Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Carbonic anhydrase IX (CAIX) is known to be overexpressed in various tumors and plays a significant role in tumor development and progression.

Methods

A series of 3-(benzylsulfonamido)benzamides derivatives was synthesized and tested for their CAIX inhibitory activities. The two most active compounds were subjected to cytotoxicity testing against a panel of 60 cancer cell lines.

Results

Many of the synthesized compounds successfully inhibited CAIX activities, exhibiting IC values in the low nanomolar range. The most potent CAIX inhibitor was compound , with an IC of 140 nM. Structure-activity relationship analysis of the synthesized compounds supported with molecular docking revealed strong coordination of sulfonamide moiety with the catalytic Zn2+ metal, hydrophobic interactions of the benzylsulfonamido ring with a hydrophobic pocket, and π-stacking interactions of the aryl ring with an aromatic surface. The two most active analogues ( and ) were further tested for their antiproliferative activities in the NCI-60 human tumor cell lines. Notably, compound demonstrated potent growth inhibitory effects against several cancer cell lines.

Conclusion

The synthesized analogues represent a novel scaffold for the treatment of different types of cancer by targeting CAIX.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064325144240823073504
2024-09-10
2025-05-23
Loading full text...

Full text loading...

References

  1. SupuranC.T. Structure and function of carbonic anhydrases.Biochem. J.2016473142023203210.1042/BCJ2016011527407171
    [Google Scholar]
  2. Imtaiyaz HassanM. ShajeeB. WaheedA. AhmadF. SlyW.S. Structure, function and applications of carbonic anhydrase isozymes.Bioorg. Med. Chem.20132161570158210.1016/j.bmc.2012.04.04422607884
    [Google Scholar]
  3. SupuranC.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors.Expert Opin. Drug Discov.2017121618810.1080/17460441.2017.125367727783541
    [Google Scholar]
  4. MohammadH.K. AlzweiriM.H. KhanfarM.A. Al-HiariY.M. 6-Substituted nicotinic acid analogues, potent inhibitors of CAIII, used as therapeutic candidates in hyperlipidemia and cancer.Med. Chem. Res.20172671397140410.1007/s00044‑017‑1825‑x
    [Google Scholar]
  5. WaheedA. SlyW.S. Carbonic anhydrase XII functions in health and disease.Gene2017623334010.1016/j.gene.2017.04.02728433659
    [Google Scholar]
  6. KciukM. GielecińskaA. MujwarS. MojzychM. MarciniakB. DrozdaR. KontekR. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies.J. Enzyme Inhib. Med. Chem.20223711278129810.1080/14756366.2022.205286835506234
    [Google Scholar]
  7. LiJ. ZhangG. WangX. LiX.F. Is carbonic anhydrase IX a validated target for molecular imaging of cancer and hypoxia?Future Oncol.201511101531154110.2217/fon.15.1125963430
    [Google Scholar]
  8. JarrarN. AlzweiriM. Al-HiariY. FarahS. Modified hummel-dreyer method and molecular modeling studies identified nicotinic acid analogues as carbonic anhydrase III ligands.Lett. Drug Des. Discov.201613540141010.2174/1570180812666150821002900
    [Google Scholar]
  9. PastorekJ. PastorekovaS. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use.Semin. Cancer Biol.201531526410.1016/j.semcancer.2014.08.00225117006
    [Google Scholar]
  10. SwietachP. PatiarS. SupuranC.T. HarrisA.L. Vaughan-JonesR.D. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths.J. Biol. Chem.200928430202992031010.1074/jbc.M109.00647819458084
    [Google Scholar]
  11. GibadulinovaA. BullovaP. StrnadH. PohlodekK. JurkovicovaD. TakacovaM. PastorekovaS. SvastovaE. CAIX-mediated control of LIN28/ let-7 axis contributes to metabolic adaptation of breast cancer cells to hypoxia.Int. J. Mol. Sci.20202112429910.3390/ijms2112429932560271
    [Google Scholar]
  12. ChafeS.C. McDonaldP.C. SaberiS. NemirovskyO. VenkateswaranG. BuruguS. GaoD. DelaidelliA. KyleA.H. BakerJ.H. GillespieJ.A. BashashatiA. MinchintonA.I. ZhouY. ShahS.P. DedharS. Targeting hypoxia-induced carbonic anhydrase ix enhances immune-checkpoint blockade locally and systemically.Cancer Immunol. Res.2019771064107810.1158/2326‑6066.CIR‑18‑065731088846
    [Google Scholar]
  13. KhanfarM.A. SalmanI.M. AmeerO.Z. Synthesis and biological evaluation of thiazole-based fibroblast growth factor receptor-1 inhibitors.Anticancer. Agents Med. Chem.202424151159116510.2174/187152062266622090514124836065915
    [Google Scholar]
  14. KhanfarM.A. Oxadiazol-based mTOR inhibitors with potent antiproliferative activities: Synthetic and computational modeling.Mol. Divers.20222663357336410.1007/s11030‑021‑10367‑434985718
    [Google Scholar]
  15. KalininS. MalkovaA. SharonovaT. SharoykoV. BunevA. SupuranC.T. KrasavinM. Carbonic anhydrase IX inhibitors as candidates for combination therapy of solid tumors.Int. J. Mol. Sci.202122241340510.3390/ijms22241340534948200
    [Google Scholar]
  16. CamposN.S. SouzaB.S. SilvaG.C. PortoV.A. ChalbataniG.M. LagrecaG. JanjiB. SuarezE.R. Carbonic anhydrase IX: A renewed target for cancer immunotherapy.Cancers2022146139210.3390/cancers1406139235326544
    [Google Scholar]
  17. ZatovicovaM. KajanovaI. BarathovaM. TakacovaM. LabudovaM. CsaderovaL. JelenskaL. SvastovaE. PastorekovaS. HarrisA.L. PastorekJ. Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX.Cancer Metab.2022101310.1186/s40170‑022‑00279‑835109923
    [Google Scholar]
  18. BedkeJ. StenzlA. Immunotherapeutic strategies for the treatment of renal cell carcinoma: Where are we now?Expert Rev. Anticancer Ther.201313121399140810.1586/14737140.2013.85676124215158
    [Google Scholar]
  19. MuselaersC.H. Boers-SonderenM.J. van OostenbruggeT.J. BoermanO.C. DesarI.M. StillebroerA.B. MulderS.F. van HerpenC.M. LangenhuijsenJ.F. OosterwijkE. OyenW.J. MuldersP.F. Phase 2 study of lutetium 177–labeled anti–carbonic anhydrase ix monoclonal antibody girentuximab in patients with advanced renal cell carcinoma.Eur. Urol.201669576777010.1016/j.eururo.2015.11.03326706103
    [Google Scholar]
  20. PacchianoF. CartaF. McDonaldP.C. LouY. VulloD. ScozzafavaA. DedharS. SupuranC.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis.J. Med. Chem.20115461896190210.1021/jm101541x21361354
    [Google Scholar]
  21. GaspariR. RechlinC. HeineA. BottegoniG. RocchiaW. SchwarzD. BomkeJ. GerberH.D. KlebeG. CavalliA. Kinetic and structural insights into the mechanism of binding of sulfonamides to human carbonic anhydrase by computational and experimental studies.J. Med. Chem.20165994245425610.1021/acs.jmedchem.5b0164326700575
    [Google Scholar]
  22. DudutienėV. MatulienėJ. SmirnovA. TimmD.D. ZubrienėA. BaranauskienėL. Morku̅naitėV. SmirnovienėJ. MichailovienėV. JuozapaitienėV. Mickevičiu̅tėA. KazokaitėJ. BakšytėS. KasiliauskaitėA. JachnoJ. RevuckienėJ. KišonaitėM. PilipuitytėV. IvanauskaitėE. Milinavičiu̅tėG. SmirnovasV. PetrikaitėV. KairysV. PetrauskasV. NorvaišasP. LingėD. GibiežaP. ČapkauskaitėE. ZakšauskasA. KazlauskasE. ManakovaE. GražulisS. LadburyJ.E. MatulisD. Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX.J. Med. Chem.201457229435944610.1021/jm501003k25358084
    [Google Scholar]
  23. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  24. KhanfarM.A. SalaasN. AbumostafaR. Discovery of natural‐derived M pro inhibitors as therapeutic candidates for COVID‐19: Structure‐based pharmacophore screening combined with QSAR analysis.Mol. Inform.2023424220019810.1002/minf.20220019836762567
    [Google Scholar]
  25. KhanfarM.A. Al-QtaishatS. HabashM. TahaM.O. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling.Chem. Biol. Interact.20162549310110.1016/j.cbi.2016.05.02327216633
    [Google Scholar]
  26. KhanfarM.A. AlqtaishatS. Discovery of potent IRAK-4 inhibitors as potential anti-inflammatory and anticancer agents using structure-based exploration of IRAK-4 pharmacophoric space coupled with QSAR analyses.Comput. Biol. Chem.20197914715410.1016/j.compbiolchem.2019.02.00530818109
    [Google Scholar]
  27. MeraW.A. AlzihlifM. TahaM.O. KhanfarM.A. Discovery of potent bruton’s tyrosine kinase inhibitors using ligand based modeling.Anticancer. Agents Med. Chem.201717226527510.2174/187152061666616092611441627671297
    [Google Scholar]
  28. KhanfarM.A. AlqtaishatS. Discovery of potent natural-product-derived sirt2 inhibitors using structure- based exploration of sirt2 pharmacophoric space coupled with qsar analyses.Anticancer. Agents Med. Chem.202121162278228610.2174/187152062166621011212152333438557
    [Google Scholar]
  29. SalassaG. TerenziA. Metal complexes of oxadiazole ligands: An overview.Int. J. Mol. Sci.20192014348310.3390/ijms2014348331315181
    [Google Scholar]
  30. BenassiA. DoriaF. PirotaV. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds. Int. J. Mol. Sci.20202122869210.3390/ijms2122869233217987
    [Google Scholar]
  31. KhanfarM.A. ReinerD. HagenowS. StarkH. Design, synthesis, and biological evaluation of novel oxadiazole- and thiazole-based histamine H 3 R ligands.Bioorg. Med. Chem.201826144034404610.1016/j.bmc.2018.06.02829960729
    [Google Scholar]
  32. ZhangB. LiuZ. XiaS. LiuQ. GouS. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors.Eur. J. Med. Chem.202121611330010.1016/j.ejmech.2021.11330033640672
    [Google Scholar]
  33. AlleyM.C. ScudieroD.A. MonksA. HurseyM.L. CzerwinskiM.J. FineD.L. AbbottB.J. MayoJ.G. ShoemakerR.H. BoydM.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.Cancer Res.19884835896013335022
    [Google Scholar]
  34. ShoemakerR.H. The NCI60 human tumour cell line anticancer drug screen.Nat. Rev. Cancer200661081382310.1038/nrc195116990858
    [Google Scholar]
  35. İlieM. MazureN.M. HofmanV. AmmadiR.E. OrtholanC. BonnetaudC. HavetK. VenissacN. MograbiB. MourouxJ. PouysségurJ. HofmanP. High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer.Br. J. Cancer2010102111627163510.1038/sj.bjc.660569020461082
    [Google Scholar]
/content/journals/mc/10.2174/0115734064325144240823073504
Loading
/content/journals/mc/10.2174/0115734064325144240823073504
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cancer; Carbonic anhydrase; docking; NCI-60 human tumor; sulfonamide; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test