Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

In the search for anti-COVID-19 therapy, 1,2,3,4,6-pentakis-O-galloyl-β-D-glucopyranoside, a natural polyphenolic compound isolated from many traditional medicinal herbs, has been reported as an RBD-ACE2 binding inhibitor and as a broad-spectrum anti-coronaviral inhibitor targeting the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. To facilitate the structure-activity relationship studies of 1,2,3,4,6-pentakis-O-galloyl-β-D-glucopyranoside, we describe its chemical synthesis and characterization, as well as its activity towards the SARS-CoV-2 spike interaction with host ACE2 receptor.

Methods

1,2,3,4,6-Pentakis-O-galloyl-β-D-glucopyranoside was synthesized in two quantitative steps from 3,4,5-tribenzyloxybenzoic acid and β-D-glucopyranoside: DCC-mediated esterification and palladium-catalyzed per-debenzylation. The synthesized molecule was evaluated using a SARS-CoV-2 spike trimer (S1 + S2) ACE2 inhibitor screening colorimetric assay kit, SARS-CoV-2 spike S1 RBD ACE2 inhibitor screening assay kit, and a cellular neutralization assay using the Spike (SARS-CoV-2) Pseudotyped Lentivirus, ACE2-HEK293 recombinant cell line.

Results

The chemically synthesized product blocked the binding of the spike trimer of SARS-CoV-2 to the human ACE2 receptor with IC=22±2 µM. It also blocked ACE2: spike RBD binding with IC=27±3 µM. Importantly, it inhibited the infectivity of SARS2-CoV2-Spike pseudotyped lentivirus on the ACE2 HEK293 cell line with IC=20±2 µM.

Conclusion

Overall, the chemically synthesized 1,2,3,4,6-pentakis-O-galloyl-β-D-glucopyranoside represents a lead molecule to develop anti-SARS-CoV-2 therapies that block the initial stage of the viral infection by blocking the virus entry to the host cell.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064302693240711114948
2024-12-01
2025-02-17
Loading full text...

Full text loading...

References

  1. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  2. ShangJ. YeG. ShiK. WanY. LuoC. AiharaH. GengQ. AuerbachA. LiF. Structural basis of receptor recognition by SARS-CoV-2.Nature2020581780722122410.1038/s41586‑020‑2179‑y 32225175
    [Google Scholar]
  3. WallsA.C. ParkY.J. TortoriciM.A. WallA. McGuireA.T. VeeslerD. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.Cell20201836173510.1016/j.cell.2020.11.032 33306958
    [Google Scholar]
  4. Al-HoraniR.A. KarS. Potential anti-SARS-CoV-2 therapeutics that target the post-entry stages of the viral life cycle: A comprehensive review.Viruses20201210109210.3390/v12101092 32993173
    [Google Scholar]
  5. Al-HoraniR.A. KarS. AliterK.F. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials.Int. J. Mol. Sci.20202115522410.3390/ijms21155224 32718020
    [Google Scholar]
  6. LiW. MooreM.J. VasilievaN. SuiJ. WongS.K. BerneM.A. SomasundaranM. SullivanJ.L. LuzuriagaK. GreenoughT.C. ChoeH. FarzanM. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature02145 14647384
    [Google Scholar]
  7. HofmannH. PyrcK. van der HoekL. GeierM. BerkhoutB. PöhlmannS. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry.Proc. Natl. Acad. Sci. USA2005102227988799310.1073/pnas.0409465102 15897467
    [Google Scholar]
  8. HoffmannM. Kleine-WeberH. PöhlmannS. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells.Mol. Cell2020784779784.e510.1016/j.molcel.2020.04.022 32362314
    [Google Scholar]
  9. ShangJ. WanY. LuoC. YeG. GengQ. AuerbachA. LiF. Cell entry mechanisms of SARS-CoV-2.Proc. Natl. Acad. Sci. USA202011721117271173410.1073/pnas.2003138117 32376634
    [Google Scholar]
  10. FehrA.R. PerlmanS. Coronaviruses: An overview of their replication and pathogenesis.Methods Mol. Biol.2015128212310.1007/978‑1‑4939‑2438‑7_1 25720466
    [Google Scholar]
  11. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x 34611326
    [Google Scholar]
  12. LeeS.J. LeeH.K. JungM.K. MarW. In vitro antiviral activity of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose against hepatitis B virus.Biol. Pharm. Bull.200629102131213410.1248/bpb.29.2131 17015965
    [Google Scholar]
  13. LiuG. XiongS. XiangY.F. GuoC.W. GeF. YangC.R. ZhangY.J. WangY.F. KitazatoK. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus.Arch. Virol.201115681359136910.1007/s00705‑011‑0989‑9 21479599
    [Google Scholar]
  14. KimK.H. ShimJ.S. KimH.J. SonE.D. Penta-O-galloyl-β-D-glucose from Paeonia lactiflora Pall. root extract enhances the expression of skin barrier genes via EGR3.J. Ethnopharmacol.202024811233710.1016/j.jep.2019.112337 31655148
    [Google Scholar]
  15. ChenR.H. YangL.J. HamdounS. ChungS.K. LamC.W. ZhangK.X. GuoX. XiaC. LawB.Y.K. WongV.K.W. 1,2,3,4,6-pentagalloyl glucose, a RBD-ACE2 binding inhibitor to prevent SARS-CoV-2 infection.Front. Pharmacol.20211263417610.3389/fphar.2021.634176 33897423
    [Google Scholar]
  16. SamandarF. Amiri TehranizadehZ. SaberiM.R. ChamaniJ. 1,2,3,4,6-Pentagalloyl glucose of Pistacia lentiscus can inhibit the replication and transcription processes and viral pathogenesis of SARS-COV-2.Mol. Cell. Probes20226510184710.1016/j.mcp.2022.101847 35843391
    [Google Scholar]
  17. JinY.H. LeeJ. JeonS. KimS. MinJ.S. KwonS. Natural polyphenols, 1,2,3,4,6-O-pentagalloyglucose and proanthocyanidins, as broad-spectrum anticoronaviral inhibitors targeting Mpro and RdRp of SARS-CoV-2.Biomedicines2022105117010.3390/biomedicines10051170 35625907
    [Google Scholar]
  18. Al-HoraniR.A. DesaiU.R. Designing allosteric inhibitors of factor XIa. Lessons from the interactions of sulfated pentagalloylglucopyranosides.J. Med. Chem.201457114805481810.1021/jm500311e 24844380
    [Google Scholar]
/content/journals/mc/10.2174/0115734064302693240711114948
Loading
/content/journals/mc/10.2174/0115734064302693240711114948
Loading

Data & Media loading...

Supplements


  • Article Type:
    Rapid Communication
Keyword(s): ACE2; HEK293; Pentagalloylglucose; SARS-CoV-2; spike protein; viral entry
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test