Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The activated oncogenic Notch signalling is an emerging target to treat cancer progression and recurrence. Synthetic inhibitors of Notch receptors are in pre-clinical studies. However, the overexpression of Notch signalling molecules at the gene level needs to be regulated to control cancer progression.

Objective

We propose that this can be achieved by gene-regulatory drugs in combination with natural phytochemical compounds.

Methods

The ethanol extract of alone and in combination with DAPT and ATRA were evaluated for cytotoxicity on A549 cells by MTT and Trypan blue assays. Their effects on Notch 1, Hes 1 and p53 gene expressions were studied by RT-PCR and qPCR. Their inhibition on metastatic invasion of A549 cells was analyzed by wound scratch assay. The phytochemicals of the extract were identified by GC-MS analysis.

Results

Many organosulfur compounds having anti-cancer potency were identified in GC-MS. The combination treatment with 50µg (IC) of garlic extract exhibited a highly significant (P≤0.01) synergistic inhibitory effect on A549 cell growth and migration. It has also significantly reduced the expression of Notch 1 and Hes 1 oncogenes and enhanced p53 gene expression, compared with the individual treatments. This indicates the synergistic action of the extract on the downregulation of Notch signalling at the mRNA level.

Conclusion

Our study results imply that the combination therapies have potent molecular treatment action down-regulating Notch signaling target genes and upregulating p53 gene expression as an underlying mechanism of inhibitory action on A549 lung cancer cells.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230831095954
2023-09-11
2025-07-12
Loading full text...

Full text loading...

References

  1. JemalA. SiegelR. XuJ. WardE. Cancer statistics, 2010.CA Cancer J. Clin.201060527730010.3322/caac.20073 20610543
    [Google Scholar]
  2. SiegelR. NaishadhamD. JemalA. Cancer statistics for hispanics/latinos.CA Cancer J. Clin.201262528329810.3322/caac.21153 22987332
    [Google Scholar]
  3. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107 21296855
    [Google Scholar]
  4. ChabnerB.A. RobertsT.G.Jr Chemotherapy and the war on cancer.Nat. Rev. Cancer200551657210.1038/nrc1529 15630416
    [Google Scholar]
  5. Velasco-VelázquezM.A. YuZ. JiaoX. PestellR.G. Cancer stem cells and the cell cycle: Targeting the drive behind breast cancer.Expert Rev. Anticancer Ther.20099327527910.1586/14737140.9.3.275 19275505
    [Google Scholar]
  6. WangY. JiangM. DuC. YuY. LiuY. LiM. LuoF. Utilization of lung cancer cell lines for the study of lung cancer stem cells Review)..Oncol. Lett.20181556791679810.3892/ol.2018.8265 29731860
    [Google Scholar]
  7. MedemaJ.P. Cancer stem cells: The challenges ahead.Nat. Cell Biol.201315433834410.1038/ncb2717 23548926
    [Google Scholar]
  8. HalimN.H.A. ZakariaN. SatarN.A. YahayaB.H. Isolation and characterization of cancer stem cells of the non-small-cell lung cancer (A549) cell line, in Stem Cell Heterogeneity.Methods Mol. Biol.2016151637138810.1007/7651_2016_326 27032945
    [Google Scholar]
  9. SharifA. ShajiA. ChammaaM. PawlikE. Fernandez-ValdiviaR. Notch transduction in non-small cell lung cancer.Int. J. Mol. Sci.20202116569110.3390/ijms21165691 32784481
    [Google Scholar]
  10. MengX. WangX. WangY. More than 45% of A549 and H446 cells are cancer initiating cells: evidence from cloning and tumorigenic analyses.Oncol. Rep.20092149951000 19287999
    [Google Scholar]
  11. ReyaT. CleversH. Wnt signalling in stem cells and cancer.Nature2005434703584385010.1038/nature03319 15829953
    [Google Scholar]
  12. Artavanis-TsakonasS. RandM.D. LakeR.J. Notch signaling: Cell fate control and signal integration in development.Science1999284541577077610.1126/science.284.5415.770 10221902
    [Google Scholar]
  13. WangZ. LiY. AhmadA. AzmiA.S. BanerjeeS. KongD. SarkarF.H. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy.Biochim. Biophys. Acta201018062258267 20600632
    [Google Scholar]
  14. EspinozaI. MieleL. Notch inhibitors for cancer treatment.Pharmacol. Ther.201313929511010.1016/j.pharmthera.2013.02.003 23458608
    [Google Scholar]
  15. LiX. CaoY. LiM. JinF. Upregulation of HES1 promotes cell proliferation and invasion in breast cancer as a prognosis marker and therapy target via the AKT Pathway and EMT Process.J. Cancer20189475776610.7150/jca.22319 29556333
    [Google Scholar]
  16. LiB. GaoM.H. ChuX.M. TengL. LvC.Y. YangP. YinQ.F. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo.Eur. J. Pharmacol.201574910711410.1016/j.ejphar.2015.01.009 25617793
    [Google Scholar]
  17. ShihI.M. WangT.L. Notch signaling, γ-secretase inhibitors, and cancer therapy.Cancer Res.20076751879188210.1158/0008‑5472.CAN‑06‑3958 17332312
    [Google Scholar]
  18. Olsauskas-KuprysR. ZlobinA. OsipoC. Gamma secretase inhibitors of notch signaling.OncoTargets Ther.20136943955 23901284
    [Google Scholar]
  19. FengJ. Jianpeng, Wang; Qian, Liu; Jiye, Li; Zhang, Qi; Zhuang, Zhengping; Xiaohui, Yao; Chunhui, Liu; Yangfang, Li; Cao, Lei; Chuzhong, Li; Gong, Lei; Li, Dan; Yazhuo, Zhang; Gao, Hua DAPT, a γ-Secretase Inhibitor, Suppresses Tumorigenesis, and Progression of Growth Hormone-Producing Adenomas by Targeting Notch Signaling.Oncol201927
    [Google Scholar]
  20. BorgheseL. DolezalovaD. ThoralfO. SimoneH. AnkeL. BarbaraS. PhilippK. FrankE. AlesH. OliverB. Inhibition of notch signaling in human embryonic stem cell derived neural stem cells delays G1/S Phase transition and accelerates neuronal differentiation.Stem Cells20102895596410.1002/stem.408 20235098
    [Google Scholar]
  21. DaiG. DengS. GuoW. YuL. YangJ. ZhouS. GaoT. Notch pathway inhibition using DAPT, a γ‐secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma.Mol. Carcinog.201958131810.1002/mc.22873 29964327
    [Google Scholar]
  22. Ghanbari-MovahedM. Ghanbari-MovahedZ. MomtazS. KilpatrickK.L. FarzaeiM.H. BishayeeA. Unlocking the secrets of cancer stem cells with γ-Secretase inhibitors: A novel anticancer strategy.Molecules202126497210.3390/molecules26040972 33673088
    [Google Scholar]
  23. Ghanbari-MovahedM. Shiri VarnamkhastiB. ShourianM. Inhibiting Notch activity in breast cancer stem cells by functionalized gold nanoparticles with gamma-secretase inhibitor DAPT and vitamin C.Chem. Zvesti20227621157117010.1007/s11696‑021‑01936‑w
    [Google Scholar]
  24. PoulainS. LacommeS. Battaglia-HsuS.F. du ManoirS. BrochinL. VignaudJ.M. MartinetN. Signalling with retinoids in the human lung: validation of new tools for the expression study of retinoid receptors.BMC Cancer20099142310.1186/1471‑2407‑9‑423 19961602
    [Google Scholar]
  25. ZhouG. ZhangJi. Zhen-YI, W.; Sai-Juan, C.; Zhu, C. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy.Philos. Trans. R. Soc. Lond. B Biol. Sci.20073621482959971
    [Google Scholar]
  26. NguyenP.H. GiraudJ. StaedelC. ChambonnierL. DubusP. ChevretE. BoeufH. GauthereauX. RousseauB. FevreM. SoubeyranI. BelleannéeG. EvrardS. ColletD. MégraudF. VaronC. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth.Oncogene201635435619562810.1038/onc.2016.87 27157616
    [Google Scholar]
  27. BrownG. Targeting the retinoic acid pathway to eradicate cancer stem cells.Int. J. Mol. Sci.2023243237310.3390/ijms24032373 36768694
    [Google Scholar]
  28. ThomsonM. AliM. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent.Curr. Cancer Drug Targets200331678110.2174/1568009033333736 12570662
    [Google Scholar]
  29. LawsonL. Bioactive organosulfur compounds of garlic and garlic products.Role in Reducing Blood Lipids ACS symposium seriesUSA199353430633010.1021/bk‑1993‑0534.ch021
    [Google Scholar]
  30. LawsonL. WangZ. Pre-hepatic fate of the organosulfur compounds derived from garlic (Allium sativum).Planta Med.199359S1688689
    [Google Scholar]
  31. ZieglerS. SticherO. HPLC of S-alk (en) yl-L-cysteine derivatives in garlic including quantitative determination of (+)-S-allyl-L-cysteine sulfoxide (alliin).Planta Med.198955437237810.1055/s‑2006‑962031 17262437
    [Google Scholar]
  32. LawsonL.D. The composition and chemistry of garlic cloves and processed garlic.Garlic: the science and therapeutic application of Allium sativum L. and related species. KochH.P. LawsonL.D. BaltimoreWilliams & Wilkins199637108
    [Google Scholar]
  33. SinghV.K. SinghD.K. Pharmacological Effects of Garlic (Allium sativum L.).Annu. Rev. Biomed200810
    [Google Scholar]
  34. LauB.H.S. TadiP.P. ToskJ.M. Allium sativum (Garlic) and cancer prevention.Nutr. Res.199010893794810.1016/S0271‑5317(05)80057‑0
    [Google Scholar]
  35. SuluvoyJ.K. Berlin GraceV. M. Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract.3 Biotech20177185
    [Google Scholar]
  36. MorohashiY. KanT. TominariY. FuwaH. OkamuraY. WatanabeN. SatoC. NatsugariH. FukuyamaT. IwatsuboT. TomitaT. C-terminal fragment of presenilin is the molecular target of a dipeptidic γ-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester).J. Biol. Chem.200628121146701467610.1074/jbc.M513012200 16569643
    [Google Scholar]
  37. CaiL. LuoL. TangZ. MengX. Combined antitumor effects of 1,25dihydroxy vitamin D3 and Notch inhibitor in liver cancer.Oncol. Rep.20184031515152410.3892/or.2018.6549 30015939Epub 2018 Jul 5.
    [Google Scholar]
  38. van MeerlooJ. KaspersG.J.L. CloosJ. Cell sensitivity assays: The MTT assay, in Cancer cell culture.Methods Mol. Biol.201173123724510.1007/978‑1‑61779‑080‑5_20
    [Google Scholar]
  39. StroberW. Trypan blue exclusion test of cell viability.Curr. Protoc. Immunol.199721112
    [Google Scholar]
  40. JiangL. ZhangX. DuP. ZhengJ. γ-Secretase inhibitor, DAPT inhibits self-renewal and stemness maintenance of ovarian cancer stem-like cells in vitro.Chin. J. Cancer Res.201123214014610.1007/s11670‑011‑0140‑1 23482909
    [Google Scholar]
  41. LiangC.C. ParkA.Y. GuanJ.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro.Nat. Protoc.20072232933310.1038/nprot.2007.30 17406593
    [Google Scholar]
  42. EndersD. BalensieferT. Nucleophilic carbenes in asymmetric organocatalysis.Acc. Chem. Res.200437853454110.1021/ar030050j 15311952
    [Google Scholar]
  43. SakamotoK. LavvsonL.D. MilnerJ.A. Allyl sulfides from garlic suppress the in vitro proliferation of human a549 lung tumor cells.Nutr. Cancer199729215215610.1080/01635589709514617 9427979
    [Google Scholar]
  44. LeungE.L.H. FiscusR.R. TungJ.W. TinV.P.C. ChengL.C. SihoeA.D.L. FinkL.M. MaY. WongM.P. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties.PLoS One2010511e1406210.1371/journal.pone.0014062 21124918
    [Google Scholar]
  45. SundaramS.G. MilnerJ.A. Diallyl disulfide inhibits the proliferation of human tumor cells in culture.Biochim. Biophys. Acta Mol. Basis Dis.199613151152010.1016/0925‑4439(95)00088‑7 8611641
    [Google Scholar]
  46. SenS. D’IncalciM. Apoptosis biochemical events and relevance to cancer chemotherapy.FEBS Lett.1992307112212710.1016/0014‑5793(92)80914‑3 1639187
    [Google Scholar]
  47. FoucquierJ. GuedjM. Analysis of drug combinations: Current methodological landscape.Pharmacol. Res. Perspect.201533e0014910.1002/prp2.149 26171228
    [Google Scholar]
  48. WangZ. LiY. SarkarF.H. Notch signaling proteins: Legitimate targets for cancer therapy.Curr. Protein Pept. Sci.201011639840810.2174/138920310791824039 20491628
    [Google Scholar]
  49. Ferrari-ToninelliG. BoniniS.A. UbertiD. BuizzaL. BettinsoliP. PolianiP.L. FacchettiF. MemoM. Targeting notch pathway induces growth inhibition and differentiation of neuroblastoma cells.Neuro-oncol.201012121231124310.1093/neuonc/noq101 20716592
    [Google Scholar]
  50. LeeH.W. KimS.J. ChoiI.J. SongJ. ChunK.H. Targeting notch signaling by γ-secretase inhibitor I enhances the cytotoxic effect of 5-FU in gastric cancer.Clin. Exp. Metastasis201532659360310.1007/s10585‑015‑9730‑5 26134677
    [Google Scholar]
  51. LiP. LinX. ZhangJ.R. LiY. LuJ. HuangF.C. ZhengC.H. XieJ.W. WangJ.B. HuangC.M. The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer.Oncotarget201679106501066210.18632/oncotarget.7298 26872378
    [Google Scholar]
  52. GelingA. SteinerH. WillemM. Bally-CuifL. HaassC. A γ‐secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish.EMBO Rep.20023768869410.1093/embo‑reports/kvf124 12101103
    [Google Scholar]
  53. MiaoR. XuT. LiuL. WangM. JiangY. LiJ. GuoR. Rosiglitazone and retinoic acid inhibit proliferation and induce apoptosis in the HCT-15 human colorectal cancer cell line.Exp. Ther. Med.20112341341710.3892/etm.2011.227 22977519
    [Google Scholar]
  54. GrieselhuberN.R. KlcoJ.M. VerdoniA.M. LamprechtT. SarkariaS.M. WartmanL.D. LeyT.J. Notch signaling in acute promyelocytic leukemia.Leukemia20132771548155710.1038/leu.2013.68 23455394
    [Google Scholar]
  55. AsterJ.C. PearW.S. BlacklowS.C. The varied roles of notch in cancer.Annu. Rev. Pathol.201712124527510.1146/annurev‑pathol‑052016‑100127 27959635
    [Google Scholar]
  56. Brzozowa-ZasadaM. PiecuchA. MichalskiM. SegietO. KurekJ. Harabin-SłowińskaM. WojniczR. Notch and its oncogenic activity in human malignancies.Eur. Surg.201749519920910.1007/s10353‑017‑0491‑z 29104587
    [Google Scholar]
  57. PiazziG. FiniL. SelgradM. GarciaM. DaoudY. WexT. MalfertheinerP. GasbarriniA. RomanoM. MeyerR.L. GentaR.M. FoxJ.G. BolandC.R. BazzoliF. RicciardielloL. Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer.Oncotarget20112121291130110.18632/oncotarget.414 22249198
    [Google Scholar]
  58. YanB. LiuL. ZhaoY. XiuL.J. SunD.Z. LiuX. LuY. ShiJ. ZhangY.C. LiY.J. WangX.W. ZhouY.Q. FengS.H. LvC. WeiP.K. QinZ.F. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells.World J. Gastroenterol.20142036131051311810.3748/wjg.v20.i36.13105 25278704
    [Google Scholar]
  59. LiL.C. PengY. LiuY.M. WangL.L. WuX.L. Gastric cancer cell growth and epithelial-mesenchymal transition are inhibited by γ-secretase inhibitor DAPT.Oncol. Lett.2014762160216410.3892/ol.2014.1980 24932308
    [Google Scholar]
  60. DedhiaP.H. Bertaux-SkeirikN. ZavrosY. SpenceJ.R. Organoid models of human gastrointestinal development and disease.Gastroenterology201615051098111210.1053/j.gastro.2015.12.042
    [Google Scholar]
  61. NairV. RajeshC. VinodA.U. BinduS. SreekanthA.R. MathenJ.S. BalagopalL. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes.Acc. Chem. Res.2003361289990710.1021/ar020258p 14674781
    [Google Scholar]
  62. MoriM. MiyamotoT. YakushijiH. OhnoS. MiyakeY. SakaguchiT. HattoriM. HongoA. NakaizumiA. UedaM. OhnoE. Effects of N-[N-(3, 5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) on cell proliferation and apoptosis in Ishikawa endometrial cancer cells.Hum. Cell201225191510.1007/s13577‑011‑0038‑8 22189483
    [Google Scholar]
  63. ChenQ. DengB. LuoQ. SongG. Deep tumor‐penetrated nanosystem eliminates cancer stem cell for highly efficient liver cancer therapy.Chem. Eng. J.2021421212787410.1016/j.cej.2020.127874
    [Google Scholar]
  64. YaoW. WangL. HuangH. LiX. WangP. MiK. ChengJ. LiuH. GuC. HuangL. HuangJ. All-trans retinoic acid reduces cancer stem cell-like cell-mediated resistance to gefitinib in NSCLC adenocarcinoma cells.BMC Cancer202020131510.1186/s12885‑020‑06818‑0 32293355
    [Google Scholar]
  65. BerardiD.E. Ariza BareñoL. AmigoN. CañoneroL. PelagattiM.N. MotterA.N. TaruselliM.A. Díaz BessoneM.I. CiriglianoS.M. EdelsteinA. PetersM.G. DiamentM. UrtregerA.J. TodaroL.B. All-trans retinoic acid and protein kinase C α/β1 inhibitor combined treatment targets cancer stem cells and impairs breast tumor progression.Sci. Rep.2021111604410.1038/s41598‑021‑85344‑w 33723318
    [Google Scholar]
  66. YangX. KleinR. TianX. ChengH.T. KopanR. ShenJ. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway.Dev. Biol.20042691819410.1016/j.ydbio.2004.01.014 15081359
    [Google Scholar]
  67. HongY.S. HamY.A. ChoiJ.H. KimJ. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines.Exp. Mol. Med.200032312713410.1038/emm.2000.22 11048643
    [Google Scholar]
  68. OommenS. AntoR.J. SrinivasG. KarunagaranD. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells.Eur. J. Pharmacol.20044851-39710310.1016/j.ejphar.2003.11.059 14757128
    [Google Scholar]
  69. JustusC.R. LefflerN. Ruiz-EchevarriaM. YangL.V. In vitro cell migration and invasion assays.J. Vis. Exp.2014888851046 24962652
    [Google Scholar]
  70. FriedlP. HegerfeldtY. TuschM. Collective cell migration in morphogenesis and cancer.Int. J. Dev. Biol.2004485-644144910.1387/ijdb.041821pf 15349818
    [Google Scholar]
  71. AlbiniA. IwamotoY. KleinmanH.K. MartinG.R. AaronsonS.A. KozlowskiJ.M. McEwanR.N. A rapid in vitro assay for quantitating the invasive potential of tumor cells.Cancer Res.1987471232393245 2438036
    [Google Scholar]
  72. XieM. LiuM. HeC.S. SIRT1 regulates endothelial Notch signaling in lung cancer.PLoS One201279e4533110.1371/journal.pone.0045331 23028940
    [Google Scholar]
  73. LiuY. WenQ. ChenX. YangS. GaoL. GaoL. ZhangC. LiJ. XiangX. WanK. ChenX. ZhangX. ZhongJ. All-trans retinoic acid arrests cell cycle in leukemic bone marrow stromal cells by increasing intercellular communication through connexin 43-mediated gap junction.J. Hematol. Oncol.20158111010.1186/s13045‑015‑0212‑7 26446715
    [Google Scholar]
  74. AlhasanL. AddaiZ.R. Allicin-induced modulation of angiogenesis in lung cancer cells (A549).Trop. J. Pharm. Res.201917112129213410.4314/tjpr.v17i11.3
    [Google Scholar]
  75. SriuranpongV. BorgesM.W. RaviR.K. ArnoldD.R. NelkinB.D. BaylinS.B. BallD.W. Notch signaling induces cell cycle arrest in small cell lung cancer cells.Cancer Res.200161732003205 11306509
    [Google Scholar]
  76. LiuZ.H. DaiX.M. DuB. Hes1: A key role in stemness, metastasis and multidrug resistance.Cancer Biol. Ther.201516335335910.1080/15384047.2015.1016662 25781910
    [Google Scholar]
  77. LotanR. Retinoids and apoptosis: Implications for cancer chemoprevention and therapy.J. Natl. Cancer Inst.199587221655165710.1093/jnci/87.22.1655 7473809
    [Google Scholar]
  78. KopanR. IlaganM.X.G. The canonical notch signaling pathway: Unfolding the activation mechanism.Cell2009137221623310.1016/j.cell.2009.03.045 19379690
    [Google Scholar]
  79. AbdelazizT.E. El- Borai, N.B.; Khalifa Hanem, K.; El- Gendy, H. Contribution of garlic for improving the cytoprotective effect of mesna against cyclophosphamide toxicity in rats.GSC Biol. Pharm. Sci.20190703008020
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230831095954
Loading
/content/journals/lddd/10.2174/1570180820666230831095954
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): A549 cells; Combination treatment; GC-MS analysis; notch signaling; p53; RT-PCR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test