Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Objectives

Malaria continues to be the primary cause of mortality worldwide, and timely recognition and prompt intervention are crucial in mitigating adverse consequences. This review article aims to examine the effectiveness and structural characteristics of quinoline-based compounds as antimalarial agents. It specifically focuses on their therapeutic effects as well as potential prospects for exploring structure-activity relationship (SAR). In addition, this study aims to identify lead compounds that can efficiently battle multidrug-resistant forms of and .

Methods

A comprehensive review was conducted to evaluate the effectiveness of quinoline-based antimalarial medications in eradicating and . The mechanism of action and SAR of these compounds were analyzed.

Results

Quinoline-based antimalarials demonstrated significant effectiveness in eliminating parasites, particularly in regions severely impacted by malaria, including Africa and Asia. These compounds were found to exhibit tolerance and immune-modulating properties, indicating their potential for more widespread utilization. The investigation identified various new quinoline compounds with improved antimalarial activity, including metal-chloroquine complexes, diaminealkyne chloroquines, and cinnamoylated chloroquine hybrids. This study explored different mechanisms by which these compounds interact with parasites, including their ability to accumulate in the parasite’s acidic food vacuoles and disrupt heme detoxification. The derivatives demonstrated strong efficacy against chloroquine-resistant strains and yielded positive results.

Conclusion

Quinoline-based compounds represent a promising avenue for combating malaria due to their demonstrated efficacy against and parasites. Further research on their mechanisms of action and SAR could lead to the development of more effective antimalarial medications.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064318361240827072124
2024-09-11
2025-05-25
Loading full text...

Full text loading...

References

  1. da Cunha XavierJ. dos SantosH.S. Machado MarinhoM. Nunes da RochaM. Rodrigues TeixeiraA.M. CoutinhoH.D.M. MarinhoE.S. Sucheta KumarN. MishraR. Chalcones as potent agents against Staphylococcus aureus: A computational approach.Lett. Drug Des. Discov.202421468470010.2174/1570180820666230120145921
    [Google Scholar]
  2. KrishnaG. ShahK. Current drifts in design and development of prodrugs.ECS Trans.20221071189391895610.1149/10701.18939ecst
    [Google Scholar]
  3. MishraR. ChaudharyK. MishraI. Weapons and strategies against COVID-19: A perspective.Curr. Pharm. Biotechnol.202325214415810.2174/138920102466623052516143237231727
    [Google Scholar]
  4. MishraR. ChaudharyK. MishraI. AI in health science: A perspective.Curr. Pharm. Biotechnol.20232491149116310.2174/138920102366622092914522036177622
    [Google Scholar]
  5. MishraR. KumarN. SachanN. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives.Lett. Drug Des. Discov.202219653054010.2174/1570180819666220117123958
    [Google Scholar]
  6. MishraR. KumarN. SachanN. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives.Oncologie202123449351410.32604/oncologie.2021.018532
    [Google Scholar]
  7. MishraR. KumarN. MishraI. SachanN. A review on anticancer activities of thiophene and its analogs.Mini Rev. Med. Chem.202020191944196510.2174/138955752066620071510455532669077
    [Google Scholar]
  8. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  9. MishraR. KaushalS. MishraI. Flavonoids as pyruvate kinase M2 inhibitor: An in silico analysis.Lett. Drug Des. Discov.20232010.2174/1570180820666230816090541
    [Google Scholar]
  10. UpadhyayP.K. PathakS. MishraR. KumarR. JainA. A multifaceted scaffold for building bioactive compounds: Phenothiazine.Lett. Org. Chem.202320761863110.2174/1570178620666221202100529
    [Google Scholar]
  11. MishraR. KumarN. SachanN. Thiophene and its analogs as prospective antioxidant agents: A retrospective study.Mini Rev. Med. Chem.202222101420143710.2174/138955752166621102214545834719361
    [Google Scholar]
  12. MishraR. H1N1 infection complications and potential moieties for treatment: A systematic review.Int. J. Pharm. Res.202012sp110.31838/ijpr/2020.SP1.139
    [Google Scholar]
  13. MishraI. MishraR. MujwarS. ChandraP. SachanN. A retrospect on antimicrobial potential of thiazole scaffold.J. Heterocycl. Chem.20205762304232910.1002/jhet.3970
    [Google Scholar]
  14. MishraR. SachanN. KumarN. MishraI. ChandP. Thiophene scaffold as prospective antimicrobial agent: A review.J. Heterocycl. Chem.20185592019203410.1002/jhet.3249
    [Google Scholar]
  15. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  16. MishraR. TomarI. ChemInform abstract: Pyrimidine: The molecule of diverse biological and medicinal importance.ChemInform20114240chin.20114023510.1002/chin.201140235
    [Google Scholar]
  17. AgrawalN. MishraR. PathakS. GoyalA. ShahK. Hydrazides and hydrazones: Robust scaffolds in neurological and neurodegenerative disorders.Lett. Org. Chem.202320212313610.2174/1570178619666220831122614
    [Google Scholar]
  18. MishraI. ChandraP. SachanN. Thiazole derivatives as RORγt inhibitors: Synthesis, biological evaluation, and docking analysis.Lett. Drug Des. Discov.202421590591710.2174/1570180820666230217123456
    [Google Scholar]
  19. MishraI. SachanN. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects.ECS Trans.20221071177451776810.1149/10701.17745ecst
    [Google Scholar]
  20. SavarinoA. BoelaertJ.R. CassoneA. MajoriG. CaudaR. Effects of chloroquine on viral infections: An old drug against today’s diseases.Lancet Infect. Dis.200331172272710.1016/S1473‑3099(03)00806‑514592603
    [Google Scholar]
  21. GoldenE.B. ChoH.Y. HofmanF.M. LouieS.G. SchönthalA.H. ChenT.C. Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors.Neurosurg. Focus2015383E1210.3171/2014.12.FOCUS1474825727221
    [Google Scholar]
  22. ChauhanP.M. SrivastavaS. Present trends and future strategy in chemotherapy of malaria.Curr. Med. Chem.20018131535154210.2174/092986701337185111562283
    [Google Scholar]
  23. SlaterA.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum.Pharmacol. Ther.1993572-320323510.1016/0163‑7258(93)90056‑J8361993
    [Google Scholar]
  24. ElliottD.A. McIntoshM.T. HosgoodH.D.III ChenS. ZhangG. BaevovaP. JoinerK.A. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum.Proc. Natl. Acad. Sci. USA200810572463246810.1073/pnas.071106710518263733
    [Google Scholar]
  25. LazarusM.D. SchneiderT.G. TaraschiT.F. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum.J. Cell Sci.2008121111937194910.1242/jcs.02315018477610
    [Google Scholar]
  26. LiuJ. CaoR. XuM. WangX. ZhangH. HuH. LiY. HuZ. ZhongW. WangM. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.Cell Discov.2020611610.1038/s41421‑020‑0156‑032194981
    [Google Scholar]
  27. DevauxC.A. RolainJ.M. ColsonP. RaoultD. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?Int. J. Antimicrob. Agents202055510593810.1016/j.ijantimicag.2020.10593832171740
    [Google Scholar]
  28. SanchezC.P. McLeanJ.E. SteinW. LanzerM. Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant Plasmodium falciparum strains.Biochemistry20044351163651637310.1021/bi048241x15610031
    [Google Scholar]
  29. MaguireJ.D. Krisin MarwotoH. RichieT.L. FryauffD.J. BairdJ.K. Mefloquine is highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium falciparum malaria in Papua, Indonesia.Clin. Infect. Dis.20064281067107210.1086/50135716575721
    [Google Scholar]
  30. BairdJ.K. Effectiveness of antimalarial drugs.N. Engl. J. Med.2005352151565157710.1056/NEJMra04320715829537
    [Google Scholar]
  31. GolenserJ. McQuillanJ. HeeL. MitchellA.J. HuntN.H. Conventional and experimental treatment of cerebral malaria.Int. J. Parasitol.200636558359310.1016/j.ijpara.2006.02.00916603167
    [Google Scholar]
  32. VincentM.J. BergeronE. BenjannetS. EricksonB.R. RollinP.E. KsiazekT.G. SeidahN.G. NicholS.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol. J.2005216910.1186/1743‑422X‑2‑6916115318
    [Google Scholar]
  33. GautretP. LagierJ.C. ParolaP. HoangV.T. MeddebL. MailheM. DoudierB. CourjonJ. GiordanengoV. VieiraV.E. Tissot DupontH. HonoréS. ColsonP. ChabrièreE. La ScolaB. RolainJ.M. BrouquiP. RaoultD. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.10594932205204
    [Google Scholar]
  34. SahraeiZ. ShabaniM. ShokouhiS. SaffaeiA. Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or hydroxychloroquine.Int. J. Antimicrob. Agents202055410594510.1016/j.ijantimicag.2020.10594532194152
    [Google Scholar]
  35. YaoX. YeF. ZhangM. CuiC. HuangB. NiuP. LiuX. ZhaoL. DongE. SongC. ZhanS. LuR. LiH. TanW. LiuD. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Clin. Infect. Dis.2020711573273910.1093/cid/ciaa23732150618
    [Google Scholar]
  36. BurgessS.J. KellyJ.X. ShomlooS. WittlinS. BrunR. LiebmannK. PeytonD.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds.J. Med. Chem.201053176477648910.1021/jm100648420684562
    [Google Scholar]
  37. DornA. VippaguntaS.R. MatileH. JaquetC. VennerstromJ.L. RidleyR.G. An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials.Biochem. Pharmacol.199855672773610.1016/S0006‑2952(97)00510‑89586944
    [Google Scholar]
  38. HerrmannC. SalasP.F. PatrickB.O. KockC. SmithP.J. AdamM.J. OrvigC. Modular synthesis of 1,2- and 1,1′-disubstituted ferrocenyl carbohydrate chloroquine and mefloquine conjugates as potential antimalarial agents.Organometallics201231165748575910.1021/om300392q
    [Google Scholar]
  39. HuntP. CravoP.V.L. DonleavyP. CarltonJ.M-R. WallikerD. Chloroquine resistance in Plasmodium chabaudi: Are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved?Mol. Biochem. Parasitol.20041331273510.1016/j.molbiopara.2003.08.01014668009
    [Google Scholar]
  40. BurschW. The autophagosomal–lysosomal compartment in programmed cell death.Cell Death Differ.20018656958110.1038/sj.cdd.440085211536007
    [Google Scholar]
  41. EganT.J. HunterR. KaschulaC.H. MarquesH.M. MisplonA. WaldenJ. Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of beta-hematin formation, and antiplasmodial activity.J. Med. Chem.200043228329110.1021/jm990437l10649984
    [Google Scholar]
  42. IwaniukD.P. WhetmoreE.D. RosaN. Ekoue-KoviK. AlumasaJ. de DiosA.C. RoepeP.D. WolfC. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain.Bioorg. Med. Chem.200917186560656610.1016/j.bmc.2009.08.00319703776
    [Google Scholar]
  43. KitamuraK. Kishi-ItakuraC. TsuboiT. SatoS. KitaK. OhtaN. MizushimaN. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.PLoS One201278e4297710.1371/journal.pone.004297722900071
    [Google Scholar]
  44. MeslinB. BarnadasC. BoniV. LatourC. MonbrisonF.D. KaiserK. PicotS. Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein.J. Infect. Dis.2007195121852185910.1086/51825317492602
    [Google Scholar]
  45. RijpmaS.R. van den HeuvelJ.J.M.W. van der VeldenM. SauerweinR.W. RusselF.G.M. KoenderinkJ.B. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity.Malar. J.201413135910.1186/1475‑2875‑13‑35925218605
    [Google Scholar]
  46. TotinoP.R.R. Daniel-RibeiroC.T. Corte-RealS. Ferreira-da-CruzM.F. Plasmodium falciparum: Erythrocytic stages die by autophagic-like cell death under drug pressure.Exp. Parasitol.2008118447848610.1016/j.exppara.2007.10.01718226811
    [Google Scholar]
  47. UrenA. O’RourkeK. AravindL.A. PisabarroM.T. SeshagiriS. KooninE.V. DixitV.M. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma.Mol. Cell20006496196710.1016/S1097‑2765(00)00094‑011090634
    [Google Scholar]
  48. WalkerD.M. MahfoozN. KemmeK.A. PatelV.C. SpanglerM. DrewM.E. Plasmodium falciparum erythrocytic stage parasites require the putative autophagy protein PfAtg7 for normal growth.PLoS One201386e6704710.1371/journal.pone.006704723825614
    [Google Scholar]
  49. DesjardinsR.E. CanfieldC.J. HaynesJ.D. ChulayJ.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique.Antimicrob. Agents Chemother.197916671071810.1128/AAC.16.6.710394674
    [Google Scholar]
  50. PérezB.C. TeixeiraC. AlbuquerqueI.S. GutJ. RosenthalP.J. GomesJ.R.B. PrudêncioM. GomesP. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.J. Med. Chem.201356255656710.1021/jm301654b23273038
    [Google Scholar]
  51. PérezB. TeixeiraC. AlbuquerqueI.S. GutJ. RosenthalP.J. PrudêncioM. GomesP. PRIMACINS, N-cinnamoyl-primaquine conjugates, with improved liver-stage antimalarial activity.MedChemComm201239117010.1039/c2md20113e
    [Google Scholar]
  52. CornutD. LemoineH. KanishchevO. OkadaE. AlbrieuxF. BeavoguiA.H. BienvenuA.L. PicotS. BouillonJ.P. MédebielleM. Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities.J. Med. Chem.2013561738310.1021/jm301076q23102258
    [Google Scholar]
  53. ManoharS. RajeshU.C. KhanS.I. TekwaniB.L. RawatD.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity.ACS Med. Chem. Lett.20123755555910.1021/ml300080824900509
    [Google Scholar]
  54. SinghK. KaurH. SmithP. de KockC. ChibaleK. BalzariniJ. Quinoline-pyrimidine hybrids: Synthesis, antiplasmodial activity, SAR, and mode of action studies.J. Med. Chem.201457243544810.1021/jm401477824354322
    [Google Scholar]
  55. CasagrandeM. BarteselliA. BasilicoN. ParapiniS. TaramelliD. SparatoreA. Synthesis and antiplasmodial activity of new heteroaryl derivatives of 7-chloro-4-aminoquinoline.Bioorg. Med. Chem.201220195965597910.1016/j.bmc.2012.07.04022917857
    [Google Scholar]
  56. GemmaS. CampianiG. ButiniS. JoshiB.P. KukrejaG. CocconeS.S. BernettiM. PersicoM. NacciV. FioriniI. NovellinoE. TaramelliD. BasilicoN. ParapiniS. YardleyV. CroftS. Keller-MaerkiS. RottmannM. BrunR. ColettaM. MariniS. GuisoG. CacciaS. FattorussoC. Combining 4-aminoquinoline- and clotrimazole-based pharmacophores toward innovative and potent hybrid antimalarials.J. Med. Chem.200952250251310.1021/jm801352s19113955
    [Google Scholar]
  57. GemmaS. CamodecaC. Sanna CocconeS. JoshiB.P. BernettiM. MorettiV. BrogiS. Bonache de MarcosM.C. SaviniL. TaramelliD. BasilicoN. ParapiniS. RottmannM. BrunR. LamponiS. CacciaS. GuisoG. SummersR.L. MartinR.E. SaponaraS. GorelliB. NovellinoE. CampianiG. ButiniS. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling.J. Med. Chem.201255156948696710.1021/jm300802s22783984
    [Google Scholar]
  58. HerrmannC. SalasP.F. PatrickB.O. de KockC. SmithP.J. AdamM.J. OrvigC. 1,2-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents.Dalton Trans.201241216431644210.1039/c2dt12050j22378031
    [Google Scholar]
  59. RusconiC. VaianaN. CasagrandeM. BasilicoN. ParapiniS. TaramelliD. RomeoS. SparatoreA. Synthesis and comparison of antiplasmodial activity of (+), (−) and racemic 7-chloro-4-(N-lupinyl)aminoquinoline.Bioorg. Med. Chem.201220195980598510.1016/j.bmc.2012.07.04122901673
    [Google Scholar]
  60. RayS. MadridP.B. CatzP. LeValleyS.E. FurnissM.J. RauschL.L. GuyR.K. DeRisiJ.L. IyerL.V. GreenC.E. MirsalisJ.C. Development of a new generation of 4-aminoquinoline antimalarial compounds using predictive pharmacokinetic and toxicology models.J. Med. Chem.20105393685369510.1021/jm100057h20361799
    [Google Scholar]
  61. PradinesB. TallA. RogierC. SpiegelA. MosnierJ. MarramaL. FusaiT. MilletP. PanconiE. TrapeJ.F. ParzyD. In vitro activities of ferrochloroquine against 55 Senegalese isolates of Plasmodium falciparum in comparison with those of standard antimalarial drugs.Trop. Med. Int. Health20027326527010.1046/j.1365‑3156.2002.00848.x11903989
    [Google Scholar]
  62. PradinesB. FusaiT. DariesW. LalogeV. RogierC. MilletP. PanconiE. KombilaM. ParzyD. Ferrocene-chloroquine analogues as antimalarial agents: In vitro activity of ferrochloroquine against 103 Gabonese isolates of Plasmodium falciparum.J. Antimicrob. Chemother.200148217918410.1093/jac/48.2.17911481286
    [Google Scholar]
  63. QuiranteJ. RuizD. GonzalezA. LópezC. CascanteM. CortésR. MesseguerR. CalvisC. BaldomàL. PascualA. GuérardelY. PradinesB. Font-BardíaM. CalvetT. BiotC. Platinum(II) and palladium(II) complexes with (N,N′) and (C,N,N′)− ligands derived from pyrazole as anticancer and antimalarial agents: Synthesis, characterization and in vitro activities.J. Inorg. Biochem.2011105121720172810.1016/j.jinorgbio.2011.09.02122104300
    [Google Scholar]
  64. SolomonV.R. HaqW. SmilksteinM. SrivastavaK. PuriS.K. KattiS.B. 4-Aminoquinoline derived antimalarials: Synthesis, antiplasmodial activity and heme polymerization inhibition studies.Eur. J. Med. Chem.201045114990499610.1016/j.ejmech.2010.07.06820805010
    [Google Scholar]
  65. ClarkI.A. SchofieldL. Pathogenesis of malaria.Parasitol. Today2000161045145410.1016/S0169‑4758(00)01757‑911006479
    [Google Scholar]
  66. EganT.J. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation.J. Inorg. Biochem.20081025-61288129910.1016/j.jinorgbio.2007.12.00418226838
    [Google Scholar]
  67. StainesH. M. Treatment and Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use.Birkhauser Verlag AGBasel, Switzerland2014
    [Google Scholar]
  68. HempelmannE. Hemozoin Biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors.Parasitol. Res.2007100467167610.1007/s00436‑006‑0313‑x17111179
    [Google Scholar]
  69. ZishiriV.K. HunterR. SmithP.J. TaylorD. SummersR. KirkK. MartinR.E. EganT.J. A series of structurally simple chloroquine chemosensitizing dibemethin derivatives that inhibit chloroquine transport by PfCRT.Eur. J. Med. Chem.20114651729174210.1016/j.ejmech.2011.02.02621396749
    [Google Scholar]
  70. BurgessS.J. SelzerA. KellyJ.X. SmilksteinM.J. RiscoeM.K. PeytonD.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem.200649185623562510.1021/jm060399n16942036
    [Google Scholar]
  71. de SouzaN.B. CarmoA.M.L. da SilvaA.D. FrançaT.C.C. KrettliA.U. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action.Malar. J.201413146910.1186/1475‑2875‑13‑46925440372
    [Google Scholar]
  72. NavarroM. CastroW. MadametM. AmalvictR. BenoitN. PradinesB. Metal-chloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action.Malar. J.201413147110.1186/1475‑2875‑13‑47125470995
    [Google Scholar]
  73. YeoS.J. LiuD.X. KimH.S. ParkH. Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria.Malar. J.20171618010.1186/s12936‑017‑1725‑z28212631
    [Google Scholar]
  74. RudrapalM. ChetiaD. PrakashA. Synthesis, antimalarial-, and antibacterial activity evaluation of some new 4-aminoquinoline derivatives.Med. Chem. Res.20132283703371110.1007/s00044‑012‑0371‑9
    [Google Scholar]
  75. SinghB. ChetiaD. PuriS.K. SrivastavaK. PrakashA. Synthesis and in vitro and in vivo antimalarial activity of novel 4-anilinoquinoline Mannich base derivatives.Med. Chem. Res.20112091523152910.1007/s00044‑010‑9397‑z
    [Google Scholar]
  76. SrinivasaraoK. AgarwalP. SrivastavaK. HaqW. PuriS.K. KattiS.B. Design, synthesis, and in vitro antiplasmodial activity of 4-aminoquinolines containing modified amino acid conjugates.Med. Chem. Res.20162561148116210.1007/s00044‑016‑1555‑5
    [Google Scholar]
  77. SinghS. AgarwalD. SharmaK. SharmaM. NielsenM.A. AlifrangisM. SinghA.K. GuptaR.D. AwasthiS.K. 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites.Eur. J. Med. Chem.201612239440710.1016/j.ejmech.2016.06.03327394399
    [Google Scholar]
  78. GayamV. RaviS. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents.Eur. J. Med. Chem.201713538239110.1016/j.ejmech.2017.04.06328460312
    [Google Scholar]
  79. Bonilla-RamirezL. RiosA. QuilianoM. Ramirez-CalderonG. Beltrán-HortelanoI. FranetichJ.F. CorcueraL. BordessoullesM. VettorazziA. López de CerainA. AldanaI. MazierD. PabónA. GalianoS. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies.Eur. J. Med. Chem.2018158688110.1016/j.ejmech.2018.08.06330199706
    [Google Scholar]
  80. MushtaqueM. Shahjahan Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review.Eur. J. Med. Chem.20159028029510.1016/j.ejmech.2014.11.02225461328
    [Google Scholar]
  81. PandeyS. AgarwalP. SrivastavaK. RajaKumarS. PuriS.K. VermaP. SaxenaJ.K. SharmaA. LalJ. ChauhanP.M.S. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents.Eur. J. Med. Chem.201366698110.1016/j.ejmech.2013.05.02323792317
    [Google Scholar]
  82. Delarue-CochinS. GrellierP. MaesL. MourayE. SergheraertC. MelnykP. Synthesis and antimalarial activity of carbamate and amide derivatives of 4-anilinoquinoline.Eur. J. Med. Chem.200843102045205510.1016/j.ejmech.2007.11.00318226428
    [Google Scholar]
  83. TiwariV.S. JoshiP. YadavK. SharmaA. ChowdhuryS. ManhasA. KumarN. TripathiR. HaqW. Synthesis and antimalarial activity of 4-methylaminoquinoline compounds against drug-resistant parasite.ACS Omega2021620129841299410.1021/acsomega.0c0605334056449
    [Google Scholar]
  84. KumarA. JainS. ChauhanS. AggarwalS. SainiD. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction.Chem. Biol. Interact.202337311037911037910.1016/j.cbi.2023.11037936738914
    [Google Scholar]
  85. AdigunR.A. MalanF.P. BalogunM.O. OctoberN. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids.Struct. Chem.20233462065208210.1007/s11224‑023‑02142‑y
    [Google Scholar]
  86. MuruganK. PanneerselvamC. SubramaniamJ. PaulpandiM. RajaganeshR. VasanthakumaranM. MadhavanJ. ShafiS.S. RoniM. Portilla-PulidoJ.S. MendezS.C. DuqueJ.E. WangL. AzizA.T. ChandramohanB. DineshD. PiramanayagamS. HwangJ.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases.Sci. Rep.2022121476510.1038/s41598‑022‑08397‑535306526
    [Google Scholar]
  87. Espinosa-SaezR. RobledoS.M. PinedaT. MurilloJ. ZúñigaC. YañezO. Cantero-LópezP. Saez-VegaA. Guzmán-TeranC. Screening of the antileishmanial and antiplasmodial potential of synthetic 2-arylquinoline analogs.Sci. Rep.20231311752310.1038/s41598‑023‑43805‑437845281
    [Google Scholar]
  88. HayJ. de VilliersK. TaylorD. OlivierT. van OtterloW. BlackieM. Quinoline-benzofuran and quinoline-benzothiophene derivatives as antiplasmodium agents.S. Afr. J. Chem.20237781810.17159/0379‑4350/2023/v77a02
    [Google Scholar]
  89. WaniW.A. JameelE. BaigU. MumtazuddinS. HunL.T. Ferroquine and its derivatives: New generation of antimalarial agents.Eur. J. Med. Chem.201510153455110.1016/j.ejmech.2015.07.00926188909
    [Google Scholar]
  90. SalasP.F. HerrmannC. CawthrayJ.F. NimphiusC. KenkelA. ChenJ. de KockC. SmithP.J. PatrickB.O. AdamM.J. OrvigC. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms.J. Med. Chem.20135641596161310.1021/jm301422h23327489
    [Google Scholar]
  91. BiotC. PradinesB. SergeantM.H. GutJ. RosenthalP.J. ChibaleK. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues.Bioorg. Med. Chem. Lett.200717236434643810.1016/j.bmcl.2007.10.00317949976
    [Google Scholar]
  92. BiotC. ChavainN. DubarF. PradinesB. TrivelliX. BrocardJ. ForfarI. DiveD. Structure–activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine.J. Organomet. Chem.2009694684585410.1016/j.jorganchem.2008.09.033
    [Google Scholar]
  93. BlackieM.A.L. BeagleyP. CroftS.L. KendrickH. MossJ.R. ChibaleK. Metallocene-based antimalarials: An exploration into the influence of the ferrocenyl moiety on in vitro antimalarial activity in chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum.Bioorg. Med. Chem.200715206510651610.1016/j.bmc.2007.07.01217693090
    [Google Scholar]
  94. LiY. de KockC. SmithP.J. ChibaleK. SmithG.S. Synthesis and evaluation of a carbosilane congener of ferroquine and its corresponding half-sandwich ruthenium and rhodium complexes for antiplasmodial and β-hematin inhibition activity.Organometallics201433174345434810.1021/om500622p
    [Google Scholar]
/content/journals/mc/10.2174/0115734064318361240827072124
Loading
/content/journals/mc/10.2174/0115734064318361240827072124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test