Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Modern pharmacological research indicated that (CAM) had significant anti-tumor activity, but the investigation of its mechanism was still lacking.

Objective

The multi-component, multi-target and multi-pathway mechanism of CAM against tumor was investigated based on network pharmacology and molecular docking.

Methods

The active ingredients and targets of CAM were selected through a literature search, Traditional Chinese Medicine Systems Pharmacology database and PharmMapper database, and tumor-related targets were selected by GeneCards database, then to obtain the anti-tumor related targets of CAM. The protein interaction relationship was obtained through STRING database, protein-protein interaction network was constructed using Cytoscape 3.7.2 software, and enrichment analysis of GO and KEGG was conducted. AutoDock Tools 1.5.6 software was used to verify the molecular docking between the key ingredients and the key targets.

Results

Catechin, epicatechin and luteolin were identified as the key anti-tumor related ingredients, and ESR1, EGFR, MAPK8, MAPK10, AR, PGR, F2 and PIK3CG were identified as the key targets. The GO entries mainly involved metabolic process, cellular process, response to stimulus, organelle, cytosol, . The KEGG enrichment showed that the key pathways included pathways in cancer, prostate cancer, pancreatic cancer, breast cancer, estrogen signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, . KEGG pathway maps indicated that the anti-tumor effect of CAM may be mainly achieved by intervening related targets in the following pathways: AR-HSP/AR-AR/PSA/proliferation and evading apoptosis; F2/GPCR/…/ROCK/tissue invasion and metastasis; F2/GPCR/…/Raf/MAPK signaling pathway/proliferation and sustained angiogenesis; EGFR/PI3K-Akt signaling pathway/proliferation, evading apoptosis and sustained angiogenesis; EGFR/Grb2/…/Raf/MAPK signaling pathway/proliferation and sustained angiogenesis; ER/Estrogen signaling pathway/proliferation; PR/PR-CR/Wnts-RANKL/proliferation; oxidative stress (.O-, .OH, HO)/KEAP1/NRF2/.../proliferation and evading apoptosis. The results of molecular docking showed that the key active ingredients had a good binding activity with each key target.

Conclusion

It was predicted that the main active ingredients of CAM could bind to tumor-related targets, such as receptor and coagulation-promoting factor, scavenge free radicals, and then interfere with the occurrence and development of tumors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230818092456
2023-09-26
2025-06-23
Loading full text...

Full text loading...

References

  1. SongL. WangX. ZhengX. HuangD. Polyphenolic antioxidant profiles of yellow camellia.Food Chem.2011129235135710.1016/j.foodchem.2011.04.083 30634237
    [Google Scholar]
  2. YangR. GuanY. WangW. ChenH. HeZ. JiaA.Q. Antioxidant capacity of phenolics in Camellia nitidissima Chi flowers and their identification by HPLC Triple TOF MS/MS.PLoS One2018134e019550810.1371/journal.pone.0195508 29634769
    [Google Scholar]
  3. ChenY.Y. HuangY.L. WenY.X. Advance in study on chemical constituents and pharmacological action of Camellia chrysantha.Guangxi Tropical Agriculture200911416
    [Google Scholar]
  4. LiY.F. OuyangS.H. ChangY.Q. WangT.M. LiW.X. TianH.Y. CaoH. KuriharaH. HeR.R. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS.Food Chem.201721628228810.1016/j.foodchem.2016.08.017 27596421
    [Google Scholar]
  5. HouX. DuH. YangR. QiJ. HuangY. FengS. WuY. LinS. LiuZ. JiaA.Q. YuanS. SunL. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi.Int. J. Mol. Med.20184152793280110.3892/ijmm.2018.3502 29484370
    [Google Scholar]
  6. HeX. LiH. ZhanM. LiH. JiaA. LinS. SunL. DuH. YuanS. LiY. Camellia nitidissima Chi extract potentiates the sensitivity of gastric cancer cells to paclitaxel via the induction of autophagy and apoptosis.OncoTargets Ther.201912108111082510.2147/OTT.S220453 31853183
    [Google Scholar]
  7. DaiL. LiJ.L. LiangX.Q. LiL. FengY. LiuH.Z. WeiW.E. NingS.F. ZhangL.T. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line.Mol. Med. Rep.20161421117112210.3892/mmr.2016.5385 27314447
    [Google Scholar]
  8. BoezioB. AudouzeK. DucrotP. TaboureauO. Network-based approaches in pharmacology.Mol. Inform.20173610170004810.1002/minf.201700048 28692140
    [Google Scholar]
  9. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  10. LiuJ.H. LyuD.Y. ZhouH.M. KuangW.H. ChenZ.X. ZhangS.J. Study on molecular mechanism of Solanum nigrum in treatment of hepatocarcinoma based on network pharmacology and molecular docking.Zhongguo Zhongyao Zazhi2020451163168 32237426
    [Google Scholar]
  11. KatariaR. KhatkarA. Molecular docking of natural phenolic compounds for the screening of urease inhibitors.Curr. Pharm. Biotechnol.201920541042110.2174/1389201020666190409110948 30963969
    [Google Scholar]
  12. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/1389450119666181022153016 30360733
    [Google Scholar]
  13. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.201461131810.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  14. LiuX. OuyangS. YuB. LiuY. HuangK. GongJ. ZhengS. LiZ. LiH. JiangH. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach.Nucleic Acids Res.201038Suppl. 2W609W61410.1093/nar/gkq300 20430828
    [Google Scholar]
  15. WangX. PanC. GongJ. LiuX. LiH. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs.J. Chem. Inf. Model.20165661175118310.1021/acs.jcim.5b00690 27187084
    [Google Scholar]
  16. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  17. MorgansA.K. RenzulliJ.II OlivierK. ShoreN.D. Risk of cognitive effects in comorbid patients with prostate cancer treated with androgen receptor inhibitors.Clin. Genitourin. Cancer2021195467.e1467.e1110.1016/j.clgc.2021.03.014 33893042
    [Google Scholar]
  18. AndersonH. HillsM. ZabagloL. A’HernR. LearyA.F. HaynesB.P. SmithI.E. DowsettM. Relationship between estrogen receptor, progesterone receptor, HER-2 and Ki67 expression and efficacy of aromatase inhibitors in advanced breast cancer.Ann. Oncol.20112281770177610.1093/annonc/mdq700 21285137
    [Google Scholar]
  19. SalmanM.I. AltaeeM.F. UmranM.A. Evaluation the avoidance effects of oxidroxeductase and catechines for catechol cytotoxicity in some tumor cell lines.Biochem. Cell. Arch.20202033513357
    [Google Scholar]
  20. Syed HusseinS.S. KamarudinM.N.A. Abdul KadirH. (+)-Catechin attenuates NF-κB activation through regulation of Akt, MAPK, and AMPK signaling pathways in LPS-induced BV-2 microglial cells.Am. J. Chin. Med.201543592795210.1142/S0192415X15500548 26227399
    [Google Scholar]
  21. PratheeshkumarP. SonY. BudhrajaA. WangX. DingS. WangL. HitronA. LeeJ. PratheeshkumarP. SonY.O. BudhrajaA. WangX. DingS. WangL. HitronA. LeeJ.C. KimD. DivyaS.P. ChenG. ZhangZ. LuoJ. ShiX. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.PLoS One2012712e5227910.1371/journal.pone.0052279 23300633
    [Google Scholar]
  22. LiuC. LinY. XuJ. ChuH. HaoS. LiuX. SongX. JiangL. ZhengH. Luteolin suppresses tumor progression through lncRNA BANCR and its downstream TSHR/CCND1 signaling in thyroid carcinoma.Int. J. Clin. Exp. Pathol.201710995919598 31966836
    [Google Scholar]
  23. SedkyN.K. El GammalZ.H. WahbaA.E. MosadE. WalyZ.Y. El-FallalA.A. ArafaR.K. El-BadriN. The molecular basis of cytotoxicity of α‐spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines.J. Cell. Biochem.201811953892390210.1002/jcb.26515 29143969
    [Google Scholar]
  24. SharmilaR. SindhuG. Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis.Indian J. Clin. Biochem.201732214215210.1007/s12291‑016‑0583‑8 28428688
    [Google Scholar]
  25. ChengS. GaoN. ZhangZ. ChenG. BudhrajaA. KeZ. SonY. WangX. LuoJ. ShiX. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax.Clin. Cancer Res.201016235679569110.1158/1078‑0432.CCR‑10‑1565 21138867
    [Google Scholar]
  26. LohY.S. LiG. FanK. AhmedI. RoufogalisB. SzeD. Kaempferide targets side population, the putative cancer stem cell, in myeloma and induced apoptosis in dose-dependant manner.Blood2010116215029502910.1182/blood.V116.21.5029.5029
    [Google Scholar]
  27. DangQ. SongW. XuD. MaY. LiF. ZengJ. ZhuG. WangX. ChangL.S. HeD. LiL. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.Mol. Carcinog.201554983184010.1002/mc.22154 24700700
    [Google Scholar]
  28. MohammadH.F. LindnerD.J. KalafatisM. Abstract 1933: Ellagic acid induces apoptosis and cell cycle arrest in HeLa cells and inhibits HPV oncogene expression.Cancer Res.201272Suppl. 8193310.1158/1538‑7445.AM2012‑1933
    [Google Scholar]
  29. RuanX. CaiG. WeiY. GuM. ZhangY. ZhaoY. MueckA.O. Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with breast tumor characteristics and comparison with known tumor markers.Menopause202027218319310.1097/GME.0000000000001436 31876619
    [Google Scholar]
  30. OsakoT. NishimuraR. OkumuraY. ToyozumiY. ArimaN. Predictive significance of the proportion of ER-positive or PgR-positive tumor cells in response to neoadjuvant chemotherapy for operable HER2-negative breast cancer.Exp. Ther. Med.201231667110.3892/etm.2011.359 22969846
    [Google Scholar]
  31. Hopper-BorgeE.A. NastoR.E. RatushnyV. WeinerL.M. GolemisE.A. AstsaturovI. Mechanisms of tumor resistance to EGFR-targeted therapies.Expert Opin. Ther. Targets200913333936210.1517/14712590902735795 19236156
    [Google Scholar]
  32. KashatusJ.A. NascimentoA. MyersL.J. SherA. ByrneF.L. HoehnK.L. CounterC.M. KashatusD.F. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth.Mol. Cell201557353755110.1016/j.molcel.2015.01.002 25658205
    [Google Scholar]
  33. GaoS. GaoY. HeH.H. HanD. HanW. AveryA. MacoskaJ.A. LiuX. ChenS. MaF. ChenS. BalkS.P. CaiC. Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein.Cell Rep.201617496697610.1016/j.celrep.2016.09.064 27760327
    [Google Scholar]
  34. AlexanderE.T. MintonA.R. PetersM.C. van RynJ. GilmourS.K. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment.Oncotarget2016751852918530510.18632/oncotarget.13300 27852034
    [Google Scholar]
  35. RascioF. SpadaccinoF. RocchettiM.T. CastellanoG. StalloneG. NettiG.S. RanieriE. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review.Cancers20211316394910.3390/cancers13163949 34439105
    [Google Scholar]
  36. BogolyubovaA.V. Human oncogenic viruses: Old facts and new hypotheses.Mol. Biol.2019535871880 31661485
    [Google Scholar]
  37. TraceyL. VilluendasR. DotorA.M. SpiteriI. OrtizP. GarcíaJ.F. PeraltoJ.L.R. LawlerM. PirisM.A. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: An expression profile study.Blood200310231042105010.1182/blood‑2002‑11‑3574 12689942
    [Google Scholar]
  38. LiangB. MoussaifM. KuanC.J. GargusJ.J. SzeJ.Y. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses.Cell Metab.20064642944010.1016/j.cmet.2006.11.004 17141627
    [Google Scholar]
  39. ShawE.E. WoodP. KulpaJ. YangF.H. SummerleeA.J. PyleW.G. Relaxin alters cardiac myofilament function through a PKC-dependent pathway.Am. J. Physiol. Heart Circ. Physiol.20092971H29H3610.1152/ajpheart.00482.2008 19429819
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230818092456
Loading
/content/journals/lddd/10.2174/1570180820666230818092456
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test