. LinS. YueD. YangF. ChenZ. HeB. CaoY. DongH. LiJ. ZhaoQ. LuG. Crystal structure of vaccinia virus G3/L5 sub-complex reveals a novel fold with extended inter-molecule interactions conserved among orthopoxviruses.Emerg. Microbes Infect.2023121e216066110.1080/22221751.2022.2160661 36533407
    [Google Scholar]
  58. KavanaghK. DowdS. Histatins: Antimicrobial peptides with therapeutic potential.J. Pharm. Pharmacol.201056328528910.1211/0022357022971 15025852
    [Google Scholar]
  59. OppenheimF.G. XuT. McMillianF.M. LevitzS.M. DiamondR.D. OffnerG.D. TroxlerR.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans.J. Biol. Chem.1988263167472747710.1016/S0021‑9258(18)68522‑9 3286634
    [Google Scholar]
  60. BlotnickE. SolA. BachrachG. MuhlradA. Interactions of histatin-3 and histatin-5 with actin.BMC Biochem.2017181310.1186/s12858‑017‑0078‑0 28264651
    [Google Scholar]
/content/journals/mc/10.2174/0115734064312418240614104220
Loading
/content/journals/mc/10.2174/0115734064312418240614104220
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test