Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Acquired Immunodeficiency Syndrome (AIDS) is one of most prevalent infectious diseases in the world, and HIV-1 protease (PR) is a vital target of drug design. Nowadays, three-dimensional quantitative structure-activity relationships (3D-QSAR) are applied to help design new protease inhibitions (PIs).

Objective

The primary objective of this study is to apply the 3D-QSAR study to a series of 42 derivatives of Darunavir (DRV) and to design new molecules possessing high antivirus activity.

Methods

Partial Least Squares (PLS) were used to cross-validate the dataset of compounds, and the optimal number of principal components (ONC), cross-validate coefficient (q2), standard error of estimate (SEE), non-cross-validated correlation coefficient (R2) and fisher test value (F) were calculated to assess model robustness. In this study, the CoMSIA-DAH model (q2=0.754, r2= 0.988, r2=0.57) possessed the highest predicted activity. Newly designed molecules were analyzed by docking studies with compound 25 taken as a template.

Results

Within eight newly designed drugs, compound N02 possessed the highest antivirus activity (IC=0.00461 nM) predicted by the CoMSIA-DAH model. The Surflex-Dock module of SYBYL-X 2.0 was used to affirm the predicted anti-PR activity of the newly designed compounds and the results of docking complex structure could be visualized. All newly designed molecules were in agreement with CSore above four and the docking study revealed that Asp29, Asp30, Ile50, Asp124, Asp128, Asp129 and Ile149 were critical residues in the process of inhibiting PR.

Conclusion

One of the main aspects of this study is the successful design of a series of molecules with excellent investigatory values, which elucidates explicit quantitative structure-activity relationships of DRV derivatives and will provide significant suggestions for future pharmaceutical research.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230818100059
2023-09-26
2025-07-04
Loading full text...

Full text loading...

References

  1. MohamedA.A. LuX. MounminF.A. Diagnosis and treatment of esophageal candidiasis: Current updates.Can. J. Gastroenterol. Hepatol.20192019358513610.1155/2019/3585136 31772927
    [Google Scholar]
  2. van VeenK.E.B. BrouwerM.C. van der EndeA. van de BeekD. Bacterial meningitis in patients using immunosuppressive medication: A population-based prospective nationwide study.J. Neuroimmune. Pharmacol.201712221321810.1007/s11481‑016‑9705‑6 27613024
    [Google Scholar]
  3. WordellC.J. HauptmanS.P. Treatment of pneumocystis carinii pneumonia in patients with AIDS.Clin. Pharm.198877514527 3138063
    [Google Scholar]
  4. HeathK. LeviJ. HillA. The joint united nations programme on HIV/AIDS 95–95–95 targets: Worldwide clinical and cost benefits of generic manufacture.AIDS.202135S2S197S20310.1097/QAD.0000000000002983 34115649
    [Google Scholar]
  5. KressJ. VermeulenM. ChudyM. ReissingerA. HanschmannK.M. SavilleA. NüblingC.M. Reliability of CE-marked NATs for HIV-1 subtype C detection and quantitation.J. Clin. Virol.202013210464910.1016/j.jcv.2020.104649 33027700
    [Google Scholar]
  6. TompaD.R. ImmanuelA. SrikanthS. KadhirvelS. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs.Int. J. Biol. Macromol.202117252454110.1016/j.ijbiomac.2021.01.076 33454328
    [Google Scholar]
  7. VeselovskyA.V. ZharkovaM.S. PoroikovV.V. NicklausM.C. Computer-aided design and discovery of protein–protein interaction inhibitors as agents for anti-HIV therapy.SAR QSAR Environ. Res.201425645747110.1080/1062936X.2014.898689 24716798
    [Google Scholar]
  8. HuffJ.R. HIV protease: A novel chemotherapeutic target for AIDS.J. Med. Chem.19913482305231410.1021/jm00112a001 1875332
    [Google Scholar]
  9. OlczakA. Darunavir, promising option in therapy multi-experience HIV-infected patients.HIV AIDS Rev.2008715910.1016/S1730‑1270(10)60059‑8
    [Google Scholar]
  10. RolleC.P. MarquezO. NguyenV. HinestrosaF. DeJesusE. Clinical outcomes of once-daily darunavir in treatment-experienced patients with darunavir resistance-associated mutations through 48 weeks of treatment.Int. J. STD AIDS2020311095896610.1177/0956462420926405 32698728
    [Google Scholar]
  11. MaL. WenJ. DongB. ZhouJ. HuS. WangJ. WangY. ZhuM. CenS. Design and evaluation of novel HIV-1 protease inhibitors containing phenols or polyphenols as P2 ligands with high activity against DRV-resistant HIV-1 variants.Int. J. Mol. Sci.202223221417810.3390/ijms232214178 36430656
    [Google Scholar]
  12. ZhuM. ShanQ. MaL. WenJ. DongB. ZhangG. WangM. WangJ. ZhouJ. CenS. WangY. Design and biological evaluation of cinnamic and phenylpropionic amide derivatives as novel dual inhibitors of HIV-1 protease and reverse transcriptase.Eur. J. Med. Chem.202122011349810.1016/j.ejmech.2021.113498 33933756
    [Google Scholar]
  13. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  14. CramerR.D. PattersonD.E. BunceJ.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.J. Am. Chem. Soc.1988110185959596710.1021/ja00226a005 22148765
    [Google Scholar]
  15. MatayoshiE.D. WangG.T. KrafftG.A. EricksonJ. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer.Science.1990247494595495810.1126/science.2106161 2106161
    [Google Scholar]
  16. VolpeD.A. HamedS.S. ZhangL.K. Use of different parameters and equations for calculation of IC50 values in efflux assays: Potential sources of variability in IC50 determination.AAPS J.201416117218010.1208/s12248‑013‑9554‑7 24338112
    [Google Scholar]
  17. GramaticaP. On the development and validation of QSAR models.Methods. Mol. Biol.201393049952610.1007/978‑1‑62703‑059‑5_21 23086855
    [Google Scholar]
  18. LeemansE. MahasenanK.V. KumarasiriM. SpinkE. DingD. O’DanielP.I. BoudreauM.A. LastochkinE. TesteroS.A. YamaguchiT. LeeM. HesekD. FisherJ.F. ChangM. MobasheryS. Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials.Bioorg. Med. Chem. Lett.20162631011101510.1016/j.bmcl.2015.12.041 26733473
    [Google Scholar]
  19. ZhangY.J. ChenL. XuJ. JiangH.F. ZhuY.R. WangZ.H. XiongF. Evaluation of novel HIV-1 protease inhibitors with DRV-resistance by utilizing 3D-QSAR molecular docking and molecular dynamics simulation.New J. Chem.20224645218852189710.1039/D2NJ04492G
    [Google Scholar]
  20. BöhmM. StürzebecherJ. KlebeG. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa.J. Med. Chem.199942345847710.1021/jm981062r 9986717
    [Google Scholar]
  21. KlebeG. AbrahamU. MietznerT. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.J. Med. Chem.199437244130414610.1021/jm00050a010 7990113
    [Google Scholar]
  22. WoldS. RuheA. WoldH. DunnW.J.III The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses.SIAM J. Sci. Statist. Comput.19845373574310.1137/0905052
    [Google Scholar]
  23. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  24. SinghK.P. GuptaS. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials.RSC Adv.2014426132151323010.1039/C4RA01274G
    [Google Scholar]
  25. KhalidT. WhiteP. De Lacy CostelloB. PersadR. EwenR. JohnsonE. ProbertC.S. RatcliffeN. A pilot study combining a GC-sensor device with a statistical model for the identification of bladder cancer from urine headspace.PLoS One201387e6960210.1371/journal.pone.0069602 23861976
    [Google Scholar]
  26. ChenL. LiuW.G. XiongF. MaC. SunC. ZhuY.R. ZhangX.G. WangZ.H. 3D-QSAR, molecular docking and molecular dynamics simulations analyses of a series of heteroaryldihydropyrimidine derivatives as hepatitis B virus capsid assembly inhibitors.New J. Chem.20214547220622207610.1039/D1NJ02542B
    [Google Scholar]
  27. HartshornM.J. VerdonkM.L. ChessariG. BrewertonS.C. MooijW.T.M. MortensonP.N. MurrayC.W. Diverse, high-quality test set for the validation of protein-ligand docking performance.J. Med. Chem.200750472674110.1021/jm061277y 17300160
    [Google Scholar]
  28. GangulyA.K. AlluriS.S. WangC.H. AntropowA. WhiteA. CarocciaD. BiswasD. KangE. ZhangL.K. CarrollS.S. BurleinC. FayJ. OrthP. StricklandC. Structural optimization of cyclic sulfonamide based novel HIV-1 protease inhibitors to picomolar affinities guided by X-ray crystallographic analysis.Tetrahedron.201470182894290410.1016/j.tet.2014.03.038
    [Google Scholar]
  29. RuppertJ. WelchW. JainA.N. Automatic identification and representation of protein binding sites for molecular docking.Protein Sci.199763
    [Google Scholar]
  30. XiongF. ChenL. ZhangY. ZhuY. SunC. MaC. ZhangS. WangZ. Molecular modeling and docking studies of 2,4,5-trisubstituted pyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors.Polycycl. Aromat. Compd.202212010.1080/10406638.2022.2141274
    [Google Scholar]
  31. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics.20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  32. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  33. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  34. ZhouS.F. ZhouZ.W. YangL.P. CaiJ.P. Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development.Curr. Med. Chem.200916273480367510.2174/092986709789057635 19515014
    [Google Scholar]
  35. EscobarP.A. KemperR.A. TarcaJ. NicoletteJ. KenyonM. GlowienkeS. SawantS.G. ChristensenJ. JohnsonT.E. McKnightC. WardG. GallowayS.M. CusterL. GockeE. O’DonovanM.R. BraunK. SnyderR.D. MahadevanB. Bacterial mutagenicity screening in the pharmaceutical industry.Mutat. Res. Rev. Mutat. Res.201375229911810.1016/j.mrrev.2012.12.002 23262374
    [Google Scholar]
  36. AraújoM.O. Freire PessoaH.L. LiraA.B. CastilloY.P. de SousaD.P. Synthesis, antibacterial evaluation, and QSAR of caffeic acid derivatives.J. Chem.20192019340831510.1155/2019/3408315
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230818100059
Loading
/content/journals/lddd/10.2174/1570180820666230818100059
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 3D-QSAR; ADMET; antivirus; docking; DRV; HIV-1; protease inhibitors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test