Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Breast cancer is the most common type of cancer among women. Steroidal or non-steroidal aromatase inhibitors (NSAIs) are used clinically, and in most cancer diseases, resistance is the most important problem.

Methods

The nitrogenous heterocyclic ring is noteworthy in the structure of non-steroidal aromatase inhibitors. This is the pharmacophore structure for aromatase inhibition. Because the enzyme interacts with the Fe2+ cation of the HEM structure in its active site, the most used agents in the clinic, such as anastrozole and letrozole, contain triazoles in their structures. Within the scope of this study, hybrid compounds containing both imidazole and triazole were synthesized.

Results

The synthesis was carried out by a 4-step reaction. The anticancer effects of the compounds were evaluated by MTT assay performed on A549 and MCF-7 cancer cells. Compound showed anticancer activity against the MCF-7 cell line with IC=6.7342 uM value. This compound exhibited anticancer activity against the A549 cell line with an IC = 17.1761 μM. In the MTT test performed on a healthy cell line to determine the cytotoxic effects of the compounds, the compound showed activity with a value of IC=13.2088 uM. This indicates that the compound is not cytotoxic.

Additionally, BrdU analysis was performed to evaluate whether the compound inhibits DNA synthesis. These selective effects of the compounds on breast cancer strengthened their aromatase enzyme inhibitor potential. For this reason, experiments conducted with both and methods revealed a compound with high aromatase inhibitor potential.

Conclusion

The interactions observed as a result of molecular docking and dynamics studies are in harmony with activity studies. In particular, interactions with HEM600 demonstrate the activity potential of the compound.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064316112240722092935
2024-09-18
2025-05-11
Loading full text...

Full text loading...

References

  1. SiegelR. MaJ. ZouZ. JemalA. Cancer statistics, 2014.CA Cancer J. Clin.201464192910.3322/caac.21208 24399786
    [Google Scholar]
  2. CaciollaJ. MartiniS. SpinelloA. PavlinM. TurriniE. SimonelliF. BellutiF. RampaA. BisiA. FimognariC. ZaffaroniN. GobbiS. MagistratoA. Balanced dual acting compounds targeting aromatase and estrogen receptor α as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer.Eur. J. Med. Chem.202122411373310.1016/j.ejmech.2021.113733 34364162
    [Google Scholar]
  3. WanY. FangG. ChenH. DengX. TangZ. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation.Eur. J. Med. Chem.202122611383710.1016/j.ejmech.2021.113837 34530384
    [Google Scholar]
  4. CaciollaJ. MartiniS. SpinelloA. BellutiF. BisiA. ZaffaroniN. MagistratoA. GobbiS. Single-digit nanomolar inhibitors lock the aromatase active site via a dualsteric targeting strategy.Eur. J. Med. Chem.202224411480210.1016/j.ejmech.2022.114802 36240547
    [Google Scholar]
  5. EissaA.G. BarrowD. GeeJ. PowellL.E. FosterP.A. SimonsC. 4th generation nonsteroidal aromatase inhibitors: An iterative SAR-guided design, synthesis, and biological evaluation towards picomolar dual binding inhibitors.Eur. J. Med. Chem.202224011456910.1016/j.ejmech.2022.114569 35834906
    [Google Scholar]
  6. LekgauK. RaphokoL.A. LebepeC.M. MongokoanaD.F. LebohoT.C. MatsebatlelaT.M. GumedeN.J. NxumaloW. Design and synthesis of 6-amino-quinoxaline-alkynyl as potential aromatase (CYP19A1) inhibitors.J. Mol. Struct.2022125513247310.1016/j.molstruc.2022.132473
    [Google Scholar]
  7. GiampietroL. GalloriniM. GambacortaN. AmmazzalorsoA. De FilippisB. Della ValleA. FantacuzziM. MaccalliniC. MollicaA. CataldiA. NicolottiO. AmorosoR. Synthesis, structure-activity relationships and molecular docking studies of phenyldiazenyl sulfonamides as aromatase inhibitors.Eur. J. Med. Chem.202122411373710.1016/j.ejmech.2021.113737 34365129
    [Google Scholar]
  8. SinghI. SrivastavaR. ShuklaV.K. PathakS.K. BurmanT. Al-MutairiA.A. El-EmamA.A. PrasadO. SinhaL. Spectroscopic, electronic structure, molecular docking, and molecular dynamics simulation study of 7-Trifluoromethyl-1H-indole-2-carboxylic acid as an aromatase inhibitor.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228012153010.1016/j.saa.2022.121530 35752037
    [Google Scholar]
  9. AmmazzalorsoA. GalloriniM. FantacuzziM. GambacortaN. De FilippisB. GiampietroL. MaccalliniC. NicolottiO. CataldiA. AmorosoR. Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors.Eur. J. Med. Chem.202121111311510.1016/j.ejmech.2020.113115 33360796
    [Google Scholar]
  10. FantacuzziM. De FilippisB. GalloriniM. AmmazzalorsoA. GiampietroL. MaccalliniC. AturkiZ. DonatiE. IbrahimR.S. ShawkyE. CataldiA. AmorosoR. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors.Eur. J. Med. Chem.202018511181510.1016/j.ejmech.2019.111815 31732252
    [Google Scholar]
  11. DaśkoM. DołęgaA. SiedzielnikM. BiernackiK. CiupakO. RachonJ. DemkowiczS. Novel 1,2,3-triazole derivatives as mimics of steroidal system—synthesis, crystal structures determination, hirshfeld surfaces analysis and molecular docking.Molecules20212613405910.3390/molecules26134059 34279404
    [Google Scholar]
  12. ChamduangC. PingaewR. PrachayasittikulV. PrachayasittikulS. RuchirawatS. PrachayasittikulV. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors.Bioorg. Chem.20199310332710.1016/j.bioorg.2019.103327 31614285
    [Google Scholar]
  13. SongZ. LiuY. DaiZ. LiuW. ZhaoK. ZhangT. HuY. ZhangX. DaiY. Synthesis and aromatase inhibitory evaluation of 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives.Bioorg. Med. Chem.201624194723473010.1016/j.bmc.2016.08.014 27567077
    [Google Scholar]
  14. PingaewR. PrachayasittikulV. MandiP. NantasenamatC. PrachayasittikulS. RuchirawatS. PrachayasittikulV. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors.Bioorg. Med. Chem.201523133472348010.1016/j.bmc.2015.04.036 25934226
    [Google Scholar]
  15. NantasenamatC. WorachartcheewanA. PrachayasittikulS. Isarankura-Na-AyudhyaC. PrachayasittikulV. QSAR modeling of aromatase inhibitory activity of 1-substituted 1,2,3-triazole analogs of letrozole.Eur. J. Med. Chem.2013699911410.1016/j.ejmech.2013.08.015 24012714
    [Google Scholar]
  16. WooL.W.L. WoodP.M. BubertC. ThomasM.P. PurohitA. PotterB.V.L. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4‐[(4‐cyanophenyl)(4 H ‐1,2,4‐triazol‐4‐yl)amino]methylphenyl sulfamate.ChemMedChem20138577979910.1002/cmdc.201300015 23495205
    [Google Scholar]
  17. DoironJ. SoultanA.H. RichardR. TouréM.M. PicotN. RichardR. Čuperlović-CulfM. RobichaudG.A. TouaibiaM. Synthesis and structure-activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors.Eur. J. Med. Chem.20114694010402410.1016/j.ejmech.2011.05.074 21703734
    [Google Scholar]
  18. BubertC. WooL.W.L. SutcliffeO.B. MahonM.F. ChanderS.K. PurohitA. ReedM.J. PotterB.V.L. Synthesis of aromatase inhibitors and dual aromatase steroid sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities.ChemMedChem20083111708173010.1002/cmdc.200800164 18816537
    [Google Scholar]
  19. OsmaniyeD. SağlıkB.N. LeventS. IlgınS. ÖzkayY. KaplancıklıZ.A. Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer.J. Mol. Struct.2021124613119810.1016/j.molstruc.2021.131198
    [Google Scholar]
  20. BerridgeM.V. HerstP.M. TanA.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction.Biotechnol. Annual Review20051112715210.1016/S1387‑2656(05)11004‑7
    [Google Scholar]
  21. OsmaniyeD. LeventS. ArdıçC.M. AtlıÖ. ÖzkayY. KaplancıklıZ.A. Synthesis and anticancer activity of some novel benzothiazole-thiazolidine derivatives.Phosphorus Sulfur Silicon Relat. Elem.2018193424925610.1080/10426507.2017.1395878
    [Google Scholar]
  22. OsmaniyeD. Korkut ÇelikateşB. SağlıkB.N. LeventS. Acar ÇevikU. Kaya ÇavuşoğluB. IlgınS. ÖzkayY. KaplancıklıZ.A. Synthesis of some new benzoxazole derivatives and investigation of their anticancer activities.Eur. J. Med. Chem.202121011297910.1016/j.ejmech.2020.112979 33183865
    [Google Scholar]
  23. GhoshD. GriswoldJ. ErmanM. PangbornW. Structural basis for androgen specificity and oestrogen synthesis in human aromatase.Nature2009457722621922310.1038/nature07614 19129847
    [Google Scholar]
  24. Maestro, 10.6.New York, NY, USASchrödinger, LLC2020
    [Google Scholar]
  25. LigPrep, version 3.8.New York, NY, USASchrödinger, LLC2020
    [Google Scholar]
  26. Glide, version 7.1.New York, NY, USASchrödinger, LLC2020
    [Google Scholar]
  27. ToolsM.D.I. Schrödinger, LLC, New York, NY, 2020, Schrödinger Release 2018-3: Prime.2020
    [Google Scholar]
  28. ReleaseS. Desmond molecular dynamics system, version 3.7. DE Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version 3.2014
    [Google Scholar]
  29. SargsyanK. GrauffelC. LimC. How molecular size impacts RMSD applications in molecular dynamics simulations.J. Chem. Theory Comput.20171341518152410.1021/acs.jctc.7b00028 28267328
    [Google Scholar]
  30. ZrieqR. AhmadI. SnoussiM. NoumiE. IritiM. AlgahtaniF.D. PatelH. SaeedM. TasleemM. SulaimanS. AouadiK. KadriA. Tomatidine and patchouli alcohol as inhibitors of sars-cov-2 enzymes (3clpro, plpro and nsp15) by molecular docking and molecular dynamics simulations.Int. J. Mol. Sci.202122191069310.3390/ijms221910693 34639036
    [Google Scholar]
  31. AhmadI. KumarD. PatelH. Computational investigation of phytochemicals from Withania somnifera (Indian ginseng/ashwagandha) as plausible inhibitors of GluN2B-containing NMDA receptors.J. Biomol. Struct. Dyn.202240177991800310.1080/07391102.2021.1905553 33970806
    [Google Scholar]
  32. OsmaniyeD. KaracaŞ. KurbanB. BaysalM. AhmadI. PatelH. ÖzkayY. Asım KaplancıklıZ. Design, synthesis, molecular docking and molecular dynamics studies of novel triazolothiadiazine derivatives containing furan or thiophene rings as anticancer agents.Bioorg. Chem.202212210570910.1016/j.bioorg.2022.105709 35255344
    [Google Scholar]
  33. OsmaniyeD. EvrenA.E. KaracaŞ. ÖzkayY. KaplancıklıZ.A. Novel thiadiazol derivatives; design, synthesis, biological activity, molecular docking and molecular dynamics.J. Mol. Struct.2023127213417110.1016/j.molstruc.2022.134171
    [Google Scholar]
/content/journals/mc/10.2174/0115734064316112240722092935
Loading
/content/journals/mc/10.2174/0115734064316112240722092935
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test