Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

It is noteworthy that a wide array of plants and nutraceuticals are effectively utilized in the treatment of various cancers, demonstrating potent effects on different cancer targets with fewer side effects. Notably, estrogen alpha has been identified as a crucial factor in breast cancer cell proliferation. Agents that can antagonize its action hold promise as potential drug leads for the treatment of breast cancer.

Objective

This study aims to discover and identify the potential inhibitors against the most influential ERα receptor by the computational approach of 134 phytochemicals from 17 medicinal plants by using docking studies.

Methods

The molecular docking was performed by a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed by using Molecular Dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. Drug-likeness properties and toxicity studies were conducted using SWISS PRO.

Results

The top ten highest binding energy phytochemicals ginicidin (-10.8 kcal/mol), lemairone (-10.5 kcal/mol), ixoratannin (-10.0 kcal/mol), hydnocarpine (-9.8 kcal/mol), arabelline (-9.8 kcal/mol), acutilobine E (-9.8 kcal/mol), chaparinone (-8.9 kcal/mol), plumieride coumerate (-8.8 kcal/mol), acutilobine C (-8.7 kcal/mol), and mezerein (-8.7 kcal/mol) were taken for drug-likeness test and ADMET profile prediction with the help of web-based server SWISS ADME and protoxII. Docking's study dictated that ten phytochemical constituents showed greater binding interactions than standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. MSD study was achieved for the most active 4 phytoconstituents, and the stability of the ligand-protein complex was confirmed and showed that all the four compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen-ERα complex.

Conclusion

Among the top ten phytochemicals, ginicidin (glycoside) formed a more stable complex and had greater binding affinity than standard tamoxifen with better safety profiles. Hence, this compound can be further studied for lead optimization and drug development for the treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064301748240821081206
2024-09-05
2025-05-13
Loading full text...

Full text loading...

References

  1. American Cancer Society Cancer Facts and Figures 2023.Atlanta, GaAmerican Cancer Society2023
    [Google Scholar]
  2. Explore Cancer Statistics.Available from: Cancerstatistics center.cancer.org(accessed on 7-7-2024)
  3. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  4. GrandeF. RizzutiB. OcchiuzziM.A. IoeleG. CasacchiaT. GelminiF. GuzziR. GarofaloA. StattiG. Identification by molecular docking of homoisoflavones from Leopoldiacomosa as ligands of estrogen receptors.Molecules201823489410.3390/molecules2304089429649162
    [Google Scholar]
  5. YagerJ.D. DavidsonN.E. Estrogen carcinogenesis in breast cancer.N. Engl. J. Med.2006354327028210.1056/NEJMra05077616421368
    [Google Scholar]
  6. HelgueroL.A. FauldsM.H. GustafssonJ.Å. HaldosénL.A. Estrogen receptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11.Oncogene200524446605661610.1038/sj.onc.120880716007178
    [Google Scholar]
  7. MurphyL.C. PengB. LewisA. DavieJ.R. LeygueE. KempA. UngK. VendettiM. ShiuR. Inducible upregulation of oestrogen receptor-β1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells.J. Mol. Endocrinol.200534255356610.1677/jme.1.0168815821116
    [Google Scholar]
  8. SharmaD. KumarS. NarasimhanB. Estrogen alpha receptor antagonists for the treatment of breast cancer: a review.Chem. Cent. J.201812110710.1186/s13065‑018‑0472‑830361894
    [Google Scholar]
  9. TreeckO. LattrichC. SpringwaldA. OrtmannO. Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells.Breast Cancer Res. Treat.2010120355756510.1007/s10549‑009‑0413‑219434490
    [Google Scholar]
  10. HartmanJ. LindbergK. MoraniA. InzunzaJ. StrömA. GustafssonJ.Å. Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts.Cancer Res.20066623112071121310.1158/0008‑5472.CAN‑06‑001717145865
    [Google Scholar]
  11. SwabyR.F. SharmaC.G.N. JordanV.C. SERMs for the treatment and prevention of breast cancer.Rev. Endocr. Metab. Disord.20078322923910.1007/s11154‑007‑9034‑417440819
    [Google Scholar]
  12. RawatP. KumarB. MisraA. SinghS.P. SrivastavaS. In silico guided in vitro study of traditionally used medicinal plants reveal the alleviation of post-menopausal symptoms through ERβ binding and MAO-A inhibition.J. Biomol. Struct. Dyn.2023311410.1080/07391102.2023.227631737921699
    [Google Scholar]
  13. AkashS. BibiS. BiswasP. MukerjeeN. KhanDA. HasanMN. SultanaNA. HosenME. JardanYAB. NafidiHA. BourhiaM. Revolutionizing anti-cancer drug discovery against breast cancer and lung cancer by modification of natural genistein: an advanced computational and drug design approach.Front Oncol.202313122886510.3389/fonc.2023.1228865
    [Google Scholar]
  14. AbdullahA. BiswasP. Molecular dynamics simulation and pharmacoinformatic integrated analysis of bioactive phytochemicals from Azadirachta indica (Neem) to treat diabetes mellitus.J. Chem.20233417070310.1155/2023/4170703
    [Google Scholar]
  15. RasulHO. AzizBK. GhafourDD. KivrakA. In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer.J Mol Model.202128117
    [Google Scholar]
  16. SuetsugiM. SuL. KarlsbergK. YuanY.C. ChenS. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors.Mol. Cancer Res.200311398199114638870
    [Google Scholar]
  17. ZandR.S.R. JenkinsD.J.A. DiamandisE.P. Steroid hormone activity of flavonoids and related compounds.Breast Cancer Res. Treat.2000621354910.1023/A:100642230217310989984
    [Google Scholar]
  18. AbreuI. ChoiY. SawayaA. EberlinM. MazzaferaP. VerpoorteR. Metabolic alterations in different developmental stages of Pilocarpus microphyllus.Planta Med.201177329330010.1055/s‑0030‑125031420845264
    [Google Scholar]
  19. RochaJ.A. AndradeI.M. VérasL.M.C. QuelemesP.V. LimaD.F. SoaresM.J.S. PintoP.L.S. MayoS.J. IvanovaG. RangelM. CorreiaM. MafudA.C. MascarenhasY.P. Delerue-MatosC. de MoraesJ. EatonP. LeiteJ.R.S.A. Anthelmintic, antibacterial and cytotoxicity activity of imidazole alkaloids from Pilocarpus microphyllus Leaves.Phytother. Res.201731462463010.1002/ptr.577128111828
    [Google Scholar]
  20. HammelB.E. GrayumM.H. HerreraC. ZamoraN. Manual de Plantas de Costa Rica.St. Louis, MO, USAMissouri Botanical Garden Press2010
    [Google Scholar]
  21. ArnaezE. MoreiraI. NavarroM. ManejoAgroecológico de NueveEspecies de Plantas de UsoTradicionalCultivadas en Costa Rica.San Jose, Costa RicaFLACSO Latin American Institute2016185
    [Google Scholar]
  22. "Elephantopuselatus". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team.Available from: plants.usda.gov(accessed on 7-7-2024)
  23. WeakleyA.S. Flora of the Southeastern United States. Edition of 2020.Chapel Hill, North CarolinaUniversity of North Carolina2020
    [Google Scholar]
  24. CanterP.H. LeeH.S. ErnstE. A systematic review of randomised clinical trials of Tripterygium wilfordii for rheumatoid arthritis.Phytomedicine200613537137710.1016/j.phymed.2006.01.01016487688
    [Google Scholar]
  25. KupchanS.M. CourtW.A. DaileyR.G.Jr GilmoreC.J. BryanR.F. Tumor inhibitors. LXXIV. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii.J. Am. Chem. Soc.197294207194719510.1021/ja00775a0785072337
    [Google Scholar]
  26. BlackR. GilmanE. KnowG. RuppertK. Mulches for landscapes.UC ANR Publications1993
    [Google Scholar]
  27. Al-SayedE. Unearthing the chemical composition of Taxodium distichum (L.) Rich. leaf essential oil and its antimicrobial activity.Ind. Crops Prod.2018126768210.1016/j.indcrop.2018.10.009
    [Google Scholar]
  28. GrisebachA.H.R. Flora of the British West Islands.LondonUK Lovell Reeve and Co.18641814187910.5962/bhl.title.106964
    [Google Scholar]
  29. AbayS.M. LucantoniL. DahiyaN. DoriG. DemboE.G. EspositoF. LupidiG. OgboiS. OuédraogoR.K. SinisiA. Taglialatela-ScafatiO. YerbangaR.S. BramucciM. QuassintiL. OuédraogoJ.B. ChristophidesG. HabluetzelA. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds.Malar. J.201514128810.1186/s12936‑015‑0812‑226208861
    [Google Scholar]
  30. AruomaO.I. SunB. FujiiH. NeergheenV.S. BahorunT. KangK.S. SungM.K. Low molecular proanthocyanidin dietary biofactor Oligonol: Its modulation of oxidative stress, bioefficacy, neuroprotection, food application and chemoprevention potentials.Biofactors2006271-424526510.1002/biof.552027012117012779
    [Google Scholar]
  31. Félix-SilvaJ. GiordaniR.B. Silva-JrA.A. ZucolottoS.M. Fernandes-PedrosaM.F. Jatropha gossypiifolia L. (Euphorbiaceae): A review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant.Evid. Based Complement. Alternat. Med.2014201413210.1155/2014/36920425002902
    [Google Scholar]
  32. WebsterG.L. Classification of the Euphorbiaceae.Ann. Mo. Bot. Gard.1994811314310.2307/2399908
    [Google Scholar]
  33. Bailey Hortorium Staff 1976. Hortus Third. Macmillan Publishing Co., Inc., New York. Clout, M. N. & M. Poorter. International initiatives against invasive alien species.Weed Technol.200519523527
    [Google Scholar]
  34. AbediniW.L. MarlatsR.M. Propagation and growth of Pacific Yew(Taxus brevifolia Nutt.) Cuttings.Northwest Sci.199771l5663
    [Google Scholar]
  35. BarboniL. GariboldiP. TorregianiE. AppendinoG. VareseM. GabettaB. BombardelliE. Minor taxoids from Taxus wallichiana.J. Nat. Prod.199558693493910.1021/np50120a0197673940
    [Google Scholar]
  36. AhmedA. G. GalalT. M. MasatakeN. Two flavonoid glycosides from Chenopodium murale.Phyotochemistry532299303
    [Google Scholar]
  37. BurkillH.M. Entry for Lasiurus hirsutus (Forssk.) Boiss.family POACEAE The useful plants of West tropical Africa.2nd edKew, UKRoyal Botanic Gardens1985
    [Google Scholar]
  38. BaatoutH. MarrakchiM. PernesJ. Electrophoretic studies of genetic variation in natural populations of allogamous Hedysarum capitatum and autogamous Hedysarum euspinosissimum. Plant Sci.1990691496410.1016/0168‑9452(90)90104‑V
    [Google Scholar]
  39. ChenL. ChenF. HeS. MaL. High genetic diversity and small genetic variation among populations of Magnolia wufengensis (Magnoliaceae), revealed by ISSR and SRAP markers.Electron. J. Biotechnol.201417626827410.1016/j.ejbt.2014.08.003
    [Google Scholar]
  40. AlexanderS. Fungal Disease Threatens Gin Production.Available from:http://www.telegraph.co.uk/food-and-drink/news/gin-crisis/(accessed on 7-7-2024)2015
  41. FarhatP. HidalgoO. RobertT. Siljak-YakovlevS. LeitchI.J. AdamsR.P. Bou Dagher-KharratM. Polyploidy in the conifer genus Juniperus: An unexpectedly high rate.Front. Plant Sci.20191067610.3389/fpls.2019.0067631191584
    [Google Scholar]
  42. MabberleyD.J. The Plant-Book.2nd edCambridgeCambridge University Press1997680
    [Google Scholar]
  43. WangR.W. RebhumL.I. KupchanS.M. Antimitotic and antitubulin activity of the tumor inhibitor steganacin.Cancer Res.197737930713079560248
    [Google Scholar]
  44. MukherjeeP.K. VenkateshP. PonnusankarS. Ethnopharmacology and integrative medicine - Let the history tell the future.J. Ayurveda Integr. Med.20101210010910.4103/0975‑9476.6507721836796
    [Google Scholar]
  45. ShogeO.M. NdukweI.G. AmupitanJ. Phytochemical and antimicrobial studies on the aerial parts of Heliotropiumindicum Linn.Ann. Biol. Res.201122129136
    [Google Scholar]
  46. Brazilian Flora 2020 project - Projeto Flora do Brasil 2020.2020Available from: https://www.gbif.org/dataset/aacd816d-662c-49d2-ad1a-97e66e2a2908(accessed on 7-7-2024)
  47. BudzikiewiczH. PakrashiS.C. VorbrüggenH. Die isolierung von emetin, cephaelin und psychotrin aus alangium lamarckii und die identifizierung von almarckine mit N-methylcephaelin.Tetrahedron196420239940810.1016/S0040‑4020(01)93226‑0
    [Google Scholar]
  48. AdjanohounE. AhyiM.R.A. Ake-AssiL. ElewudeJ.A. DramaneK. FadojuS.O. Traditional Medicine and Pharmacopoeia. Contribution to Ethnobotanical Floristic Studies in Western Nigeria.NigeriaPub. Organization of African Unity1991420
    [Google Scholar]
  49. AdebiyiA.O. KoekemoerT. AdebiyiA.P. SmithN. BaxterE. NaudeR.J. van de VenterM. Antimicrobial and antioxidant activities of crude extracts of two Nigerian chewing sticks.Pharm. Biol.200947432032710.1080/13880200902748460
    [Google Scholar]
  50. KarakayaS. GögerG. BonaG.E. YucaH. AydınB. TekmanE. ŞahinA.A. PınarN.M. GüvenalpZ. Screening of antimicrobial, antioxidant, antidiabetic activities, anatomical and morphological properties of Colchicum speciosum Steven (Colchicaceae).Protoplasma202225961493150610.1007/s00709‑022‑01752‑335262800
    [Google Scholar]
  51. KiiçiikerO. Contributions lo the knowledge of some endangered Colchicum species of Turkey.Fl. Medit19955211219
    [Google Scholar]
  52. TrottO. OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2010312455461
    [Google Scholar]
  53. AlagarsamyV. SundarP.S. SolomonV.R. MurugesanS. Muzaffar-Ur-RehmanM. KulkarniV.S. SulthanaM.T. NarendharB. SabareesG. Computational screening of some phytochemicals to identify best modulators for ligand binding domain of estrogen receptor alpha.Curr. Pharm. Des.202430201599160910.2174/011381612828743124040804573238698754
    [Google Scholar]
  54. AlagarsamyV. SundarP.S. NarendharB. SulthanaM.T. SolomonV.R. AishwaryaA.D. RavikumarV. RupeshkumarM. KavithaK. GobinathM. NivedhithaS. ParthibanP. Screening of some ayurvedic phytochemicals to identify potential inhibitors against SARS-CoV-2 Mpro by in silico computational approach.Antiinfect. Agents202422510.2174/0122113525255835240107162255
    [Google Scholar]
  55. AlagarsamyV. SolomonV.R. MurugesanS. SundarP.S. Muzaffar-Ur-RehmanM. ChanduA. AishwaryaA.D. NarendharB. SulthanaM.T. RavikumarV. In silico screening of some active phytochemicals to identify promising inhibitors against SARS-CoV-2 targets.Curr. Drug Discov. Technol.2024213e09102322190610.2174/011570163824322223092005105037861016
    [Google Scholar]
  56. AlagarsamyV. SundarP.S. NarendharB. SulthanaM.T. KulkarniV.S. AishwaryaA.D. SolomonV.R. MurugesanS. JubieS. RohithaK. DhanwarS. An in silico investigation to identify promising inhibitors for SARS-CoV-2 Mpro target.Med. Chem.202319992593810.2174/157340641966623041311280237069723
    [Google Scholar]
  57. KriegerE. VriendG. YASARA View—molecular graphics for all devices—from smartphones to workstations.Bioinformatics201430202981298210.1093/bioinformatics/btu42624996895
    [Google Scholar]
  58. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  59. PekkaMark Lennart Nilsson. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K.J. Phys. Chem. A200110543
    [Google Scholar]
  60. JorgensenW.L. MaxwellD.S. Tirado-RivesJ. Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids.J. Am. Chem. Soc.199611845112251123610.1021/ja9621760
    [Google Scholar]
  61. KulkarniA.V. TevethiaH.V. PremkumarM. ArabJ.P. CandiaR. KumarK. KumarP. SharmaM. RaoP.N. ReddyD.N. Impact of COVID-19 on liver transplant recipients–A systematic review and meta-analysis.EClinicalMedicine20213810102510.1016/j.eclinm.2021.10102534278287
    [Google Scholar]
  62. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  63. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  64. FerreiraL.L.G. AndricopuloA.D. ADMET modeling approaches in drug discovery.Drug Discov. Today20192451157116510.1016/j.drudis.2019.03.01530890362
    [Google Scholar]
  65. SandersJ.M. BeshoreD.C. CulbersonJ.C. FellsJ.I. ImbriglioJ.E. GunaydinH. HaidleA.M. LabroliM. MattioniB.E. SciammettaN. ShipeW.D. SheridanR.P. SuenL.M. VerrasA. WaljiA. JoshiE.M. BuetersT. Informing the selection of screening hit series with in silico absorption, distribution, metabolism, excretion, and toxicity profiles.J. Med. Chem.201760166771678010.1021/acs.jmedchem.6b0157728418656
    [Google Scholar]
  66. MorrisG.M. Lim-WilbyM. Molecular Docking.Methods Mol. Biol.200844336538210.1007/978‑1‑59745‑177‑2_1918446297
    [Google Scholar]
  67. HodaA. Lika ÇekaniM. KolaneciV. Identification of deleterious nsSNPs in human HGF gene: in silico approach.J. Biomol. Struct. Dyn.20234121118891190310.1080/07391102.2022.216406036598356
    [Google Scholar]
  68. HodaA. BixhekuX. Lika ÇekaniM. Computational analysis of non-synonymous single nucleotide polymorphism in the bovine PKLR gene Computational analysis of bovine PKLR gene.J. Biomol. Struct. Dyn.20244284155416810.1080/07391102.2023.221931537278385
    [Google Scholar]
  69. GowthamH.G. MuraliM. SinghS.B. ShivamalluC. PradeepS. ShivakumarC.S. AnandanS. ThampyA. AcharR.R. SilinaE. StupinV. Ortega-CastroJ. FrauJ. Flores-HolguínN. AmrutheshK.N. KollurS.P. Glossman-MitnikD. Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies.PLoS One20221710e027543210.1371/journal.pone.027543236201520
    [Google Scholar]
  70. RajagopalK. KalusalingamA. BharathidasanA.R. SivaprakashA. ShanmugamK. SundaramoorthyM. ByranG. In silico drug design of anti-breast cancer agents.Molecules20232810417510.3390/molecules2810417537241915
    [Google Scholar]
  71. NieY.W. LiY. LuoL. ZhangC.Y. FanW. GuW.Y. ShiK.R. ZhaiX.X. ZhuJ.Y. Phytochemistry and pharmacological activities of the diterpenoids from the genus Daphne.Molecules20212621659810.3390/molecules2621659834771007
    [Google Scholar]
/content/journals/mc/10.2174/0115734064301748240821081206
Loading
/content/journals/mc/10.2174/0115734064301748240821081206
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article Supplementary file MC.docx.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test