Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The co-infection of HIV and abdominal TB poses a worldwide danger to humanity. This is because there are more strains of bacteria that are resistant to many classes of currently available medications. According to current findings, repurposing existing available medications will result in more effective functioning than using newly designed medications.

Objective

Based on this fact, we hypothesised that the PI could be repurposed; we used Food and Drug Administration (FDA)-approved PI drugs to treat HIV co-infected patients with abdominal TB, and a computational study has been conducted.

Methods

This comprises network analysis models to find their protein drug interaction (PDI) through a search tool for interacting chemicals (STICH) module of Cytoscape network analysis model followed by the screening of these drugs for their ADMET prediction and binding affinity with adenosine deaminase (ADA), a protein responsible for abdominal TB, and the HIV-1 Nef protein, responsible for the regulation of immune function (CD4+).

Results

The network analysis showed 13 nearest binding drugs of these proteins of interest. The ADMET study result showed the pharmacologically relevant parameters that have a significant effect on the binding affinity, bioavailability, and toxicity of PI. The top three scores achieved by PI against adenosine deaminase enzyme activity (PDB ID: 1A4M) are viz., -23.7919, -23.3529, and -22.6773 for Ritonavir, Tipranavir, and Atazanavir, respectively. The top three scores achieved by PI against HIV-1 Nef protein activity (PDB ID: 6URI) are viz., -28.7321, -28.4987, and -28.3155 for Atazanavir, Tipranavir, and Simeprevir, respectively. The active site of ADA and HIV-1 Nef proteins comprises amino acid residues such as for Tipranavir: Arene-Cation interaction (Phenyl and Pyridine)- Arg B1081, and Lys B1033 (1A4M) and Arene-Cation interaction (Pyridine and Phenyl)- Lys D11 and Arg D33; Sidechain acceptor Thr B40; Sidechain donor- Asp D30; Backbone donor- Ala B37 (6URI). Atazanavir: Arene-Cation interaction (Phenyl)- Lys A254 and Lys B1033; Sidechain acceptor - Arg A251 (1A4M).

Conclusion

Thus, from the computational studies carried out, we could obtain hints for optimising the molecular selectivity of the PI to provide help in the design of new compounds the repurposing strategy of the FDA-approved PI for effective treatment of co-morbidity with HIV and abdominal TB. However, further pharmacokinetics, pharmacodynamics, preclinical, and clinical studies permit the design of the new agents without undesirable interactions.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230822093545
2023-09-26
2025-08-21
Loading full text...

Full text loading...

References

  1. PrabhaT. AishwaryahP. ManickavalliE. ChandruR. ArulbharathiG. AnuA. SivakumarT. A chalcone annulated pyrazoline conjugates as a potent antimycobacterial agents: Synthesis and in silico molecular modeling studies, research.J. Pharm. Technol.201912838573865
    [Google Scholar]
  2. CorbettE.L. WattC.J. WalkerN. MaherD. WilliamsB.G. RaviglioneM.C. DyeC. The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic.Arch. Intern. Med.200316391009102110.1001/archinte.163.9.1009 12742798
    [Google Scholar]
  3. LawnS.D. ChurchyardG. Epidemiology of HIV-associated tuberculosis.Curr. Opin. Hiv. Aids.20094432533310.1097/COH.0b013e32832c7d61 19532072
    [Google Scholar]
  4. AaronL. SaadounD. CalatroniI. LaunayO. MémainN. VincentV. MarchalG. DupontB. BouchaudO. ValeyreD. LortholaryO. Tuberculosis in HIV-infected patients: A comprehensive review.Clin. Microbiol. Infect.200410538839810.1111/j.1469‑0691.2004.00758.x 15113314
    [Google Scholar]
  5. ThangaveluP. SivakumarThangavel, Design, synthesis, and docking of sulfadiazine schiff base scaffold for their potential claim as inhaenoyl-(acyl-carrier-protein) reductase inhibitors.Asian J. Pharm. Clin. Res.2018111023323710.22159/ajpcr.2018.v11i10.27179
    [Google Scholar]
  6. MaitiS. MaitiK.B. Gastrointestinal tuberculosis and HIV association in tropics.Indian J. Surg.202183S486787210.1007/s12262‑021‑02844‑9
    [Google Scholar]
  7. Vidya VijayanK.K. KarthigeyanK.P. TripathiS.P. HannaL.E. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections.Front. Immunol.2017858010.3389/fimmu.2017.00580
    [Google Scholar]
  8. OkoyeA.A. PickerL.J. CD4 + T-cell depletion in HIV infection: Mechanisms of immunological failure.Immunol. Rev.20132541546410.1111/imr.12066 23772614
    [Google Scholar]
  9. LiaoY.J. WuC.Y. LeeS.W. LeeC.L. YangS.S. ChangC.S. LeeT.Y. Adenosine deaminase activity in tuberculous peritonitis among patients with underlying liver cirrhosis.World J. Gastroenterol.2012183752605265 23066321
    [Google Scholar]
  10. AggarwalA.N. AgarwalR. SehgalI.S. DhooriaS. Adenosine deaminase for diagnosis of tuberculous pleural effusion: A systematic review and meta-analysis.PLoS One2019143e021372810.1371/journal.pone.0213728 30913213
    [Google Scholar]
  11. PiresD. ValenteS. CaladoM. MandalM. Azevedo-PereiraJ.M. AnesE. Repurposing saquinavir for host-directed therapy to control mycobacterium tuberculosis infection.Front. Immunol.20211264772810.3389/fimmu.2021.647728 33841429
    [Google Scholar]
  12. SoontornniyomkijV. UmlaufA. ChungS.A. CochranM.L. SoontornniyomkijB. GouauxB. ToperoffW. MooreD.J. MasliahE. EllisR.J. GrantI. AchimC.L. HIV protease inhibitor exposure predicts cerebral small vessel disease.AIDS20142891297130610.1097/QAD.0000000000000262 24637542
    [Google Scholar]
  13. AhmadF. RaniA. AlamA. ZarinS. PandeyS. SinghH. HasnainS.E. EhteshamN.Z. Macrophage: A cell with many faces and functions in tuberculosis.Front. Immunol.20221374779910.3389/fimmu.2022.747799 35603185
    [Google Scholar]
  14. PrabhaT. NatarajanK. MurugesanJ. ChellappaS. SivakumarT. Design, Synthesis and Building a QSAR model for the inhibition of Mycobacterium tuberculosis by Pyrazoline derivatives.J. Med. Pharmaceut. Alli. Sci.202110640794086
    [Google Scholar]
  15. ChenS.J. Network analysis of urocortins.Neuroendocrinol. Lett.2016376
    [Google Scholar]
  16. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. CytoscapeStringApp: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  17. KuhnM. SzklarczykD. Pletscher-FrankildS. BlicherT.H. von MeringC. JensenL.J. BorkP. STITCH 4: Integration of protein-chemical interactions with user data.Nucleic Acids Res.201442D1D401D40710.1093/nar/gkt1207 24293645
    [Google Scholar]
  18. WangZ. QuiochoF.A. Complexes of adenosine deaminase with two potent inhibitors: X-ray structures in four independent molecules at pH of maximum activity.Biochemistry199837238314832410.1021/bi980324o 9622483
    [Google Scholar]
  19. KwonY. KaakeR.M. EcheverriaI. SuarezM. Karimian ShamsabadiM. StonehamC. RamirezP.W. KressJ. SinghR. SaliA. KroganN. GuatelliJ. JiaX. Structural basis of CD4 downregulation by HIV-1 Nef.Nat. Struct. Mol. Biol.202027982282810.1038/s41594‑020‑0463‑z 32719457
    [Google Scholar]
  20. World Health Organization, Global tuberculosis report 2020.2020Available from: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1
  21. SouriantS. BalboaL. DupontM. PingrisK. KviatcovskyD. CougouleC. LastrucciC. BahA. GasserR. PoinclouxR. Raynaud-MessinaB. Al SaatiT. InwentarzS. PoggiS. MorañaE.J. González-MontanerP. CortiM. LaganeB. VergneI. AllersC. KaushalD. KurodaM.J. SasiainM.C. NeyrollesO. Maridonneau-PariniI. Lugo-VillarinoG. VérolletC. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages.Cell Rep.2019261335863599.e710.1016/j.celrep.2019.02.091 30917314
    [Google Scholar]
  22. MancinoG. PlacidoR. BachS. MarianiF. MontesanoC. ErcoliL. ZembalaM. ColizziV. Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells.J. Infect. Dis.199717561531153510.1086/516494 9180201
    [Google Scholar]
  23. TitanjiB.K. Aasa-ChapmanM. PillayD. JollyC. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells.Retrovirology20131011611110.1186/1742‑4690‑10‑161 24364896
    [Google Scholar]
  24. RobertsN.A. MartinJ.A. KinchingtonD. BroadhurstA.V. CraigJ.C. DuncanI.B. GalpinS.A. HandaB.K. KayJ. KröhnA. LambertR.W. MerrettJ.H. MillsJ.S. ParkesK.E.B. RedshawS. RitchieA.J. TaylorD.L. ThomasG.J. MachinP.J. Rational design of peptide-based HIV proteinase inhibitors.Science1990248495335836110.1126/science.2183354 2183354
    [Google Scholar]
  25. CraigJ.C. DuncanI.B. HockleyD. GriefC. RobertsN.A. MillsJ.S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase.Antiviral Res.199116429530510.1016/0166‑3542(91)90045‑S 1810306
    [Google Scholar]
  26. SelvarajN. SwaroopA.K. NidamanuriB. KumarR.R. NatarajanJ. SelvarajJ. Network-based drug repurposing: A critical review.Curr. Drug Res. Rev.202214211613110.2174/2589977514666220214120403 35156575
    [Google Scholar]
  27. GuanL. YangH. CaiY. SunL. DiP. LiW. LiuG. TangY. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness.MedChemComm201910114815710.1039/C8MD00472B 30774861
    [Google Scholar]
  28. GhannayS. KadriA. AouadiK. Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools.Monatsh. Chem.2020151226728010.1007/s00706‑020‑02550‑4
    [Google Scholar]
  29. NagaiH. [HIV infection and tuberculosis].Kekkaku2003781454912655706
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230822093545
Loading
/content/journals/lddd/10.2174/1570180820666230822093545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test