Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4064
  • E-ISSN:

Abstract

Background

Cytosolic phospholipase A (cPLA) is the key enzyme that initiates the arachidonic acid cascade through which pro-inflammatory lipid mediators can be formed. Therefore, cPLA is considered an interesting target for the development of anti-inflammatory drugs. Although several effective inhibitors of the enzyme have been developed, none of them has yet reached clinical application.

Objective

Recently, we have prepared new 4-sulfamoylbenzoic acid derivatives based on a cPLA inhibitor found in a ligand-based virtual screening. The most effective of these compounds were now subjected to further variations in which the substitution pattern on the sulfamoyl nitrogen atom was changed.

Methods

The new compounds were tested in a vesicle assay for cPLA inhibition as well as for their water solubility, metabolic stability, and selectivity towards related enzymes. In addition, they were evaluated in a whole blood assay in which metabolites of the arachidonic acid cascade formed after activation of cPLA were quantified using a combined online dilution/online solid phase extraction HPLC-MS method.

Results

Inhibitors with submicromolar inhibitory potency were found with favourable water solubility and selectivity. However, their efficacy did not match that of the highly effective, known, structurally related cPLAα inhibitor giripladib, which was also tested as a reference. One advantage of some of the new compounds compared to giripladib was their significantly improved water solubility. When analyzing the substances in the whole blood assay, it was found that the obtained inhibition data correlated better with the results when the phorbol ester 12--tetradecanoylphorbol-13-acetate was used for activation of the enzyme in the blood cells instead of the calcium ionophore A23187.

Conclusion

New compounds with good activity towards cPLA and reasonable physicochemical properties were identified. Overall, the results obtained could be helpful in the development of clinically applicable inhibitors of this enzyme.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064320241240709114041
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. LeeC.W. LinC.C. LeeI.T. LeeH.C. YangC.M. Activation and induction of cytosolic phospholipase A2 by TNF‐α mediated through Nox2, MAPKs, NF‐κB, and p300 in human tracheal smooth muscle cells.J. Cell. Physiol.201122682103211410.1002/jcp.22537 21520062
    [Google Scholar]
  2. LeeC.W. LeeI.T. LinC.C. LeeH.C. LinW.N. YangC.M. Activation and induction of cytosolic phospholipase A2 by IL‐1β in human tracheal smooth muscle cells: Role of MAPKs/p300 and NF‐κB.J. Cell. Biochem.201010951045105610.1002/jcb.22488 20069553
    [Google Scholar]
  3. NewtonR. KuitertL.M. SlaterD.M. AdcockI.M. BarnesP.J. Cytokine induction of cytosolic phospholipase A2 and cyclooxygenase-2 mRNA is suppressed by glucocorticoids in human epithelial cells.Life Sci.1996601677810.1016/S0024‑3205(96)00590‑5 8995534
    [Google Scholar]
  4. ClarkJ.D. LinL.L. KrizR.W. RameshaC.S. SultzmanL.A. LinA.Y. MilonaN. KnopfJ.L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP.Cell19916561043105110.1016/0092‑8674(91)90556‑E 1904318
    [Google Scholar]
  5. DessenA. Structure and mechanism of human cytosolic phospholipase A2.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200014881-2404710.1016/S1388‑1981(00)00108‑6 11080675
    [Google Scholar]
  6. ShimizuT. WolfeL.S. Arachidonic acid cascade and signal transduction.J. Neurochem.199055111510.1111/j.1471‑4159.1990.tb08813.x 2113081
    [Google Scholar]
  7. RicciottiE. FitzGeraldG.A. Prostaglandins and inflammation.Arterioscler. Thromb. Vasc. Biol.2011315986100010.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  8. YokomizoT. IzumiT. ShimizuT. Leukotriene B4: Metabolism and signal transduction.Arch. Biochem. Biophys.2001385223124110.1006/abbi.2000.2168 11368003
    [Google Scholar]
  9. WahidH.H. AnaharF.N. IsahakN.H. ZoharodziJ.M. Lina Mohammad KhoiriS.N. Mohamad ZainalN.H. KamarudinN. IsmailH. Al-Deen Mustafa MahmudM.I. Role of platelet activating factor as a mediator of inflammatory diseases and preterm delivery.Am. J. Pathol.2024194686287810.1016/j.ajpath.2024.01.018
    [Google Scholar]
  10. UozumiN. KumeK. NagaseT. NakataniN. IshiiS. TashiroF. KomagataY. MakiK. IkutaK. OuchiY. MiyazakiJ. ShimizuT. Role of cytosolic phospholipase A2 in allergic response and parturition.Nature1997390666061862210.1038/37622 9403692
    [Google Scholar]
  11. BonventreJ.V. HuangZ. TaheriM.R. O’LearyE. LiE. MoskowitzM.A. SapirsteinA. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2.Nature1997390666062262510.1038/37635 9403693
    [Google Scholar]
  12. HegenM. SunL. UozumiN. KumeK. GoadM.E. Nickerson-NutterC.L. ShimizuT. ClarkJ.D. Cytosolic phospholipase A2α-deficient mice are resistant to collagen-induced arthritis.J. Exp. Med.2003197101297130210.1084/jem.20030016 12743172
    [Google Scholar]
  13. GhoshM. TuckerD. BurchettS. LeslieC. Properties of the group IV phospholipase A2 family.Prog. Lipid Res.200645648751010.1016/j.plipres.2006.05.003 16814865
    [Google Scholar]
  14. NiknamiM. PatelM. WittingP.K. DongQ. Molecules in focus: Cytosolic phospholipase A2-α.Int. J. Biochem. Cell Biol.200941599499710.1016/j.biocel.2008.07.017 18761105
    [Google Scholar]
  15. LinkousA. YazlovitskayaE. Cytosolic phospholipase A2 as a mediator of disease pathogenesis.Cell. Microbiol.201012101369137710.1111/j.1462‑5822.2010.01505.x 20642808
    [Google Scholar]
  16. LeslieC.C. Cytosolic phospholipase A2: physiological function and role in disease.J. Lipid Res.20155681386140210.1194/jlr.R057588 25838312
    [Google Scholar]
  17. KitaY. ShindouH. ShimizuT. Cytosolic phospholipase A2 and lysophospholipid acyltransferases.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864683884510.1016/j.bbalip.2018.08.006 30905348
    [Google Scholar]
  18. LehrM. Inhibitors of cytosolic phospholipase A2α as potential anti-inflammatory drugs.Antiinflamm. Antiallergy Agents Med. Chem.20065214916110.2174/187152306776872488
    [Google Scholar]
  19. SoubhyeJ. van AntwerpenP. DufrasneF. Targeting cytosolic phospholipase A2α for novel anti-inflammatory agents.Curr. Med. Chem.201825212418244710.2174/0929867325666180117103919 29345571
    [Google Scholar]
  20. BatsikaC.S. GerogiannopoulouA.D.D. MantzouraniC. VasilakakiS. KokotosG. The design and discovery of phospholipase A2 inhibitors for the treatment of inflammatory diseases.Expert Opin. Drug Discov.202116111287130510.1080/17460441.2021.1942835 34143707
    [Google Scholar]
  21. McKewJ.C. FoleyM.A. ThakkerP. BehnkeM.L. LoveringF.E. SumF.W. TamS. WuK. ShenM.W.H. ZhangW. GonzalezM. LiuS. MahadevanA. SardH. KhorS.P. ClarkJ.D. Inhibition of cytosolic phospholipase A2α: hit to lead optimization.J. Med. Chem.200649113515810.1021/jm0507882 16392799
    [Google Scholar]
  22. McKewJ.C. LeeK.L. ShenM.W. ThakkerP. FoleyM.A. BehnkeM.L. HuB. SumF.W. TamS. HuY. ChenL. KirincichS.J. MichalakR. ThomasonJ. IpekM. WuK. WooderL. RamaraoM.K. MurphyE.A. GoodwinD.G. AlbertL. XuX. DonahueF. KuM.S. KeithJ. Nickerson-NutterC.L. AbrahamW.M. WilliamsC. HegenM. ClarkJ.D. Indole cytosolic Phospholipase A2 a inhibitors: Discovery and in vitro and in vivo characterization of 4-{3-[5-chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1H-indol-3-yl]propyl}benzoic acid, efipladib.J. Med. Chem.200851123388341310.1021/jm701467e 18498150
    [Google Scholar]
  23. McKewJ. C. LeeK. L. ChenL. VargasR. ClarkJ. D. WilliamsC. ClerinV. MarusicS. PongK. Inhibitors of cytosolic phospholipase.WO2006/128142A22006
  24. TomooT. NakatsukaT. KatayamaT. HayashiY. FujiedaY. TerakawaM. NagahiraK. Design, synthesis, and biological evaluation of 3-(1-Aryl-1H-indol-5-yl)propanoic acids as new indole-based cytosolic phospholipase A2α inhibitors.J. Med. Chem.201457177244726210.1021/jm500494y 25102418
    [Google Scholar]
  25. KozakiT. TagashiraM. YamanishiK. EllisB. KayanokiT. OoishiR. SugiyamaK. MatsudaS. TsurutaK. KohiraT. TsuruiK. Evaluation of drug–drug interaction between the novel cPLA2 inhibitor AK106-001616 and methotrexate in rheumatoid arthritis patients.Xenobiotica201545761562410.3109/00498254.2014.1000430 25579091
    [Google Scholar]
  26. OnoT. YamadaK. ChikazawaY. UenoM. NakamotoS. OkunoT. SenoK. Characterization of a novel inhibitor of cytosolic phospholipase A2α, pyrrophenone.Biochem. J.2002363372773510.1042/bj3630727 11964173
    [Google Scholar]
  27. SenoK. OkunoT. NishiK. MurakamiY. WatanabeF. MatsuuraT. WadaM. FujiiY. YamadaM. OgawaT. OkadaT. HashizumeH. KiiM. HaraS. HagishitaS. NakamotoS. YamadaK. ChikazawaY. UenoM. TeshirogiI. OnoT. OhtaniM. Pyrrolidine inhibitors of human cytosolic phospholipase A2.J. Med. Chem.20004361041104410.1021/jm9905155 10737736
    [Google Scholar]
  28. ConnollyS. BennionC. BotterellS. CroshawP.J. HallamC. HardyK. HartoppP. JacksonC.G. KingS.J. LawrenceL. MeteA. MurrayD. RobinsonD.H. SmithG.M. SteinL. WaltersI. WellsE. WithnallW.J. Design and synthesis of a novel and potent series of inhibitors of cytosolic phospholipase A2 based on a 1,3-disubstituted propan-2-one skeleton.J. Med. Chem.20024561348136210.1021/jm011050x 11882004
    [Google Scholar]
  29. LudwigJ. BovensS. BrauchC. ElfringhoffA.S. LehrM. Design and synthesis of 1-indol-1-yl-propan-2-ones as inhibitors of human cytosolic phospholipase A2α.J. Med. Chem.20064982611262010.1021/jm051243a 16610804
    [Google Scholar]
  30. DrewsA. BovensS. RoebrockK. SunderkötterC. ReinhardtD. SchäfersM. van der VeldeA. Schulze ElfringhoffA. FabianJ. LehrM. 1-(5-carboxyindol-1-yl)propan-2-one inhibitors of human cytosolic phospholipase A2α with reduced lipophilicity: synthesis, biological activity, metabolic stability, solubility, bioavailability, and topical in vivo activity.J. Med. Chem.201053145165517810.1021/jm1001088 20583844
    [Google Scholar]
  31. MeteA. AndrewsG. BernsteinM. ConnollyS. HartoppP. JacksonC.G. LewisR. MartinI. MurrayD. RileyR. RobinsonD.H. SmithG.M. WellsE. WithnallW.J. Design of novel and potent cPLA2α inhibitors containing an α-methyl-2-ketothiazole as a metabolically stable serine trap.Bioorg. Med. Chem. Lett.201121103128313310.1016/j.bmcl.2011.03.005 21450464
    [Google Scholar]
  32. KokotosG. KotsovolouS. SixD.A. Constantinou-KokotouV. BeltznerC.C. DennisE.A. Novel 2-oxoamide inhibitors of human group IVA phospholipase A2.J. Med. Chem.200245142891289310.1021/jm025538p 12086476
    [Google Scholar]
  33. PsarraA. KokotouM.G. GaliatsatouG. MouchlisV.D. DennisE.A. KokotosG. Highly potent 2-oxoester inhibitors of cytosolic phospholipase A2 (GIVA cPLA2).ACS Omega2018388843885310.1021/acsomega.8b01214 30197994
    [Google Scholar]
  34. KokotouM.G. GaliatsatouG. MagriotiV. KoutoulogenisG. BarbayianniE. LimniosD. MouchlisV.D. SatpathyB. NavratilA. DennisE.A. KokotosG. 2-Oxoesters: A novel class of potent and selective inhibitors of cytosolic group IVA phospholipase A2.Sci. Rep.201771702510.1038/s41598‑017‑07330‑5 28765606
    [Google Scholar]
  35. YamanishiK. EllisB. KudoK. KayanokiT. DewsI. OstorA. WilsonA. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update.Ann. Rheum. Dis.201373349250910.1136/annrheumdis‑2013‑eular.751
    [Google Scholar]
  36. KirincichS.J. XiangJ. GreenN. TamS. YangH.Y. ShimJ. ShenM.W.H. ClarkJ.D. McKewJ.C. Benzhydrylquinazolinediones: Novel cytosolic phospholipase A2α inhibitors with improved physicochemical properties.Bioorg. Med. Chem.200917134383440510.1016/j.bmc.2009.05.027 19482480
    [Google Scholar]
  37. WaltersI. BennionC. ConnollyS. CroshawP.J. HardyK. HartoppP. JacksonC.G. KingS.J. LawrenceL. MeteA. MurrayD. RobinsonD.H. SteinL. WellsE. John WithnallW. Synthesis and evaluation of substrate-mimicking cytosolic phospholipase A2 inhibitors reducing the lipophilicity of the arachidonyl chain isostere.Bioorg. Med. Chem. Lett.200414143645364910.1016/j.bmcl.2004.05.024 15203135
    [Google Scholar]
  38. GarzinskyD. Cytosolic phospholipase A2α and fatty acid amide hydrolase as potential drug targets: Synthesis and testing of inhibitors and identification of new lead structures by computer-assisted drug design. Ph.D. Thesis; University of Münster: Münster, Germany,Available from: https://d-nb.info/1156953685 2018
  39. BoreckiD. LehrM. N-Substituted 4-sulfamoylbenzoic acid derivatives as inhibitors of cytosolic phospholipase A2α.Med. Chem. Res.202231697599210.1007/s00044‑022‑02895‑x
    [Google Scholar]
  40. LipinskiC.A. Drug-like properties and the causes of poor solubility and poor permeability.J. Pharmacol. Toxicol. Methods200044123524910.1016/S1056‑8719(00)00107‑6 11274893
    [Google Scholar]
  41. ValkoK. ReynoldsD.P. High-throughput physicochemical and in vitro ADMET screening.Am. J. Drug Deliv.2005328310010.2165/00137696‑200503020‑00002
    [Google Scholar]
  42. Di CesareM. A. MinettiP. TarziaG. SpadoniG. 5-Halotryptamine derivatives used as ligands of the 5HT6 and/or 5HT7 serotonin receptors.WO2003/000252A12003
  43. BarthM. RudolphS. KampschulzeJ. Meyer zu VilsendorfI. HanekampW. MulacD. LangerK. LehrM. Hexafluoroisopropyl carbamates as selective MAGL and dual MAGL/FAAH inhibitors: Biochemical and physicochemical properties.ChemMedChem2022179e20210075710.1002/cmdc.202100757 35072346
    [Google Scholar]
  44. FinneyD.J. Probit Analysis: A Statistical treatment of the sigmoid response curve.New York-LondonCambridge University Press1952xvi318
    [Google Scholar]
  45. Meyer zu VilsendorfI. EinerhandJ. MulacD. LangerK. LehrM. 1-Benzylindoles as inhibitors of cytosolic phospholipase A2α: Synthesis, biological activity, aqueous solubility, and cell permeability.RSC Med. Chem.202415264165910.1039/D3MD00590A 38389890
    [Google Scholar]
  46. SchmittM. LehrM. High-performance liquid chromatographic assay with ultraviolet spectrometric detection for the evaluation of inhibitors of secretory phospholipase A2.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003783232733310.1016/S1570‑0232(02)00710‑9 12482475
    [Google Scholar]
  47. HoltfrerichA. HanekampW. LehrM. (4-Phenoxyphenyl) tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).Eur. J. Med. Chem.201363647510.1016/j.ejmech.2013.01.050 23455058
    [Google Scholar]
  48. HoltfrerichA. MakharadzeT. LehrM. High-performance liquid chromatography assay with fluorescence detection for the evaluation of inhibitors against human recombinant monoacylglycerol lipase.Anal. Biochem.2010399221822410.1016/j.ab.2009.12.015 20015447
    [Google Scholar]
  49. MichelsG. LehrM. High performance liquid chromatographic assays with UV-detection for evaluation of inhibitors of acetylcholinesterase and butyrylcholinesterase.J. Liqu. Chromatog. Rel. Technol.2021445-630931910.1080/10826076.2021.1925908
    [Google Scholar]
  50. ArnsmannM. HanekampW. ElfringhoffA.S. LehrM. Structure–activity relationship studies on 1-(2-oxopropyl)indole-5-carboxylic acids acting as inhibitors of cytosolic phospholipase A2α: Effect of substituents at the indole 3-position on activity, solubility, and metabolic stability.Eur. J. Med. Chem.20171251107111410.1016/j.ejmech.2016.10.039 27810597
    [Google Scholar]
  51. SubeskaA. AlthausJ. HakeT. HanekampW. BettenworthD. MulacD. LangerK. LehrM. Synthesis and pharmacokinetic properties of novel cPLA2α inhibitors with 1-(carboxyalkylpyrrolyl)-3-aryloxypropan-2-one structure.Bioorg. Med. Chem.20237711711010.1016/j.bmc.2022.117110 36495814
    [Google Scholar]
  52. HansfordK.A. ReidR.C. ClarkC.I. TyndallJ.D.A. WhitehouseM.W. GuthrieT. McGearyR.P. SchaferK. MartinJ.L. FairlieD.P. D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity.ChemBioChem200342-318118510.1002/cbic.200390029 12616631
    [Google Scholar]
  53. AckermannE.J. Conde-FrieboesK. DennisE.A. Inhibition of macrophage Ca2+-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones.J. Biol. Chem.1995270144545010.1074/jbc.270.1.445 7814408
    [Google Scholar]
  54. JohnsonD.S. StiffC. LazerwithS.E. KestenS.R. FayL.K. MorrisM. BeidlerD. LiimattaM.B. SmithS.E. DudleyD.T. SadagopanN. BhattacharS.N. KestenS.J. NomanbhoyT.K. CravattB.F. AhnK. Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitor.ACS Med. Chem. Lett.201122919610.1021/ml100190t 21666860
    [Google Scholar]
  55. CisarJ.S. WeberO.D. ClapperJ.R. BlankmanJ.L. HenryC.L. SimonG.M. AlexanderJ.P. JonesT.K. EzekowitzR.A.B. O’NeillG.P. GriceC.A. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders.J. Med. Chem.201861209062908410.1021/acs.jmedchem.8b00951 30067909
    [Google Scholar]
  56. FabianJ. MergemeierK. LehrM. Evaluation of inhibitors of the arachidonic acid cascade with intact platelets using an on-line dilution and on-line solid phase extraction HPLC–MS method.Prostaglandins Other Lipid Mediat.202115510655110.1016/j.prostaglandins.2021.106551 33940184
    [Google Scholar]
  57. SpadoniG. StankovB. DurantiA. BiellaG. LuciniV. SalvatoriA. FraschiniF. 2-Substituted 5-methoxy-N-acyltryptamines: Synthesis, binding affinity for the melatonin receptor, and evaluation of the biological activity.J. Med. Chem.199336254069407410.1021/jm00077a010 8258829
    [Google Scholar]
  58. DiL. KernsE.H. Solubility. Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization.2nd edAcademic Press2016619210.1016/B978‑0‑12‑801076‑1.00007‑1
    [Google Scholar]
  59. IshikawaM. HashimotoY. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry.J. Med. Chem.20115461539155410.1021/jm101356p 21344906
    [Google Scholar]
  60. BachovchinD.A. CravattB.F. The pharmacological landscape and therapeutic potential of serine hydrolases.Nat. Rev. Drug Discov.2012111526810.1038/nrd3620 22212679
    [Google Scholar]
  61. BrideauC. KargmanS. LiuS. DallobA.L. EhrichE.W. RodgerI.W. ChanC.C. A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors.Inflamm. Res.1996452687410.1007/BF02265118 8907587
    [Google Scholar]
  62. SinghP. KaurJ. KaurH. KaurA. BhattiR. Synergy of physico-chemical and biological experiments for developing a cyclooxygenase-2 inhibitor.Sci. Rep.2018811000510.1038/s41598‑018‑28408‑8 29968808
    [Google Scholar]
  63. YoungJ.M. PanahS. SatchawatcharaphongC. CheungP.S. Human whole blood assays for inhibition of prostaglandin G/H synthases-1 and-2 using A23187 and lipopolysaccharide stimulation of thromboxane B2 production.Inflamm. Res.199645524625310.1007/BF02259611 8737748
    [Google Scholar]
  64. SmithC.J. ZhangY. KoboldtC.M. MuhammadJ. ZweifelB.S. ShafferA. TalleyJ.J. MasferrerJ.L. SeibertK. IsaksonP.C. Pharmacological analysis of cyclooxygenase-1 in inflammation.Proc. Natl. Acad. Sci.19989522133131331810.1073/pnas.95.22.13313 9789085
    [Google Scholar]
  65. Sud’inaG.F. PushkarevaM.A. ShephardP. KleinT. Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) selectivity of COX inhibitors.Prostaglandins Leukot. Essent. Fatty Acids20087829910810.1016/j.plefa.2007.12.006 18280718
    [Google Scholar]
  66. PommeryJ. PommeryN. HénichartJ.P. Modification of eicosanoid profile in human blood treated by dual COX/LOX inhibitors.Prostaglandins Leukot. Essent. Fatty Acids200573641141710.1016/j.plefa.2005.08.009 16213697
    [Google Scholar]
  67. SuretteM.E. OdeimatA. PalmantierR. MarleauS. PoubelleP.E. BorgeatP. Reverse-phase high-performance liquid chromatography analysis of arachidonic acid metabolites in plasma after stimulation of whole blood ex vivo.Anal. Biochem.1994216239240010.1006/abio.1994.1057 8179194
    [Google Scholar]
  68. FrohbergP. DrutkowskiG. WobstI. Monitoring eicosanoid biosynthesis via lipoxygenase and cyclooxygenase pathways in human whole blood by single HPLC run.J. Pharm. Biomed. Anal.20064141317132410.1016/j.jpba.2006.02.046 16621414
    [Google Scholar]
  69. MargalitA. DuffinK.L. IsaksonP.C. Rapid quantitation of a large scope of eicosanoids in two models of inflammation: Development of an electrospray and tandem mass spectrometry method and application to biological studies.Anal. Biochem.19962351738110.1006/abio.1996.0093 8850549
    [Google Scholar]
  70. ShiY. MurreyH.E. AhnK. WengN. PatelS. LC-MS/MS assay for the simultaneous quantitation of thromboxane B2 and prostaglandin E2 to evaluate cyclooxygenase inhibition in human whole blood.J. Appl. Bioanal.20206313114410.17145/jab.20.014
    [Google Scholar]
  71. OdaY. ManoN. AsakawaN. Simultaneous determination of thromboxane B2, prostaglandin E2 and leukotriene B4 in whole blood by liquid chromatography/mass spectrometry.J. Mass Spectrom.199530121671167810.1002/jms.1190301206
    [Google Scholar]
  72. MeirerK. GlatzelD. KretschmerS. WittmannS. HartmannM. BlöcherR. AngioniC. GeisslingerG. SteinhilberD. HofmannB. FürstR. ProschakE. Design, synthesis and cellular characterization of a dual inhibitor of 5-lipoxygenase and soluble epoxide hydrolase.Molecules20162214510.3390/molecules22010045 28036068
    [Google Scholar]
  73. MaierT.J. TauschL. HoernigM. CosteO. SchmidtR. AngioniC. MetznerJ. GroeschS. PergolaC. SteinhilberD. WerzO. GeisslingerG. Celecoxib inhibits 5-lipoxygenase.Biochem. Pharmacol.200876786287210.1016/j.bcp.2008.07.009 18692027
    [Google Scholar]
  74. GhasemiA. ElfringhoffA.S. LehrM. Structure–activity relationship studies of 3-dodecanoylindole-2-carboxylic acid inhibitors of cytosolic phospholipase A2 α-mediated arachidonic acid release in intact platelets: Variation of the keto moiety.J. Enzyme Inhib. Med. Chem.200520542943710.1080/14756360500228338 16335050
    [Google Scholar]
  75. JanssenG.M.E. VenemaJ.F. Ibuprofen: Plasma concentrations in man.J. Int. Med. Res.1985131687310.1177/030006058501300110 3979659
    [Google Scholar]
  76. ShenZ. TieuK. WilsonD. BucciG. GillenM. LeeC. KerrB. Evaluation of pharmacokinetic interactions between lesinurad, a new selective urate reabsorption inhibitor, and commonly used drugs for gout treatment.Clin. Pharmacol. Drug Dev.20176437738710.1002/cpdd.323 28074640
    [Google Scholar]
/content/journals/mc/10.2174/0115734064320241240709114041
Loading
/content/journals/mc/10.2174/0115734064320241240709114041
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test