Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Discovering new drugs is time-consuming and expensive and involves many different tools from various domains. Numerous omic technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been created to speed up the process. Leveraging genetic and genomic insights, these methodologies play a pivotal role. Genetic insights aid in target identification, prioritization, and the prediction of drug outcomes. Gene expression data informs drug discovery, while proteomics uncovers targets and facilitates high-throughput profiling. Enhancing drug efficacy necessitates mechanistic insights into downstream effects, enabling side effects and resistance prediction. Early-stage drug discovery now extensively employs diverse metabolomics platforms. This review underscores the recent strides of omic technologies in drug discovery, affirming their role in enhancing drug viability and regulatory approval. The emphasis lies on the latest advancements in genomics, transcriptomics, proteomics, and metabolomics, collectively fortifying drug development.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808287654240126112003
2024-02-02
2025-01-23
Loading full text...

Full text loading...

References

  1. NguyenN. JennenD. KleinjansJ. Omics technologies to understand drug toxicity mechanisms.Drug Discov. Today2022271110334810.1016/j.drudis.2022.10334836089240
    [Google Scholar]
  2. PaananenJ. FortinoV. An omics perspective on drug target discovery platforms.Brief. Bioinform.20202161937195310.1093/bib/bbz12231774113
    [Google Scholar]
  3. GaoY. LiuY. LiuY. PengY. YuanB. FuY. QiX. ZhuQ. CaoT. ZhangS. YinL. LiX. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications.Cancer Lett.202152017218310.1016/j.canlet.2021.07.01234265399
    [Google Scholar]
  4. HuangH. WuN. LiangY. PengX. ShuJ. SLNL: A novel method for gene selection and phenotype classification.Int. J. Intell. Syst.20223796283630410.1002/int.22844
    [Google Scholar]
  5. HeB. LangJ. WangB. LiuX. LuQ. HeJ. GaoW. BingP. TianG. YangJ. TOOme: A novel computational framework to infer cancer tissue-of-origin by integrating both gene mutation and expression.Front. Bioeng. Biotechnol.2020839410.3389/fbioe.2020.0039432509741
    [Google Scholar]
  6. ZhouX. LuJ. WuB. GuoZ. HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188–5p to regulate VEGFA.J. Dermatol. Sci.2022106211111810.1016/j.jdermsci.2022.04.00435491288
    [Google Scholar]
  7. AbdelkaderY. Perez-DavalosL. LeDucR. ZahediR.P. LaboutaH.I. Omics approaches for the assessment of biological responses to nanoparticles.Adv. Drug Deliv. Rev.202320011499210.1016/j.addr.2023.11499237414362
    [Google Scholar]
  8. BessarabovaM. IshkinA. JeBailey, L.; Nikolskaya, T.; Nikolsky, Y. Knowledge-based analysis of proteomics data.BMC Bioinformatics201213S16S1310.1186/1471‑2105‑13‑S16‑S1323176192
    [Google Scholar]
  9. WangY. LiJ. XiangQ. TangL. INSR and ISR 1 gene polymorphisms and the susceptibility of essential hypertension: A meta analysis.Exp. Ther. Med.202325625110.3892/etm.2023.1195037153892
    [Google Scholar]
  10. TangL. XiangQ. XiangJ. LiJ. The haplotypes GCA and ACA in ESR1 gene are associated with the susceptibility of recurrent spontaneous abortion (RSA) in Chinese Han.Medicine202210121e2916810.1097/MD.000000000002916835623066
    [Google Scholar]
  11. SpreaficoR. SoriagaL.B. GrosseJ. VirginH.W. TelentiA. Advances in genomics for drug development.Genes202011894210.3390/genes1108094232824125
    [Google Scholar]
  12. KabadiA.M. McdonnellE. FrankC.L. DrowleyL. Applications of functional genomics for drug discovery.SLAS Discov.202025882384210.1177/2472555220902092
    [Google Scholar]
  13. DaiX. ShenL. Advances and trends in omics technology development.Front. Med.2022991186110.3389/fmed.2022.91186135860739
    [Google Scholar]
  14. SowjanyaK. GirishC. Structural genomics in drug discovery: An overview.J. Pharmacol. Pharmacother.20191016
    [Google Scholar]
  15. CollinsF.S. GreenE.D. GuttmacherA.E. MarkS. A vision for the future of genomics research.Nature2003422693483584710.1038/nature01626
    [Google Scholar]
  16. YugiK. OhnoS. KrycerJ.R. JamesD.E. KurodaS. Rate-oriented trans-omics: integration of multiple omic data on the basis of reaction kinetics.Curr. Opin. Syst. Biol.20191510912010.1016/j.coisb.2019.04.005
    [Google Scholar]
  17. LegarraA. ChristensenO.F. Genomic evaluation methods to include intermediate correlated features such as high-throughput or omics phenotypes.JDS Communications202341556010.3168/jdsc.2022‑027636713125
    [Google Scholar]
  18. SoneharaK. OkadaY. Genomics-driven drug discovery based on disease-susceptibility genes.Inflamm. Regen.2021411810.1186/s41232‑021‑00158‑7
    [Google Scholar]
  19. Reidhaar-olsonJ.F. RheesB.K. HammerJ. Genomics approaches to drug discovery.J. Cell. Biochem. Suppl.20013711011910.1002/jcb.10072
    [Google Scholar]
  20. PetrosiusV. SchoofE.M. Recent advances in the field of single-cell proteomics.Transl. Oncol.20232710155610.1016/j.tranon.2022.10155636270102
    [Google Scholar]
  21. JhankerY.M. KadirM.F. KhanR.I. HasanR. Proteomics in drug discovery.J. Appl. Pharm. Sci.2012211210.7324/JAPS.2012.2801
    [Google Scholar]
  22. ColzaniM. CariniM. ColzaniM. CariniM. Proteomics-based drug discovery and chemoproteomics.Fut. Med201310.4155/ebo.13.350
    [Google Scholar]
  23. YoshidaM. LooJ.A. LepleyR.A. Proteomics as a tool in the pharmaceutical drug design process.Curr. Pharm. Des.20017429131010.2174/1381612013398121
    [Google Scholar]
  24. PruteanuL. BenderA. Using transcriptomics and cell morphology data in drug discovery: The long road to practice.ACS Med. Chem. Lett.202314438639510.1021/acsmedchemlett.3c00015
    [Google Scholar]
  25. RamonC. GollubM.G. StellingJ. Integrating –omics data into genome-scale metabolic network models: Principles and challenges.Essays Biochem.201862456357410.1042/EBC2018001130315095
    [Google Scholar]
  26. KumarM. ChauhanM. VermaS.K. BiswasA. AnsariA. MishraA. SanapS.N. BisenA.C. SashidharaK.V. BhattaR.S. Preclinical pharmacokinetic exploration of a novel osteoporotic quinazolinone-benzopyran-indole hybrid (S019-0385) using LC-MS/MS.Xenobiotica2023536-748449710.1080/00498254.2023.226547537787761
    [Google Scholar]
  27. Alarcon-BarreraJ.C. KostidisS. Ondo-MendezA. GieraM. Recent advances in metabolomics analysis for early drug development.Drug Discov. Today20222761763177310.1016/j.drudis.2022.02.01835218927
    [Google Scholar]
  28. Cuperlovic-calfM. CulfA.S. MorinP.J. TouaibiaM. Application of metabolomics in drug discovery, development, and ther- agnostics metabolomics in drug discovery and development process target discovery drug testing theranostics clinical trials.Production2013415710.1080/17460441.2016.1195365
    [Google Scholar]
  29. RobertsonD.G. ReilyM.D. The current status of metabolomics in drug discovery and development.Drug Dev. Res.201273853554610.1002/ddr.21047
    [Google Scholar]
  30. YanS.K. LiuR.H. JinH.Z. LiuX.R. YeJ. ShanL. ZhangW.D. “Omics” in pharmaceutical research: Overview, applications, challenges, and future perspectives.Chin. J. Nat. Med.201513132110.1016/S1875‑5364(15)60002‑425660284
    [Google Scholar]
  31. HorganR.P. KennyL.C. ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics.Obstet. Gynaecol.201113318919510.1576/toag.13.3.189.27672
    [Google Scholar]
  32. NassarS.F. RaddassiK. WuT. Single-cell multiomics analysis for drug discovery.Metabolites2021111172910.3390/metabo1111072934822387
    [Google Scholar]
  33. ZhaoJ. LiuY. ZhuL. LiJ. LiuY. LuoJ. XieT. ChenD. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening.J. Pharm. Anal.202313667368210.1016/j.jpha.2023.04.01537440905
    [Google Scholar]
  34. LiJ. LuoJ. LiuL. FuH. TangL. The genetic association between apolipoprotein E gene polymorphism and Parkinson disease.Medicine20189743e1288410.1097/MD.000000000001288430412083
    [Google Scholar]
  35. GriffithsL. Chacon-CortesD. Methods for extracting genomic DNA from whole blood samples: current perspectives.J. Bioreposit. Sci. Appl. Med.20141110.2147/BSAM.S46573
    [Google Scholar]
  36. WangD. WangX.W. PengX.C. XiangY. SongS.B. WangY.Y. ChenL. XinV.W. LyuY.N. JiJ. MaZ.W. LiC.B. XinH.W. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research.Cancer Gene Ther.2018255-69310510.1038/s41417‑018‑0016‑329691470
    [Google Scholar]
  37. PinuF.R. BealeD.J. PatenA.M. KouremenosK. SwarupS. SchirraH.J. WishartD. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community.Metabolites2019947610.3390/metabo904007631003499
    [Google Scholar]
  38. VermaS.K. BiswasA. SaxenaS. KumarM. MishraA. ChoudhuryA.D. MishraT. RaisN. NarenderT. BhattaR.S. Development of a sensitive and selective bioanalytical method of chebulinic acid by liquid chromatography‐electrospray tandem mass spectrometry and its pharmacokinetic application.Separ. Sci. Plus202362220012510.1002/sscp.202200125
    [Google Scholar]
  39. VermaS.K. BiswasA. KumarM. MishraA. ChoudhuryA.D. AgrawalS. SanapS.N. BisenA.C. SharmaA.K. PandaG. BhattaR.S. Preclinical pharmacokinetics, CYP phenotyping, and tissue distribution study of novel anti-breast cancer candidate S-011-1559.Xenobiotica202252547648710.1080/00498254.2022.210103335819259
    [Google Scholar]
  40. Garcia-MartinezI. AlenR. PereiraL. Povo-RetanaA. AstudilloA.M. HitosA.B. Gomez-HurtadoI. Lopez-CollazoE. BoscáL. FrancésR. LizasoainI. MoroM.Á. BalsindeJ. IzquierdoM. ValverdeÁ.M. Saturated fatty acid-enriched small extracellular vesicles mediate a crosstalk inducing liver inflammation and hepatocyte insulin resistance.JHEP Reports20235810075610.1016/j.jhepr.2023.10075637360906
    [Google Scholar]
  41. SanapS.N. MishraA. BisenA.C. AgrawalS. BiswasA. VermaS.K. KumarM. BhattaR.S. Simultaneous determination of fluconazole and ofloxacin in rabbit tear fluid by LC-MS/MS: Application to ocular pharmacokinetic studies.J. Pharm. Biomed. Anal.202220811446310.1016/j.jpba.2021.11446334798393
    [Google Scholar]
  42. IqbalN. IqbalN. Imatinib: A breakthrough of targeted therapy in cancer.Chemother. Res. Pract.201420141910.1155/2014/35702724963404
    [Google Scholar]
  43. IssaA.M. Personalized medicine and the practice of medicine in the 21st century.McGill J. Med.2020101535710.26443/mjm.v10i1.62518523593
    [Google Scholar]
  44. ParsonsJ. FrancavillaC. ‘Omics approaches to explore the breast cancer landscape.Front. Cell Dev. Biol.2020739510.3389/fcell.2019.0039532039208
    [Google Scholar]
  45. SenP. OrešičM. Integrating omics data in genome-scale metabolic modeling: A methodological perspective for precision medicine.Metabolites202313785510.3390/metabo1307085537512562
    [Google Scholar]
  46. LinJ. J. Cancer treatment.Caring for Patients Across the Cancer Care ContinuumSpringer201969312310.1007/978‑3‑030‑01896‑2_5
    [Google Scholar]
  47. NehaS. HarikumarS.L. Use of genomics and proteomics in pharmaceutical drug discovery and development: A review.Int. J. Pharm. Pharm. Sci.201352428
    [Google Scholar]
  48. YazdanpanahS. MotamedianE. ShojaosadatiS.A. Integrating gene expression data into a genome-scale metabolic model to identify reprogramming during adaptive evolution.PLoS One20231810e029243310.1371/journal.pone.029243337788289
    [Google Scholar]
  49. KrebsK. MilaniL. Harnessing the power of electronic health records and genomics for drug discovery.Annu. Rev. Pharmacol. Toxicol.2023631657610.1146/annurev‑pharmtox‑051421‑11132436662581
    [Google Scholar]
  50. BiswasA. ChoudhuryA.D. BisenA.C. AgrawalS. SanapS.N. VermaS.K. MishraA. KumarS. BhattaR.S. Trends in formulation approaches for sustained drug delivery to the posterior segment of the eye.AAPS PharmSciTech202324821710.1208/s12249‑023‑02673‑x37891392
    [Google Scholar]
  51. BisenA.C. SanapS.N. BiswasA. AgrawalS. MishraA. KumarM. ChoudhuryA.D. R, H.G.; Bhatta, R.S. A QbD‐led simple and sensitive RP‐UHPLC method for simultaneous determination of moxifloxacin, voriconazole, and pirfenidone: An application to pharmaceutical analysis.Biomed. Chromatogr.2023379e568110.1002/bmc.568137153940
    [Google Scholar]
  52. LiuZ. XuJ. WenZ. Advancing genomics for drug development and safety evaluation.Int. J. Genomics201820181210.1155/2018/312682029951521
    [Google Scholar]
  53. MishraA. ChoudhuryA.D. BiswasA. SinghV. VermaS. BisenA.C. KumarM. BhattaR.S. Concurrent determination of anti-microbial and anti-inflammatory drugs in lachrymal fluid and tissue by LC-MS/MS: A potential treatment for microbial keratitis and its PK-PD evaluation.J. Pharm. Biomed. Anal.202423911592010.1016/j.jpba.2023.11592038113826
    [Google Scholar]
  54. BiswasA. ChoudhuryA.D. AgrawalS. BisenA.C. SanapS.N. VermaS.K. KumarM. MishraA. KumarS. ChauhanM. BhattaR.S. Recent insights into the etiopathogenesis of diabetic retinopathy and its management.J. Ocul. Pharmacol. Ther.202300jop.2023.006810.1089/jop.2023.006837733327
    [Google Scholar]
  55. BotiM.A. AthanasopoulouK. ScorilasA. AdamopoulosP.G. SiderisD.C. Recent advances in genome-engineering strategies.Genes202314112910.3390/genes14010129
    [Google Scholar]
  56. WardS.J. Impact of genomics in drug discovery.Biotechniques2001313626634628, 630 passim10.2144/01313dd0111570506
    [Google Scholar]
  57. BumolT.F. WatanabeA.M. Genetic information, genomic technologies, and the future of drug discovery.JAMA2001285555155510.1001/jama.285.5.551
    [Google Scholar]
  58. GuptaP. LeeK.H. Genomics and proteomics in process development: Opportunities and challenges.Trends Biotechnol.200725732433010.1016/j.tibtech.2007.04.00517475353
    [Google Scholar]
  59. ZhengX.F. ChanT.F. Chemical genomics: A systematic approach in biological research and drug discovery.Curr. Issues Mol. Biol.200242334310.21775/cimb.004.03311931568
    [Google Scholar]
  60. ZhaoQ. WangY. ZhuZ. ZhaoQ. ZhuL. JiangL. Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816.Food Sci. Hum. Wellness202312380981610.1016/j.fshw.2022.09.017
    [Google Scholar]
  61. PanL. FengF. WuJ. FanS. HanJ. WangS. YangL. LiuW. WangC. XuK. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells.Pharmacol. Res.202218110627010.1016/j.phrs.2022.10627035605812
    [Google Scholar]
  62. ZhuY. HuangR. WuZ. SongS. ChengL. ZhuR. Deep learning-based predictive identification of neural stem cell differentiation.Nat. Commun.2021121261410.1038/s41467‑021‑22758‑033972525
    [Google Scholar]
  63. YinZ. JiQ. WuD. LiZ. FanM. ZhangH. ZhaoX. WuA. ChengL. ZengL.H. 2 O 2 -responsive gold nanoclusters @ mesoporous silica @ manganese dioxide nanozyme for “Off/On” modulation and enhancement of magnetic resonance imaging and photodynamic therapy.ACS Appl. Mater. Interfaces20211313149281493710.1021/acsami.1c0043033759491
    [Google Scholar]
  64. NambaS. KonumaT. WuK.H. ZhouW. OkadaY. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis.Cell Genomics202221010019010.1016/j.xgen.2022.10019036778001
    [Google Scholar]
  65. BerryS. Drug discovery in the wake of genomics.Trends Biotechnol.200119723924010.1016/S0167‑7799(01)01667‑511434347
    [Google Scholar]
  66. SeligmannB. Transcriptomics - Realising the promise with a new era of drug discovery and diagnostics.Drug Discov. World2003
    [Google Scholar]
  67. LeeJ. HyeonD.Y. HwangD. Single-cell multiomics: Technologies and data analysis methods.Exp. Mol. Med.20205291428144210.1038/s12276‑020‑0420‑232929225
    [Google Scholar]
  68. TianZ. ZhangY. ZhengZ. ZhangM. ZhangT. JinJ. ZhangX. YaoG. KongD. ZhangC. WangZ. ZhangQ. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation.Cell Host Microbe2022301014501463.e810.1016/j.chom.2022.09.00436228585
    [Google Scholar]
  69. ChenY. ChenL. ZhouQ. Genetic association between eNOS gene polymorphisms and risk of carotid atherosclerosis.Herz202146S225326410.1007/s00059‑020‑04995‑z33095272
    [Google Scholar]
  70. JiangM. ChenS. LuX. GuoH. ChenS. YinX. LiH. DaiG. LiuL. Integrating genomics and metabolomics for the targeted discovery of new cyclopeptides with antifungal activity from a marine-derived fungus beauveria felina.J. Agric. Food Chem.202371259782979510.1021/acs.jafc.3c0241537310400
    [Google Scholar]
  71. ZhaoH. TangS. TaoQ. MingT. LeiJ. LiangY. PengY. WangM. LiuM. YangH. RenS. XuH. Ursolic acid suppresses colorectal cancer by down-regulation of Wnt/β-catenin signaling pathway activity.J. Agric. Food Chem.20237193981399310.1021/acs.jafc.2c0677536826439
    [Google Scholar]
  72. HeathJ.R. RibasA. MischelP.S. Single-cell analysis tools for drug discovery and development.Nat. Rev. Drug Discov.201615320421610.1038/nrd.2015.1626669673
    [Google Scholar]
  73. OlivierM. AsmisR. HawkinsG.A. HowardT.D. CoxL.A. The need for multi-omics biomarker signatures in precision medicine.Int. J. Mol. Sci.20192019478110.3390/ijms2019478131561483
    [Google Scholar]
  74. ParkJ. KimJ. LewyT. RiceC.M. ElementoO. RendeiroA.F. MasonC.E. Spatial omics technologies at multimodal and single cell/subcellular level.Genome Biol.202223125610.1186/s13059‑022‑02824‑636514162
    [Google Scholar]
  75. VandereykenK. SifrimA. ThienpontB. VoetT. Methods and applications for single-cell and spatial multi-omics.Nat. Rev. Genet.202324849451510.1038/s41576‑023‑00580‑236864178
    [Google Scholar]
  76. Mohammadi-ShemiraniP. SoodT. ParéG. From ‘omics to multi-omics technologies: The discovery of novel causal mediators.Curr. Atheroscler. Rep.2023252556510.1007/s11883‑022‑01078‑836595202
    [Google Scholar]
  77. DarM.A. ArafahA. BhatK.A. KhanA. KhanM.S. AliA. AhmadS.M. RashidS.M. RehmanM.U. Multiomics technologies: role in disease biomarker discoveries and therapeutics.Brief. Funct. Genomics2023222769610.1093/bfgp/elac01735809340
    [Google Scholar]
  78. ChakrabortyD. SharmaN. KourS. SodhiS.S. GuptaM.K. LeeS.J. SonY.O. Applications of omics technology for livestock selection and improvement.Front. Genet.20221377411310.3389/fgene.2022.77411335719396
    [Google Scholar]
  79. GuoJ. HuangZ. SunJ. CuiX. LiuY. Research progress and future development trends in medicinal plant transcriptomics.Front. Plant Sci.20211269183810.3389/fpls.2021.69183834394145
    [Google Scholar]
  80. HuY.F. KaplowJ. HeY. From traditional biomarkers to transcriptome analysis in drug development.Curr. Mol. Med.200551293810.2174/156652405315291515720268
    [Google Scholar]
  81. PratikC. Application and development of proteomics in biopharmaceutical industry.Int. J. Innov. Res. Multidiscipl. Field2021774551
    [Google Scholar]
  82. DrissiR. DuboisM.L. BoisvertF.M. Proteomics methods for subcellular proteome analysis.FEBS J.2013280225626563410.1111/febs.1250224034475
    [Google Scholar]
  83. SharmaV.K. KumarR. Current applications of proteomics: A key and novel approach.Int. J. Adv. Med.201966195310.18203/2349‑3933.ijam20195259
    [Google Scholar]
  84. ZhangH.M. NanZ.R. HuiG.Q. LiuX.H. SunY. Application of genomics and proteomics in drug target discovery.Genet. Mol. Res.201413119820410.4238/2014.January.10.1124446303
    [Google Scholar]
  85. MoghaddamniaS.H. Application of proteomics technologies in the drug development process.Iran. J. Pharm. Res.20098143
    [Google Scholar]
  86. DixitA. BarhooshH. PaegelB.M. Translating the genome into drugs.Acc. Chem. Res.202356448949910.1021/acs.accounts.2c0079136757774
    [Google Scholar]
  87. BowserB.L. RobinsonR.A.S. Enhanced multiplexing technology for proteomics.Annu. Rev. Anal. Chem.202316137940010.1146/annurev‑anchem‑091622‑09235336854207
    [Google Scholar]
  88. AgrawalS. BisenA.C. BiswasA. SanapS.N. VermaS.K. KumarM. JaiswalS. KumarA. NarenderT. BhattaR.S. Simultaneous pharmacokinetic assessment of phytopharmaceuticals in fenugreek extract using LC-MS/MS in Sprague-Dawley rats.Biomed. Chromatogr.2023375e560010.1002/bmc.560036760100
    [Google Scholar]
  89. KhalKhal, E.; Rezaei-Tavirani, M.; Rostamii-Nejad, M. Pharmaceutical advances and proteomics researches.Iran. J. Pharm. Res.201918516710.22037/ijpr.2020.112440.1375832802089
    [Google Scholar]
  90. TyersM. MannM. From genomics to proteomics.Nature2006422692819319710.1038/nature01510
    [Google Scholar]
  91. FrantziM. LatosinskaA. MischakH. Proteomics in drug development: The dawn of a new era?Proteomics Clin. Appl.2019132180008710.1002/prca.20180008730724014
    [Google Scholar]
  92. GuptaS.P. Advances in drug discovery based on genomics, proteomics and bioinformatics.Curr. Top. Med. Chem.202222201635163510.2174/15680266222022090815234036134877
    [Google Scholar]
  93. LuY. ChenC. Metabolomics: Bridging chemistry and biology in drug discovery and development.Curr. Pharmacol. Rep.201731162510.1007/s40495‑017‑0083‑4
    [Google Scholar]
  94. MatthewsH. HanisonJ. NirmalanN. “Omics”-informed drug and biomarker discovery: Opportunities, challenges and future perspectives.Proteomes2016432810.3390/proteomes403002828248238
    [Google Scholar]
  95. TaylorM.J. LukowskiJ.K. AndertonC.R. Spatially resolved mass spectrometry at the single cell: Recent innovations in proteomics and metabolomics.J. Am. Soc. Mass Spectrom.202132487289410.1021/jasms.0c0043933656885
    [Google Scholar]
  96. BiswasA. Kumar VermaS. KumarS. MishraT. KumarM. Deb ChoudhuryA. AgrawalS. SanapS.N. BisenA.C. MishraA. NarenderT. BhattaR.S. Preclinical pharmacokinetics and CYP modulation activity of chebulinic acid: A potent molecule against metabolic disease.Curr. Drug Metab.202324858759810.2174/138920022466623081710195037592800
    [Google Scholar]
  97. LiuX. LocasaleJ.W. Metabolomics: A Primer.Trends Biochem. Sci.201742427428410.1016/j.tibs.2017.01.00428196646
    [Google Scholar]
  98. FarooqS.U. KishorK. SharmaA. Metabolomics: A radical approach to molecular study.J. Livest. Sci.2023141354010.33259/JLivestSci.2023.35‑40
    [Google Scholar]
  99. Gonzalez-CovarrubiasV. Martínez-MartínezE. Del Bosque-PlataL. The potential of metabolomics in biomedical applications.Metabolites202212219410.3390/metabo12020194
    [Google Scholar]
  100. PangH. HuZ. Metabolomics in drug research and development: The recent advances in technologies and applications.Acta Pharm. Sin. B20231383238325110.1016/j.apsb.2023.05.02137655318
    [Google Scholar]
  101. RussellC. RahmanA. MohammedA.R. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic.Ther. Deliv.20134339541310.4155/tde.13.423442083
    [Google Scholar]
  102. BeyoğluD. IdleJ.R. Metabolomics and its potential in drug development.Biochem. Pharmacol.2013851122010.1016/j.bcp.2012.08.01322935449
    [Google Scholar]
  103. YeS. LiJ. ZhangZ. Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction.J. Anim. Sci. Biotechnol.202011110910.1186/s40104‑020‑00515‑533292577
    [Google Scholar]
  104. LiuY. SongF. LiZ. ChenL. XuY. SunH. ChangY. A comprehensive tool for tumor precision medicine with pharmaco-omics data analysis.Front. Pharmacol.202314108576510.3389/fphar.2023.108576536713829
    [Google Scholar]
  105. LiuQ. Martínez-JarquínS. ZenobiR. Recent advances in single-cell metabolomics based on mass spectrometry.CCS Chem.20235231032410.31635/ccschem.022.202202333
    [Google Scholar]
  106. Cuperlovic-CulfM. CulfA.S. Applied metabolomics in drug discovery.Expert Opin. Drug Discov.201611875977010.1080/17460441.2016.119536527366968
    [Google Scholar]
  107. VeenstraT.D. Metabolomics: The final frontier?Genome Med.2012444010.1186/gm339
    [Google Scholar]
  108. WishartD.S. Applications of metabolomics in drug discovery and development.Drugs R D.20089530732210.2165/00126839‑200809050‑0000218721000
    [Google Scholar]
  109. YeungP. Metabolomics and biomarkers for drug discovery.Metabolites2018811110.3390/metabo801001129385049
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808287654240126112003
Loading
/content/journals/lddd/10.2174/0115701808287654240126112003
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): drug discovery; genomics; metabolomics; Omic technology; proteomics; transcriptomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test