Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Fungal infections have posed a big challenge in the management of their treatment. Due to the resistance and toxicity of existing drug molecules in the light of pandemic infections, like COVID-19, there is an urgent need to find newer derivatives of active molecules, which can be effective in fungal infections.

Objective

In the present study, we aimed to design pyrazole derivatives using molecular modeling studies against target 1EA1 and synthesize 10 molecules of pyrazole derivatives using a multi-step synthesis approach.

Methods

Designed pyrazole derivatives were synthesized by conventional organic methods. The newly synthesized pyrazole molecules were characterized by using FT-IR, 1HNMR, 13CNMR, and LC-MS techniques. Molecular docking studies were also performed. The antifungal activity of newly synthesized compounds was assessed against and using the well plate method.

Results

Two of the compounds, OK-7 and OK-8, have been found to show significant docking interaction with target protein 1EA1. These two compounds have also been found to show significant anti-fungal activity against and when compared to the standard fluconazole. The Minimum Inhibitory Concentration (MIC) value of these two compounds has been found to be 50 µg/ml.

Conclusion

Pyrazole derivatives with -CH, CHO-, and -CN groups have been found to be active against tested fungi and can be further explored for their potential as promising anti-fungal agents for applications in the field of medicinal chemistry.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064300961240417063246
2024-12-01
2025-05-20
Loading full text...

Full text loading...

References

  1. KoltinY. HitchcockC.A. The search for new triazole antifungal agents.Curr. Opin. Chem. Biol.19971217618210.1016/S1367‑5931(97)80007‑5 9667858
    [Google Scholar]
  2. Vanden BosscheH. DromerF. ImprovisiI. Lozano-ChiuM. RexJ.H. SanglardD. Antifungal drug resistance in pathogenic fungi.Med. Mycol.199836Suppl. 1119128 9988500
    [Google Scholar]
  3. GeorgopapadakouN.H. Antifungals: Mechanism of action and resistance, established and novel drugs.Curr. Opin. Microbiol.19981554755710.1016/S1369‑5274(98)80087‑8 10066533
    [Google Scholar]
  4. Al-HatmiA.M.S. MohsinJ. Al-HuraiziA. KhamisF. COVID-19 associated invasive candidiasis.J. Infect.2021822e45e4610.1016/j.jinf.2020.08.005 32771402
    [Google Scholar]
  5. LansburyL. LimB. BaskaranV. LimW.S. Co-infections in people with COVID-19: A systematic review and meta-analysis.J. Infect.202081226627510.1016/j.jinf.2020.05.046 32473235
    [Google Scholar]
  6. YangX. YuY. XuJ. ShuH. XiaJ. LiuH. WuY. ZhangL. YuZ. FangM. YuT. WangY. PanS. ZouX. YuanS. ShangY. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑5 32105632
    [Google Scholar]
  7. KoehlerP. CornelyO.A. BöttigerB.W. DusseF. EichenauerD.A. FuchsF. HallekM. JungN. KleinF. PersigehlT. RybnikerJ. KochanekM. BöllB. Shimabukuro-VornhagenA. COVID‐19 associated pulmonary aspergillosis.Mycoses202063652853410.1111/myc.13096 32339350
    [Google Scholar]
  8. RavindarL. HasbullahS.A. RakeshK.P. HassanN.I. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review.Eur. J. Pharm. Sci.202318310636510.1016/j.ejps.2022.106365 36563914
    [Google Scholar]
  9. FariaJ.V. VegiP.F. MiguitaA.G.C. dos SantosM.S. BoechatN. BernardinoA.M.R. Recently reported biological activities of pyrazole compounds.Bioorg. Med. Chem.201725215891590310.1016/j.bmc.2017.09.035 28988624
    [Google Scholar]
  10. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY. Al-aizariF. AnsarM. Synthesis and pharmacological activities of pyrazole derivatives: A review.Molecules201823113410.3390/molecules23010134 29329257
    [Google Scholar]
  11. GangulyS. JacobS.K. Therapeutic outlook of pyrazole analogs: A mini review.Mini Rev. Med. Chem.2017171195998310.2174/1389557516666151120115302 26586126
    [Google Scholar]
  12. KhanM.F. AlamM.M. VermaG. AkhtarW. AkhterM. ShaquiquzzamanM. The therapeutic voyage of pyrazole and its analogs: A review.Eur. J. Med. Chem.201612017020110.1016/j.ejmech.2016.04.077 27191614
    [Google Scholar]
  13. VijeshA.M. IsloorA.M. TelkarS. PeethambarS.K. RaiS. IsloorN. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives.Eur. J. Med. Chem.20114683531353610.1016/j.ejmech.2011.05.005 21620535
    [Google Scholar]
  14. B’BhattH. SharmaS. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives.Arab. J. Chem.201710S1590S159610.1016/j.arabjc.2013.05.029
    [Google Scholar]
  15. SheehanD.J. HitchcockC.A. SibleyC.M. Current and emerging azole antifungal agents.Clin. Microbiol. Rev.1999121407910.1128/CMR.12.1.40 9880474
    [Google Scholar]
  16. RagavanR.V. VijayakumarV. KumariN.S. Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles.Eur. J. Med. Chem.20104531173118010.1016/j.ejmech.2009.12.042 20053480
    [Google Scholar]
  17. MenozziG. MerelloL. FossaP. SchenoneS. RaniseA. MostiL. BondavalliF. LoddoR. MurgioniC. MasciaV. La CollaP. TamburiniE. Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles.Bioorg. Med. Chem.200412205465548310.1016/j.bmc.2004.07.029 15388173
    [Google Scholar]
  18. HollaB.S. MahalingaM. KarthikeyanM.S. AkberaliP.M. ShettyN.S. Synthesis of some novel pyrazolo[3,4-d]pyrimidine derivatives as potential antimicrobial agents.Bioorg. Med. Chem.20061462040204710.1016/j.bmc.2005.10.053 16310361
    [Google Scholar]
  19. SongY.G. The history of antimicrobial drug development and the current situation.Infect. Chemother.201244426326810.3947/ic.2012.44.4.263
    [Google Scholar]
  20. ChalkhaM. AkhazzaneM. MoussaidF.Z. DaouiO. NakkabiA. BakhouchM. ChtitaS. ElkhattabiS. HousseiniA.I. El YazidiM. Design, synthesis, characterization, in vitro screening, molecular docking, 3D-QSAR, and ADME-Tox investigations of novel pyrazole derivatives as antimicrobial agents.New J. Chem.20224662747276010.1039/D1NJ05621B
    [Google Scholar]
  21. KaratiD. MahadikK.R. TrivediP. KumarD. A molecular insight into pyrazole congeners as antimicrobial, anticancer, and antimalarial agents.Med. Chem.202218101044105910.2174/1573406418666220303150640 35240964
    [Google Scholar]
  22. MuhammadZ.A. AlshehreiF. ZayedM.E.M. FarghalyT.A. AbdallahM.A. Synthesis of novel bis-pyrazole derivatives as antimicrobial agents.Mini Rev. Med. Chem.201919151276129010.2174/1389557519666190313095545 30864524
    [Google Scholar]
  23. BazgirA. KhanaposhtaniM.M. SoorkiA.A. One-pot synthesis and antibacterial activities of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-dione derivatives.Bioorg. Med. Chem. Lett.200818215800580310.1016/j.bmcl.2008.09.057 18842404
    [Google Scholar]
  24. LiuH. RenZ.L. WangW. GongJ.X. ChuM.J. MaQ.W. WangJ.C. LvX.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity.Eur. J. Med. Chem.2018157818710.1016/j.ejmech.2018.07.059 30075404
    [Google Scholar]
  25. ZhangT.Y. ZhengC.J. WuJ. SunL.P. PiaoH.R. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents.Bioorg. Med. Chem. Lett.20192991079108410.1016/j.bmcl.2019.02.033 30842033
    [Google Scholar]
  26. VermaR. VermaS.K. RakeshK.P. GirishY.R. AshrafizadehM. Sharath KumarK.S. RangappaK.S. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR elucidation.Eur. J. Med. Chem.202121211313410.1016/j.ejmech.2020.113134 33395624
    [Google Scholar]
  27. GudmundssonK.S. JohnsB.A. AllenS.H. Pyrazolopyridines with potent activity against herpesviruses: Effects of C5 substituents on antiviral activity.Bioorg. Med. Chem. Lett.20081831157116110.1016/j.bmcl.2007.11.120 18086523
    [Google Scholar]
  28. CicheroE. FossaP. Docking-based 3D-QSAR analyses of pyrazole derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors.J. Mol. Model.20121841573158210.1007/s00894‑011‑1190‑5 21805124
    [Google Scholar]
  29. KuoC.J. LiuH.G. LoY.K. SeongC.M. LeeK.I. JungY.S. LiangP.H. Individual and common inhibitors of coronavirus and picornavirus main proteases.FEBS Lett.2009583354955510.1016/j.febslet.2008.12.059 19166843
    [Google Scholar]
  30. KaratiD. MahadikK.R. KumarD. Pyrazole scaffolds: Centrality in anti-inflammatory and antiviral drug design.Med. Chem.202218101060107210.2174/1573406418666220410181827 35410619
    [Google Scholar]
  31. MattaR. PochampallyJ. DhoddiB.N. BhookyaS. BitlaS. AkkirajuA.G. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19.BMC Chem.20231716110.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  32. SilvaV.L.M. ElgueroJ. SilvaA.M.S. Current progress on antioxidants incorporating the pyrazole core.Eur. J. Med. Chem.201815639442910.1016/j.ejmech.2018.07.007 30015075
    [Google Scholar]
  33. VijeshA.M. IsloorA.M. ShettyP. SundershanS. FunH.K. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents.Eur. J. Med. Chem.20136241041510.1016/j.ejmech.2012.12.057 23385092
    [Google Scholar]
  34. BekhitA.A. NasrallaS.N. El-AgroudyE.J. HamoudaN. El-FattahA.A. BekhitS.A. AmagaseK. IbrahimT.M. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative.Eur. J. Pharm. Sci.202216810608010.1016/j.ejps.2021.106080 34818572
    [Google Scholar]
  35. Abdel-AzizM. Abuo-RahmaG.E.D.A. HassanA.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities.Eur. J. Med. Chem.20094493480348710.1016/j.ejmech.2009.01.032 19268406
    [Google Scholar]
  36. GaoM. QuK. ZhangW. WangX. Pharmacological activity of pyrazole derivatives as an anticonvulsant for benefit against epilepsy.Neuroimmunomodulation2021282909810.1159/000513297 33774633
    [Google Scholar]
  37. LiX. YuY. TuZ. Pyrazole scaffold synthesis, functionalization, and applications in Alzheimer’s disease and Parkinson’s disease treatment (2011–2020).Molecules2021265120210.3390/molecules26051202 33668128
    [Google Scholar]
  38. GuttiG. KumarD. PaliwalP. GaneshpurkarA. LahreK. KumarA. KrishnamurthyS. SinghS.K. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease.Bioorg. Chem.20199010308010.1016/j.bioorg.2019.103080 31271946
    [Google Scholar]
  39. Kocaİ. ÖzgürA. CoşkunK.A. TutarY. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety.Bioorg. Med. Chem.201321133859386510.1016/j.bmc.2013.04.021 23664495
    [Google Scholar]
  40. DawoodK.M. EldebssT.M.A. El-ZahabiH.S.A. YousefM.H. MetzP. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents.Eur. J. Med. Chem.20137074074910.1016/j.ejmech.2013.10.042 24231309
    [Google Scholar]
  41. OliveiraS. PizzutiL. QuinaF. FloresA. LundR. LencinaC. PachecoB. de PereiraC. PivaE. Anti-Candida, anti-enzyme activity and cytotoxicity of 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides.Molecules20141955806582010.3390/molecules19055806 24806580
    [Google Scholar]
  42. MorS. KhatriM. puniaR. SindhuS. Recent progress in anticancer agents incorporating pyrazole scaffold.Mini Rev. Med. Chem.202222111516310.2174/1389557521666210325115218 33823764
    [Google Scholar]
  43. RamajayamR. TanK.P. LiuH.G. LiangP.H. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors.Bioorg. Med. Chem.201018227849785410.1016/j.bmc.2010.09.050 20947359
    [Google Scholar]
  44. BrankovićJ. MilovanovićV.M. SimijonovićD. NovakovićS. PetrovićZ.D. TrifunovićS.S. BogdanovićG.A. PetrovićV.P. Pyrazolone-type compounds: Synthesis and in silico assessment of antiviral potential against key viral proteins of SARS-CoV-2.RSC Advances20221225160541607010.1039/D2RA02542F 35733695
    [Google Scholar]
  45. RakeshK.P. RameshS. Shivakumar GowdaD.C. Shivakumar, Gowda DC. Effect of low charge and high hydrophobicity on antimicrobial activity of the quinazolinone-peptide conjugates.Russ. J. Bioorganic Chem.201844215816410.1134/S1068162018020036
    [Google Scholar]
  46. CanN.Ö. Acar ÇevikU. SağlıkB.N. LeventS. KorkutB. ÖzkayY. KaplancıklıZ.A. KoparalA.S. Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors.J. Chem.2017201711510.1155/2017/9387102
    [Google Scholar]
  47. ParkJ.S. YuK.A. KangT.H. KimS. SuhY.G. Discovery of novel indazole-linked triazoles as antifungal agents.Bioorg. Med. Chem. Lett.200717123486349010.1016/j.bmcl.2007.03.074 17433670
    [Google Scholar]
  48. ChalkhaM. NourH. ChebbacK. NakkabiA. BahsisL. BakhouchM. AkhazzaneM. BourassM. ChtitaS. Bin JardanY.A. AugustyniakM. BourhiaM. Aboul-SoudM.A.M. El YazidiM. Synthesis, characterization, DFT mechanistic study, antimicrobial activity, molecular modeling, and ADMET properties of novel pyrazole-isoxazoline hybrids.ACS Omega2022750467314674410.1021/acsomega.2c05788 36570248
    [Google Scholar]
  49. ChalkhaM. MoussaouiA.E. HaddaT.B. BerredjemM. BouzinaA. AlmalkiF.A. SaghrouchniH. BakhouchM. SaadiM. AmmariL.E. AbdellatiifM.H. YazidiM.E. Crystallographic study, biological evaluation and DFT/POM/Docking analyses of pyrazole linked amide conjugates: Identification of antimicrobial and antitumor pharmacophore sites.J. Mol. Struct.2022125213181810.1016/j.molstruc.2021.131818
    [Google Scholar]
  50. Jacob KS. GangulyS. KumarP. PoddarR. KumarA. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy.J. Biomol. Struct. Dyn.20173571446146310.1080/07391102.2016.1185380 27142238
    [Google Scholar]
  51. ChabukswarA. KuchekarB. LokhandeP. TryambakeM. PagareB. KadamV. JagdaleS. ChabukswarV. Design, synthesis and evaluation of antibacterial activity of novel indazole derivatives.Curr. Bioact. Compd.20139426326910.2174/1573407209999131231095550
    [Google Scholar]
  52. KaplancıklıZ.A. LeventS. OsmaniyeD. SağlıkB.N. ÇevikU.A. ÇavuşoğluB.K. ÖzkayY. IlgınS. Synthesis and anticandidal activity evaluation of new benzimidazole-thiazole derivatives.Molecules20172212205110.3390/molecules22122051 29168743
    [Google Scholar]
/content/journals/mc/10.2174/0115734064300961240417063246
Loading
/content/journals/mc/10.2174/0115734064300961240417063246
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): 1EA1; anti-fungal; Aspergillus niger; Candida albicans; flow chemistry; Pyrazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test