Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Head and neck cancer (HNC) is on the rise worldwide, endangering lives and straining healthcare systems in both developing and developed nations. Despite the availability of a number of therapy options, the success rate for treating and controlling head and neck cancer remains dismal. To combat the aggressiveness and drug resistance of Epstein-Barr virus (EBV)-positive Head-Neck cancer cells, this study looks into the potential of (pencil cactus) leaf extract.

Objectives

The goal of this study is to identify prospective therapeutic candidates from the extract of (pencil cactus) leaves, which have the ability to inhibit Epstein-Barr virus (EBV)-positive Head-Neck cancer cells.

Materials and Methods

The thirteen most important chemical components found in (pencil cactus) leaves were analyzed by means of molecular modeling techniques such as Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), Quantum Mechanics (QM) calculation, molecular docking, and molecular dynamics (MD) simulations. Using the Prediction of Activity Spectra for Substances (PASS) model, we assess the potency of these compounds. Important molecular properties such as chemical potential, electronegativity, hardness, and softness can be determined with the use of quantum chemical calculations employing HOMO-LUMO analysis. These drugs' safety and toxicological characteristics are better understood to assessments of their pharmacokinetics and ADMET. Finally, molecular dynamics simulations are employed to verify binding interactions and assess the stability of docked complexes.

Results

The molecular docking analysis identifies ligands (01), (02), and (10) as strong competitors, with strong binding affinity for the Epstein-Barr virus (EBV)-positive Head-Neck cancer cell line. Not only do the ligands (01), (02), and (10) match the criteria for a potential new inhibitor of head-neck cancer, but they also outperform the present FDA-approved treatment.

Conclusion

Taraxerol, euphol, and ephorginol, three phytochemicals isolated from the leaves of the (pencil cactus), have been identified as effective anti-cancer agents with the potential to serve as a foundation for novel head-neck cancer therapies, particularly those targeting the Epstein-Barr virus (EBV)-overexpressing subtype of this disease. An effective, individualized treatment plan for head-neck cancer is a long way off, but this study is a major step forward that could change the lives of patients and reduce the global burden of this disease.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064315601240628115330
2024-08-27
2025-05-24
Loading full text...

Full text loading...

References

  1. SharmaA. AnandP. PadwadY.S. MauryaS.K. Novel 3-methyleneisoindolinones diversified via intramolecular heck cyclization induce oxidative stress, decrease mitochondrial membrane potential, disrupt cell cycle, and induce apoptosis in head and neck squamous cell carcinoma cells.ACS Omega2022749450364504410.1021/acsomega.2c0537836530328
    [Google Scholar]
  2. GuhaG. LuW. LiS. LiangX. Kulesz-MartinM.F. MahmudT. IndraA.K. Ganguli-IndraG. Novel pactamycin analogs induce p53 dependent cell-cycle arrest at S-phase in human head and neck squamous cell carcinoma (HNSCC) cells.PLoS One2015105e012532210.1371/journal.pone.012532225938491
    [Google Scholar]
  3. RajS. KesariK.K. KumarA. RathiB. SharmaA. GuptaP.K. JhaS.K. JhaN.K. SlamaP. RoychoudhuryS. KumarD. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer.Mol. Cancer20222113110.1186/s12943‑022‑01503‑135081970
    [Google Scholar]
  4. OwensD. PaleriV. JonesA.V. Head and neck cancer explained: An overview of management pathways.Br. Dent. J.2022233972172510.1038/s41415‑022‑5199‑136369551
    [Google Scholar]
  5. SzyfterK. Genetics and molecular biology of head and neck cancer.Biomolecules2021119129310.3390/biom11091293
    [Google Scholar]
  6. SabaN.F. ModyM.D. RoccoJ.W. HaddadR.I. YomS.S. Head and neck cancer: High-end technology is no guarantee of high-quality care – Authors’ reply.Lancet202239910341210210.1016/S0140‑6736(22)00426‑335658994
    [Google Scholar]
  7. ModyM.D. RoccoJ.W. YomS.S. HaddadR.I. SabaN.F. Head and neck cancer.Lancet2021398103182289229910.1016/S0140‑6736(21)01550‑634562395
    [Google Scholar]
  8. StasiewiczM. KarpińskiT.M. The oral microbiota and its role in carcinogenesis.Semin Cancer Biol.202286Pt 363364210.1016/j.semcancer.2021.11.002
    [Google Scholar]
  9. AndersonG. EbadiM. VoK. NovakJ. GovindarajanA. AminiA. An updated review on head and neck cancer treatment with radiation therapy.Cancers20211319491210.3390/cancers1319491234638398
    [Google Scholar]
  10. HuangG. PanS-T. ROS-mediated therapeutic strategy in chemo-/radiotherapy of head and neck cancer.Oxid. Med. Cell. Longev.20202020504798710.1155/2020/5047987
    [Google Scholar]
  11. BrookI. Early side effects of radiation treatment for head and neck cancer.Cancer Radiother.202125550751310.1016/j.canrad.2021.02.00133685809
    [Google Scholar]
  12. GoerlingU. GaulerT. DietzA. GrünwaldV. KnippingS. Guntinas-LichiusO. FrickhofenN. LindemanH.W. FietkauR. HaxelB. Große-ThieC. MaschmeyerG. ZipfelM. MartusP. KnoedlerM. KeilholzU. KlinghammerK. Quality of life of patients with head and neck cancer receiving cetuximab, fluorouracil, cisplatin comparing to cetuximab, fluorouracil, cisplatin, and docetaxel within the CEFCID trial.Oncol. Res. Treat.202245631932510.1159/00052141534915492
    [Google Scholar]
  13. Ruiz-PulidoG. MedinaD.I. BaraniM. RahdarA. SargaziG. BainoF. PandeyS. Nanomaterials for the diagnosis and treatment of head and neck cancers: A review.Materials20211413370610.3390/ma1413370634279276
    [Google Scholar]
  14. YuC. LiQ. ZhangY. WenZ.F. DongH. MouY. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma.Front. Cell Dev. Biol.20221094175010.3389/fcell.2022.94175036092724
    [Google Scholar]
  15. MunroB. VuongQ. ChalmersA. GoldsmithC. BowyerM. ScarlettC. Phytochemical, antioxidant and anti-cancer properties of Euphorbia tirucalli methanolic and aqueous extracts.Antioxidants20154464766110.3390/antiox404064726783950
    [Google Scholar]
  16. LeN.T.M. CuongD.X. ThinhP.V. MinhT.N. ManhT.D. DuongT.H. MinhT.T.L. OanhV.T.T. Phytochemical screening and evaluation of antioxidant properties and antimicrobial activity against Xanthomonas axonopodis of Euphorbia tirucalli extracts in Binh Thuan province, Vietnam.Molecules202126494110.3390/molecules2604094133578946
    [Google Scholar]
  17. Franco-SallaG.B. PratesJ. CardinL.T. dos SantosA.R.D. SilvaW.A.Jr da CunhaB.R. TajaraE.H. OlianiS.M. Rodrigues-LisoniF.C. Euphorbia tirucalli modulates gene expression in larynx squamous cell carcinoma.BMC Complement. Altern. Med.201616113610.1186/s12906‑016‑1115‑z27209356
    [Google Scholar]
  18. Alves da PazD.P. NagamineM.K. GrandeM.P.D. LeiteJ.V.P. SobreiraF.M.G. BacchiE.M. Inhibitory effects of euphorbia tirucalli lineu (euphorbiaceae) diluted latex on human and canine melanoma cells.Evid. Based Complement Alternat. Med.202020204093206
    [Google Scholar]
  19. De AraújoK. De LimaA. SilvaJ. RodriguesL. AmorimA. QuelemesP. Dos SantosR. RochaJ. De AndradesÉ. LeiteJ. Mancini-FilhoJ. Da TrindadeR. Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of Euphorbia tirucalli L.Antioxidants20143115917510.3390/antiox301015926784670
    [Google Scholar]
  20. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  21. HosenM.A. AlamA. IslamM. FujiiY. OzekiY. KawsarS.A. Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesin of Escherichia coli.Izv. Him.202153327342
    [Google Scholar]
  22. FatriansyahJ.F. RizqillahR.K. YandiM.Y. Molecular docking and molecular dynamics simulation of fisetin, galangin, hesperetin, hesperidin, myricetin, and naringenin against polymerase of dengue virus.J. Trop. Med.20222022725499010.1155/2022/7254990
    [Google Scholar]
  23. LaguninA. StepanchikovaA. FilimonovD. PoroikovV. PASS: prediction of activity spectra for biologically active substances.Bioinformatics200016874774810.1093/bioinformatics/16.8.74711099264
    [Google Scholar]
  24. HsiaoY. SuB.H. TsengY.J. Current development of integrated web servers for preclinical safety and pharmacokinetics assessments in drug development.Brief. Bioinform.2021223bbaa16010.1093/bib/bbaa16032770190
    [Google Scholar]
  25. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  26. HuangC. VenturiM. MajeedS. MooreM.J. PhogatS. ZhangM.Y. DimitrovD.S. HendricksonW.A. RobinsonJ. SodroskiJ. WyattR. ChoeH. FarzanM. KwongP.D. Structural basis of tyrosine sulfation and V H -gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120.Proc. Natl. Acad. Sci. USA200410192706271110.1073/pnas.030852710014981267
    [Google Scholar]
  27. KannanR. KasturiR. DhanavelA. A computational approach in identifying interaction of chitosan sodium benzoate hydrocolloid with upper gastrointestinal protein targets.Specialusis Ugdymas2022171987210
    [Google Scholar]
  28. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  29. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑128510083
    [Google Scholar]
  30. AliM. NurA. KhatunM. DashR. RahmanM. KarimM. Identification of potential SARS-CoV-2 main protease inhibitors from Ficus Carica Latex: An in-silico approach.J Adv Biotechnol Exp Ther202034576710.5455/jabet.2020.d157
    [Google Scholar]
  31. HasibR.A. AliM.C. RahmanM.S. RahmanM.M. AhmedF.F. MashudM.A.A. IslamM.A. JamalM.A.H.M. A computational biology approach for the identification of potential SARS-CoV-2 main protease inhibitors from natural essential oil compounds.F1000 Res.202110131310.12688/f1000research.73999.2
    [Google Scholar]
  32. BowersK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC '06: Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA, 11-17 November 2006, pp. 43-43.10.1145/1188455.1188544
    [Google Scholar]
  33. GoyalB. GoyalD. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy.ACS Comb. Sci.202022629730510.1021/acscombsci.0c0005832402186
    [Google Scholar]
  34. AhammadF. AlamR. MahmudR. AkhterS. TalukderE.K. TonmoyA.M. FahimS. Al-GhamdiK. SamadA. QadriI. Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein.Brief. Bioinform.2021225bbab09810.1093/bib/bbab09833834183
    [Google Scholar]
  35. ZhangQ. BastardP. BolzeA. JouanguyE. ZhangS.Y. CobatA. NotarangeloL.D. SuH.C. AbelL. CasanovaJ.L. COVID Human Genetic Effort Life-threatening COVID-19: Defective interferons unleash excessive inflammation.Med202011142010.1016/j.medj.2020.12.00133363283
    [Google Scholar]
  36. UlfertsR. ImbertI. CanardB. ZiebuhrJ. Expression and functions of sars coronavirus replicative proteins.Mol. Biol. SARS-Coronavirus2010759810.1007/978‑3‑642‑03683‑5_6
    [Google Scholar]
  37. KoikeR. TakedaS. MaédaY. OtaM. Comprehensive analysis of motions in molecular dynamics trajectories of the actin capping protein and its inhibitor complexes.Proteins201684794895610.1002/prot.2504327028786
    [Google Scholar]
  38. BalseraM.A. WriggersW. OonoY. SchultenK. Principal component analysis and long time protein dynamics.J. Phys. Chem.199610072567257210.1021/jp9536920
    [Google Scholar]
  39. ErnstM. SittelF. StockG. Contact- and distance-based principal component analysis of protein dynamics.J. Chem. Phys.20151432424411410.1063/1.4938249
    [Google Scholar]
  40. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  41. WarrW.A. Representation of chemical structures.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111455757910.1002/wcms.36
    [Google Scholar]
  42. BoubackT.A. PokhrelS. AlbeshriA. AljohaniA.M. SamadA. AlamR. HossenM.S. Al-GhamdiK. TalukderM.E.K. AhammadF. QadriI. Simal-GandaraJ. Pharmacophore-based virtual screening, quantum mechanics calculations, and molecular dynamics simulation approaches identified potential natural antiviral drug candidates against MERS-CoV S1-NTD.Molecules20212616496110.3390/molecules2616496134443556
    [Google Scholar]
  43. AvidonV.V. PomerantsevI.A. GolenderV.E. RozenblitA.B. Structure-activity relationship oriented languages for chemical structure representation.J. Chem. Inf. Comput. Sci.198222420721410.1021/ci00036a006
    [Google Scholar]
  44. PuthanveeduV. MuraleedharanK. Phytochemicals as potential inhibitors for COVID-19 revealed by molecular docking, molecular dynamic simulation and DFT studies.Struct. Chem.20223351423144310.1007/s11224‑022‑01982‑435729939
    [Google Scholar]
  45. YuJ. SuN.Q. YangW. Describing chemical reactivity with frontier molecular orbitalets.JACS Au2022261383139410.1021/jacsau.2c0008535783161
    [Google Scholar]
  46. AiharaJ.I. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons.J. Phys. Chem. A19991033774877495
    [Google Scholar]
  47. AkbariZ. StagnoC. IraciN. EfferthT. OmerE.A. PipernoA. MicaleN. Biological evaluation, DFT, MEP, HOMO-LUMO analysis and ensemble docking studies of Zn (II) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents.J. Mol. Struct.20241301137400
    [Google Scholar]
  48. KumerA. SarkerM.N. PaulS. The thermo physical, HOMO, LUMO, Vibrational spectroscopy and QSAR study of morphonium formate and acetate Ionic Liquid Salts using computational method.Turkish Computat. Theoret. Chem.201932596810.33435/tcandtc.481878
    [Google Scholar]
  49. ParrR.G. ChattarajP.K. Principle of maximum hardness.J. Am. Chem. Soc.199111351854185510.1021/ja00005a072
    [Google Scholar]
  50. Al AzzamK.M. NegimE-S. Aboul-EneinH.Y. ADME studies of TUG-770 (a GPR-40 inhibitor agonist) for the treatment of type 2 diabetes using SwissADME predictor: In silico study.J. Appl. Pharm. Sci.202212159169
    [Google Scholar]
  51. MunirR. ZaibS. KhanI. YousafA. McAdamC.J. YeowC.H.S. WhiteJ.M. HökelekT. AwwadN.S. IbrahiumH.A. FronteraA. Cooperative assemblies featuring hydrogen bonding and C H…π interactions in 2-(methanesulfonamido) benzohydrazide derivatives: Experimental, computational and biochemical assessment.J. Mol. Struct.2024129513675210.1016/j.molstruc.2023.136752
    [Google Scholar]
  52. LakshminarayananS. JeyasinghV. MurugesanK. SelvapalamN. DassG. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions.J Photochem Photobiol.2021610002210.1016/j.jpap.2021.100022
    [Google Scholar]
  53. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  54. KumerA. KhanM.W. The effect of alkyl chain and electronegative atoms in anion on biological activity of anilinium carboxylate bioactive ionic liquids and computational approaches by DFT functional and molecular docking.Heliyon202177e07509
    [Google Scholar]
  55. NathA. KumerA. ZabenF. KhanM.W. Investigating the binding affinity, molecular dynamics, and ADMET properties of 2,3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein.Beni. Suef Univ. J. Basic Appl. Sci.20211013610.1186/s43088‑021‑00117‑8
    [Google Scholar]
  56. FuY. ZhaoJ. ChenZ. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein.Comput Math Methods Med.201820183502514
    [Google Scholar]
  57. AliM. C. NurA. J. Al HasibR. RakibR. A. KhatunM. S. RahmanM. M. Syzygium aromaticum as a possible source of SARS-CoV-2 main protease inhibitors: Evidence from a computational investigation.J. Adv. Biotechnol. Exp. Ther.202221822810.5455/jabet.2022.d109
    [Google Scholar]
  58. CaballeroJ. The latest automated docking technologies for novel drug discovery.Expert Opin. Drug Discov.202116662564510.1080/17460441.2021.185879333353444
    [Google Scholar]
  59. HanzawaH. ShimadaT. TakahashiM. TakahashiH. Revisiting biomolecular NMR spectroscopy for promoting small-molecule drug discovery.J. Biomol. NMR20207410-1150150810.1007/s10858‑020‑00314‑032306215
    [Google Scholar]
  60. FesikS. NMR structure-based drug design.J. Biomol. NMR19933326126910.1007/BF002125137689377
    [Google Scholar]
  61. TimofeevV. GaponovY. PetrenkoD. PetersG. AgapovaY. NikolaevaA. MikhailovaA. RakitinaT. How the hinge region affects interactions between the catalytic and β-propeller domains in oligopeptidase B.Crystals20231312164210.3390/cryst13121642
    [Google Scholar]
  62. AkashS. AbdelkrimG. BayilI. HosenM.E. MukerjeeN. ShaterA.F. SalehF.M. AlbadraniG.M. Al-GhadiM.Q. Abdel-DaimM.M. TokT.T. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach.J. Cell. Mol. Med.202327203168318810.1111/jcmm.1794037724615
    [Google Scholar]
  63. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  64. RoutJ. SwainB.C. TripathyU. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2.J. Biomol. Struct. Dyn.202240286087410.1080/07391102.2020.181987932938313
    [Google Scholar]
  65. RahmanS. AtikullahM. IslamM.N. MohaimenulM. AhammadF. IslamM.S. Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice.Clin Phytosci.201951610.1186/s40816‑019‑0110‑6
    [Google Scholar]
  66. OliveiraL.F.S. FuentefriaA.M. KleinF.S. MachadoM.M. Antifungal activity against Cryptococcus neoformans strains and genotoxicity assessment in human leukocyte cells of Euphorbia tirucalli L.Braz. J. Microbiol.20144541349135510.1590/S1517‑8382201400040002725763040
    [Google Scholar]
  67. AlghamdiA.A.A. AliN.M. AlamM.M. NazreenS. MahzariA. HPLC profile, anticancer, anti-inflammatory and antioxidant activities of euphorbia inarticulata ethanolic extract.Adv. Pharmacol. Pharm.202311215616710.13189/app.2023.110207
    [Google Scholar]
  68. WannaD. Y. MzulaA. MwegaE. D. Antibacterial potential and safety level of Euphorbia tirucalli and Vernonia glabra commonly used by residents in Iringa, Tanzania.JMPB122832922023
    [Google Scholar]
  69. BarbosaF.Jr RochaB.A. SouzaM.C.O. BocatoM.Z. AzevedoL.F. AdeyemiJ.A. SantanaA. CampigliaA.D. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity.J. Toxicol. Environ. Health B Crit. Rev.2023261286510.1080/10937404.2022.216439036617662
    [Google Scholar]
  70. HennigT.B. BandeiraF.O. PuerariR.C. FracetoL.F. MatiasW.G. A systematic review of the toxic effects of a nanopesticide on non-target organisms: Estimation of protective concentrations using a species sensitivity distribution (SSD) approach – The case of atrazine.Sci. Total Environ.202387116209410.1016/j.scitotenv.2023.16209436764548
    [Google Scholar]
  71. SamadA. HuqM.A. RahmanM.S. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer.Sci. Rep.2022121153910.1038/s41598‑022‑05621‑035087187
    [Google Scholar]
  72. BaildyaN. KhanA.A. GhoshN.N. DuttaT. ChattopadhyayA.P. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies.J. Mol. Struct.2021122712939010.1016/j.molstruc.2020.12939033041371
    [Google Scholar]
  73. ElebeedyD. ElkhatibW.F. KandeilA. GhanemA. KutkatO. AlnajjarR. SalehM.A. Abd El MaksoudA.I. BadawyI. Al-KarmalawyA.A. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights.RSC Advances20211147292672928610.1039/D1RA05268C35492070
    [Google Scholar]
  74. MahmudS. RahmanE. NainZ. BillahM. KarmakarS. MohantoS.C. PaulG.K. AminA. AcharjeeU.K. SalehM.A. Computational discovery of plant-based inhibitors against human carbonic anhydrase IX and molecular dynamics simulation.J. Biomol. Struct. Dyn.20213982754277010.1080/07391102.2020.175357932266872
    [Google Scholar]
  75. MahmoudA. MostafaA. Al-KarmalawyA.A. ZidanA. AbulkhairH.S. MahmoudS.H. Telaprevir is a potential drug for repurposing against SARS-CoV-2: Computational and in vitro studies.Heliyon202179e07962
    [Google Scholar]
/content/journals/mc/10.2174/0115734064315601240628115330
Loading
/content/journals/mc/10.2174/0115734064315601240628115330
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test