Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Nowadays, inflammation is recognized as the underlying cause of a number of diseases, but NSAIDs are the first drug of choice, having several side effects. Additionally, excessive cellular oxidative stress is often considered a major contributor to pathophysiological conditions, the development of cancer, and other diseases. Antimicrobial resistance is a global concern, hence, there is a critical need for the development of novel therapeutic agents to fight the emergence and increasing prevalence of resistant pathogens. This creates an initiation to introduce new molecules which act as efficient therapeutic agents with diminished side effects.

Objective

As a part of our search for newer agents with enhanced activity profiles, it was planned to synthesize novel 2- (benzamido)-N-((benzo[d][1,3]dioxol-4-yl)methylene)-3-(substituted phenyl) acrylohydrazides and to investigate them for antiinflammatory, antioxidant, cytotoxic, antimicrobial activities. Furthermore, studies were performed for title compounds to predict molecular properties, bioavailability, drug-likeness, and bioactivity scores, molecular docking studies were also performed against biological targets.

Methods

The title compounds 1-14 were synthesized by nucleophilic addition of piperonal in ethanol, few drops of acetic acid to the intermediate 2-(benzamido)-3-(aryl)acrylohydrazides. The title compounds were tested for their antiinflammatory activity by carrageenan-induced rat paw edema method, COX-2 inhibition assay; cytotoxic activity evaluation by MTT assay; antioxidant activity by Lipid peroxidation, DPPH assay, Nitric Oxide scavenging assay and Hydrogen peroxide scavenging assay; and antimicrobial activity by cup plate method. Physicochemical properties and bioactive scores of title compounds were evaluated by studies. Molecular docking studies were carried out for the title compounds against COX-2 (PDB: 5F19) and EGFR (PDB:1XKK).

Results

Among the series, 4-Hydroxy-3,5-dimethoxy derivative (5) displayed good anti-inflammatory and antioxidant activities; Vanillinyl derivative (4) displayed good cytotoxicity and antimicrobial activity when compared to that of the respective standards. Compounds 5 & 4 also exhibited good docking scores with COX-2 and EGFR, respectively. All title compounds obeyed Lipinski’s rule of five and also exhibited acceptable molecular properties, drug-likeness properties, and moderate to good bioactivity scores in studies.

Conclusion

The study suggested that the title compounds showed notable pharmacological properties, could emerge as lead compounds, and be further explored as promising therapeutic agents.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230816091339
2023-09-21
2025-06-28
Loading full text...

Full text loading...

References

  1. NathanC. Points of control in inflammation.Nature2002420691784685210.1038/nature01320 12490957
    [Google Scholar]
  2. BagchiK. PuriS. Free radicals and antioxidants in health and disease: A review.1998Available From: https://apps.who.int/iris/handle/10665/118217
  3. GrivennikovS.I. KarinM. Inflammation and oncogenesis: A vicious connection.Curr. Opin. Genet. Dev.2010201657110.1016/j.gde.2009.11.004 20036794
    [Google Scholar]
  4. BjarnasonI. HayllarJ. MacphersonA.N.J. RussellA.N.S. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans.Gastroenterology199310461832184710.1016/0016‑5085(93)90667‑2 8500743
    [Google Scholar]
  5. WongrakpanichS. WongrakpanichA. MelhadoK. RangaswamiJ. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly.Aging Dis.20189114315010.14336/AD.2017.0306 29392089
    [Google Scholar]
  6. TuriniM.E. DuBoisR.N. Cyclooxygenase-2: A therapeutic target.Annu. Rev. Med.2002531355710.1146/annurev.med.53.082901.103952 11818462
    [Google Scholar]
  7. VaneJ.R. BottingR.M. Therapeutic roles of selective COX-2 inhibitors.London, UKWilliam Harvey Press2001
    [Google Scholar]
  8. LaineL. Gastrointestinal effects of NSAIDs and coxibs.J. Pain Symptom Manage.2003252Suppl.324010.1016/S0885‑3924(02)00629‑2 12604155
    [Google Scholar]
  9. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107 21296855
    [Google Scholar]
  10. SoonthornthumT. Arias-PulidoH. JosteN. LomoL. MullerC. RutledgeT. VerschraegenC. Epidermal growth factor receptor as a biomarker for cervical cancer.Ann. Oncol.201122102166217810.1093/annonc/mdq723 21325449
    [Google Scholar]
  11. GullickW.J. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers.Br. Med. Bull.1991471879810.1093/oxfordjournals.bmb.a072464 1863851
    [Google Scholar]
  12. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers (Basel)2017955210.3390/cancers9050052 28513565
    [Google Scholar]
  13. FedericoA. MorgilloF. TuccilloC. CiardielloF. LoguercioC. Chronic inflammation and oxidative stress in human carcinogenesis.Int. J. Cancer2007121112381238610.1002/ijc.23192 17893868
    [Google Scholar]
  14. ViscontiR. GriecoD. New insights on oxidative stress in cancer.Curr. Opin. Drug Discov. Devel.2009122240245 19333869
    [Google Scholar]
  15. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  16. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  17. BhandariK. SrinivasN. Shiva KeshavaG.B. ShuklaP.K. Tetrahydronaphthyl azole oxime ethers: The conformationally rigid analogues of oxiconazole as antibacterials.Eur. J. Med. Chem.200944143744710.1016/j.ejmech.2008.01.006 18313805
    [Google Scholar]
  18. GoldsteinF.W. Combating resistance in a challenging, changing environment.Clin. Microbiol. Infect.200713Suppl. 22610.1111/j.1469‑0691.2007.01721.x 17488370
    [Google Scholar]
  19. MacchiaruloA. CostantinoG. FringuelliD. VecchiarelliA. SchiaffellaF. FringuelliR. 1,4-Benzothiazine and 1,4-Benzoxazine imidazole derivatives with antifungal activity: A docking study.Bioorg. Med. Chem.200210113415342310.1016/S0968‑0896(02)00263‑8 12213454
    [Google Scholar]
  20. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  21. LuoY. ZhuY. RanK. LiuZ. WangN. FengQ. ZengJ. ZhangL. HeB. YeT. ZhuS. QiuX. YuL. Synthesis and biological evaluation of N-(4-phenylthiazol-2-yl)cinnamamide derivatives as novel potential anti-tumor agents.MedChemComm2015661036104210.1039/C4MD00573B
    [Google Scholar]
  22. YoyaG.K. Bedos-BelvalF. ConstantP. DuranH. DafféM. BaltasM. Synthesis and evaluation of a novel series of pseudo-cinnamic derivatives as antituberculosis agents.Bioorg. Med. Chem. Lett.200919234134310.1016/j.bmcl.2008.11.082 19084396
    [Google Scholar]
  23. BairwaR. KakwaniM. TawariN.R. LalchandaniJ. RayM.K. RajanM.G.R. DeganiM.S. Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents.Bioorg. Med. Chem. Lett.20102051623162510.1016/j.bmcl.2010.01.031
    [Google Scholar]
  24. DengX-Q. WuD. WeiC-X. QuanZ-S. Synthesis and antidepressant-like action of N-(2-hydroxyethyl) cinnamamide derivatives in mice.Med. Chem. Res.20112081273127910.1007/s00044‑010‑9470‑7
    [Google Scholar]
  25. LeeS. LeeC.H. OhJ.H. KimE.E. ChoiY.K. KimE.H. LeeW.S. BokS.H. JeongT.S. Anti-atherogenic effects of 3,4-Dihydroxy hydrocinnamides.Bioorg. Med. Chem. Lett.200313162681268210.1016/S0960‑894X(03)00549‑3 12873493
    [Google Scholar]
  26. DerrickI. LewisJ.W. MoynihanH.A. BroadbearJ. WoodsJ.H. Potential irreversible ligands for opiod receptors, cinnamoyl derivatives of β-naltrexamine.J. Pharm. Pharmacol.201148219219610.1111/j.2042‑7158.1996.tb07121.x
    [Google Scholar]
  27. TamizA.P. WhittemoreE.R. SchelkunR.M. YuenP.W. WoodwardR.M. CaiS.X. WeberE. KeanaJ.F.W.N. -(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide: A novel antagonist at the 1a/2B NMDA receptor subtype.Bioorg. Med. Chem. Lett.19988219920010.1016/S0960‑894X(97)10215‑3 9871654
    [Google Scholar]
  28. GuanL.P. WeiC.X. DengX.Q. SuiX. PiaoH.R. QuanZ.S. Synthesis and anticonvulsant activity of N-(2-hydroxyethyl) cinnamamide derivatives.Eur. J. Med. Chem.20094493654365710.1016/j.ejmech.2009.02.015 19272675
    [Google Scholar]
  29. GregerH. HoferO. KähligH. WurzG. Sulfur containing cinnamides with antifungal activity from glycosmis cyanocarpa.Tetrahedron19924871209121810.1016/S0040‑4020(01)90784‑7
    [Google Scholar]
  30. ProbodhC.S. SunilV.S. Microwave-assisted efficient synthesis and antifungal evaluation of some N-phenyl-3(substitutedphenyl) propenamides.Indian J. Pharm. Edu. Res.200741140145
    [Google Scholar]
  31. WolszlegerM. StanC.D. ApotrosoaeiM. VasincuI. PânzariuA. ProfireL. New hydrazones of ferulic acid: Synthesis, characterization and biological activity.Rev. Med. Chir. Soc. Med. Nat. Iasi2014118411501156 25581982
    [Google Scholar]
  32. SeelollaG. PrasadC. VenkateswarluP. Synthesis, antimicrobial and antioxidant activities of novel series of cinnamamide derivatives having morpholine moiety.Med. Chem. (Los Angeles)201441277878310.4172/2161‑0444.1000229
    [Google Scholar]
  33. TanakaK. MatsuoK. NakanishiA. HatanoT. IzekiH. IshidaY. MoriW. Syntheses and anti-inflammatory and analgesic activities of hydroxamic acids and acid hydrazides.Chem. Pharm. Bull. (Tokyo)19833182810281910.1248/cpb.31.2810 6418398
    [Google Scholar]
  34. GreenspanP.D. FujimotoR.A. MarshallP.J. RaychaudhuriA. LipsonK.E. ZhouH. DotiR.A. CoppaD.E. ZhuL. PelletierR. Uziel-FusiS. JacksonR.H. ChinM.H. KotyukB.L. FittJ.J. Carboxy-Substituted Cinnamides: A Novel Series of Potent, Orally Active LTB 4 Receptor Antagonists.J. Med. Chem.199942116417210.1021/jm980540v
    [Google Scholar]
  35. MussoD.L. CochranF.R. KelleyJ.L. McLeanE.W. SelphJ.L. RigdonG.C. OrrG.F. DavisR.G. CooperB.R. StylesV.L. ThompsonJ.B. HallW.R. Indanylidenes. 1. Design and synthesis of (E)-2-(4,6-difluoro-1-indanylidene)acetamide, a potent, centrally acting muscle relaxant with antiinflammatory and analgesic activity.J. Med. Chem.200346339940810.1021/jm020067s 12540239
    [Google Scholar]
  36. RajithaG. Synthesis, Biological evaluation and molecular docking studies of N-(α-acetamidocinnamoyl)arylhydrazone derivatives as antiinflammatory and analgesic agents.Med. Chem. Res.2014235204521410.1007/s00044‑014‑1091‑0
    [Google Scholar]
  37. GaikwadN. NanduriS. MadhaviY.V. Cinnamamide: An insight into the pharmacological advances and structure–activity relationships.Eur. J. Med. Chem.201918111156110.1016/j.ejmech.2019.07.064 31376564
    [Google Scholar]
  38. ArshadM. Design, Drug-Likeness, Synthesis, Characterization, Antimicrobial Activity, Molecular Docking, and MTT Assessment of 1,3-Thiazolidin-4-one Bearing Piperonal and Pyrimidine Moieties.Russ. J. Bioorganic Chem.202046459961110.1134/S1068162020040056
    [Google Scholar]
  39. de OliveiraC. Brum, J.; Neto, D.C.F.; de Almeida, J.S.F.D.; Lima, J.A.; Kuca, K.; França, T.C.C.; Figueroa-Villar, J.D. Synthesis of New Quinoline-Piperonal Hybrids as Potential Drugs against Alzheimer’s Disease.Int. J. Mol. Sci.20192016394410.3390/ijms20163944 31416113
    [Google Scholar]
  40. LopesN.D. ChavesO.A. de OliveiraM.C.C. Sant’AnnaC.M.R. Sousa-PereiraD. Netto-FerreiraJ.C. EchevarriaA. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study.Int. J. Biol. Macromol.20181121062107210.1016/j.ijbiomac.2018.02.050 29447969
    [Google Scholar]
  41. AnnyM. MaryS.T.L. ArunK.T. RadhaK. Design, Synthesis and Biological evaluation of Pyrazole analogues of Natural Piperine.Hygeia. J. D. Med.2011324856
    [Google Scholar]
  42. PatriciaC.L. LidiaM.L. Synthesis and analgesic activity of novel N-acyl aryl hydrazones and isosters derived from natural safrole.Eur. J. Med. Chem.200035218720310.1016/S0223‑5234(00)00120‑3 10758281
    [Google Scholar]
  43. OchianaS.O. GustafsonA. BlandN.D. WangC. RussoM.J. CampbellR.K. PollastriM.P. Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 2. Tadalafil analogs.Bioorg. Med. Chem. Lett.20122272582258410.1016/j.bmcl.2012.01.118 22377518
    [Google Scholar]
  44. ShivdasS.B. Synthesis and biological screening of some heterocycles derived from Piperonal. Acta.Chim. Pharm. Indica.20133261267
    [Google Scholar]
  45. MouayedY.K. MohammedA.A. Synthesis, characterization and biological studies of Schiff bases 215 derived from piperonal and their complexes with cobalt (II).Pharma Chem.2014688100
    [Google Scholar]
  46. ChinthalaY. ThakurS. TirunagariS. ChindeS. DomattiA.K. ArigariN.K. K v N S, S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity.Eur. J. Med. Chem.20159356457310.1016/j.ejmech.2015.02.027 25743216
    [Google Scholar]
  47. ChenT-C. GuhJ-H. HsuH-W. ChenC-L. LeeC-C. WuC-L. LeeY-R. LinJ-J. YuD-S. HuangH-S. Synthesis and biological evaluation of anthra[1,9-cd]pyrazol-6(2H)-one scaffold derivatives as potential anticancer agents.Arab. J. Chem.20191282864288110.1016/j.arabjc.2015.06.017
    [Google Scholar]
  48. KhoshneviszadehM. GhahremaniM.H. ForoumadiA. MiriR. FiruziO. Madadkar-SobhaniA. EdrakiN. ParsaM. ShafieeA. Design, synthesis and biological evaluation of novel anti-cytokine 1,2,4-triazine derivatives.Bioorg. Med. Chem.201321216708671710.1016/j.bmc.2013.08.009 23993677
    [Google Scholar]
  49. AbdullahA.A. SihabuddenM. MeeraH.M. Synthesis and evaluation of piperonal chalcone and its derivatives as anti-diabetic agents.Eur. J. Biomed. Pharm. Sci.201852514518
    [Google Scholar]
  50. DongC. WangY. ZhuY.Z. Asymmetric synthesis and biological evaluation of Danshensu derivatives as anti-myocardial ischemia drug candidates.Bioorg. Med. Chem.20091793499350710.1016/j.bmc.2009.02.065 19359186
    [Google Scholar]
  51. FragaA.G.M. da SilvaL.L. FragaC.A.M. BarreiroE.J. CYP1A2-mediated biotransformation of cardioactive 2-thienylidene-3,4-methylenedioxybenzoylhydrazine (LASSBio-294) by rat liver microsomes and human recombinant CYP enzymes.Eur. J. Med. Chem.201146134935510.1016/j.ejmech.2010.11.024 21144625
    [Google Scholar]
  52. VogelA.I. Text book of practical organic chemistry, person education Pvt. Ltd., Singapore, second Indian reprint, 2004edn. 51158
    [Google Scholar]
  53. MaruthiK.T.V. A novel synthesis of 1-(1-aza-2-arylvinyl)-2-[(1E)-2-arylvinyl]-4-(phenyl methylene)-2-imidazolin-5-ones.Indian J. Chem.20054414971499
    [Google Scholar]
  54. DixonW.J. Staircase bioassay: The up-and-down method.Neurosci. Biobehav. Rev.1991151475010.1016/S0149‑7634(05)80090‑9 2052197
    [Google Scholar]
  55. WinterC.A. RisleyE.A. NussG.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs.Exp. Biol. Med. (Maywood)1962111354454710.3181/00379727‑111‑27849 14001233
    [Google Scholar]
  56. RajithaG. Vidya RaniM. Naik VankadothU. UmamaheswariA. Design of Novel Selective Estrogen Receptor Inhibitors using Molecular Docking and Protein-Ligand Interaction Fingerprint Studies.J. Pharm. Res. Int.20213346A47048310.9734/jpri/2021/v33i46A32890
    [Google Scholar]
  57. van TonderA. JoubertA.M. CromartyA.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays.BMC Res. Notes2015814710.1186/s13104‑015‑1000‑8 25884200
    [Google Scholar]
  58. BraughlerJ.M. PregenzerJ.F. ChaseR.L. DuncanL.A. JacobsenE.J. McCallJ.M. Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem.198726222104381044010.1016/S0021‑9258(18)60979‑2 3611075
    [Google Scholar]
  59. BloisM.S. Antioxidant determinations by the use of stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  60. Sarala DeviT. RajithaG. BharathiK. Synthesis and evaluation of substituted imidazolones for antiinflammatory and antioxidant activities.Asian J. Chem.20102252715276
    [Google Scholar]
  61. RajithaG. PrasadK.V.S.R.G. BharathiK. Synthesis and biological evaluation of 3-amino pyrazolones.Asian J. Chem.2011232684686
    [Google Scholar]
  62. RajithaG. PrasadK.V.S.R.G. BharathiK. Synthesis and evaluation of substituted cinnamoyl alanines for antiinflammatory, analgesic and antioxidant activities.Asian J. Chem.20102211971204
    [Google Scholar]
  63. JayaprakashaG.K. Jaganmohan RaoL. SakariahK.K. Antioxidant activities of flavidin in different in vitro model systems.Bioorg. Med. Chem.200412195141514610.1016/j.bmc.2004.07.028 15351397
    [Google Scholar]
  64. CruickshankJ.P. DugidD.P. MarminonR.H.A. Medicinal microbiology.Churchill London19752
    [Google Scholar]
  65. SriMounika, B.; Mounika, T. Design and in silico studies of molecular properties, bioactivity and toxicity of n-(α-cyano substituted cinnamoyl)-2-biphenyl hydrazone derivatives.J. Cardiovasc. Dis. Res.2021126584
    [Google Scholar]
  66. LalithaP. SivakamasundariS. Calculation of molecular lipophilicity and drug likeness for few heterocycles.Orient. J. Chem.201026135141
    [Google Scholar]
  67. VishwanathanB. GurupadayyaB.M. SairamK.V. <i>In silico</i> and antithrombotic studies of 1,3,4-oxadiazoles derived from benzimidazole.Bangladesh J. Pharmacol.2015111677410.3329/bjp.v11i1.23981
    [Google Scholar]
  68. KatsumiI. KondoH. FuseY. YamashitaK. HidakaT. HosoeK. TakeoK. YamashitaT. WatanabeK. Synthesis and antiinflammatory activity of 3, 5-Ditert-butyl-4-hydroxystyrenes.Chem. Pharm. Bull. (Tokyo)198634416191625 3719863
    [Google Scholar]
  69. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  70. SoujanyaM. RajithaG. UmamaheswariA. KumarK.S. Synthesis, Biological Evaluation and Docking Studies of N-(2-benzamido feruloyl).Aryl Hydrazone Analogues. Lett. Drug Des. Discov.201815887588610.2174/1570180814666171026161041
    [Google Scholar]
  71. RajithaG.N. SaideepaN. PraneethaP. Synthesis and evaluation of N-(α-benzamido cinnamoyl) aryl hydrazone derivatives for anti-inflammatory and antioxidant activities.Indian J. Chem.2011505729733
    [Google Scholar]
  72. WangX.L. ZhangY.B. TangJ.F. YangY.S. ChenR.Q. ZhangF. ZhuH.L. Design, synthesis and antibacterial activities of vanillic acylhydrazone derivatives as potential β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors.Eur. J. Med. Chem.20125737338210.1016/j.ejmech.2012.09.009 23124163
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230816091339
Loading
/content/journals/lddd/10.2174/1570180820666230816091339
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anticancer; antiinflammatory; antimicrobial; antioxidant; molecular docking; Piperonal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test