Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Infectious keratitis is a pernicious disease that affects the anterior segment of the eye and is one the leading causes of blindness worldwide. This disease may cause severe visual impairment or permanent vision damage if left untreated.

Discussion

No doubt there are many conventional drug delivery systems to treat ocular keratitis, yet it is the fifth leading cause of blindness globally. This is the result of the eye's complex anatomy and barrier system, which restricts the total ocular contact time of the conventional formulations resulting in under-dosing. The widely used traditional formulations to treat keratitis, like antibiotic eye drops and ointments, are rendered useless due to less ocular contact time and low therapeutic drug levels at the target ocular site. The main requirement of the present time is to develop novel drug delivery-backed stratagems to overcome the shortcomings of conventional formulations, which will reduce the morbidity associated with infectious keratitis and improve clinical outcomes. It is worth mentioning that there are documented incidents of Herpetic keratitis of the cornea followed by COVID-19 infection and vaccination.

Conclusion

This paper is a rigorous review of all the novel drug delivery strategies to combat ocular keratitis. These future drug delivery strategies will pave the way for the present time researcher and formulation chemists to develop multi-dimensional novel formulations that are safe, patient-compliant, and surpass the ocular barriers to maintain therapeutic drug levels in ocular tissues.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230509095446
2023-06-08
2025-07-12
Loading full text...

Full text loading...

References

  1. SridharM. Anatomy of cornea and ocular surface.Indian J. Ophthalmol.201866219019410.4103/ijo.IJO_646_17 29380756
    [Google Scholar]
  2. HuangD. ChenY.S. RupenthalI.D. Overcoming ocular drug delivery barriers through the use of physical forces.Adv. Drug Deliv. Rev.20181269611210.1016/j.addr.2017.09.008 28916492
    [Google Scholar]
  3. JosephR.R. VenkatramanS.S. Drug delivery to the eye: what benefits do nanocarriers offer?Nanomedicine201712668370210.2217/nnm‑2016‑0379 28186436
    [Google Scholar]
  4. WengY. LiuJ. JinS. GuoW. LiangX. HuZ. Nanotechnology-based strategies for treatment of ocular disease.Acta Pharm. Sin. B20177328129110.1016/j.apsb.2016.09.001 28540165
    [Google Scholar]
  5. AchouriD. AlhanoutK. PiccerelleP. AndrieuV. Recent advances in ocular drug delivery.Drug Dev. Ind. Pharm.201339111599161710.3109/03639045.2012.736515 23153114
    [Google Scholar]
  6. WillcoxM.D. WalshK. NicholsJ.J. MorganP.B. JonesL.W. The ocular surface, coronaviruses and COVID-19.Clin. Exp. Optom.2020103441842410.1111/cxo.13088 32406140
    [Google Scholar]
  7. StapletonF. The epidemiology of infectious keratitis.Ocul. Surf.2021S1542-01242100089634419639
    [Google Scholar]
  8. ChowdharyA. SinghK. Spectrum of fungal keratitis in North India.Cornea200524181510.1097/01.ico.0000126435.25751.20 15604861
    [Google Scholar]
  9. AustinA. LietmanT. Rose-NussbaumerJ. Update on the management of infectious keratitis.Ophthalmology2017124111678168910.1016/j.ophtha.2017.05.012 28942073
    [Google Scholar]
  10. KarpC.L. TuliS.S. YooS.H. VromanD.T. AlfonsoE.C. HuangA.H. PflugfelderS.C. CulbertsonW.W. Infectious keratitis after LASIK.Ophthalmology2003110350351010.1016/S0161‑6420(02)01760‑8 12623812
    [Google Scholar]
  11. AbbasM.N. KhanS.A. SadozaiS.K. KhalilI.A. AnterA. FoulyM.E. OsmanA.H. KaziM. Nanoparticles Loaded Thermoresponsive in situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis.Polymers2022146113510.3390/polym14061135 35335465
    [Google Scholar]
  12. BourcierT. ThomasF. BorderieV. ChaumeilC. LarocheL. Bacterial keratitis: Predisposing factors, clinical and microbiological review of 300 cases.Br. J. Ophthalmol.200387783483810.1136/bjo.87.7.834 12812878
    [Google Scholar]
  13. SchaeferF. BruttinO. ZografosL. Guex-CrosierY. Bacterial keratitis: A prospective clinical and microbiological study.Br. J. Ophthalmol.200185784284710.1136/bjo.85.7.842 11423460
    [Google Scholar]
  14. DartJ.K. Predisposing factors in microbial keratitis: The significance of contact lens wear.Br. J. Ophthalmol.1988721292693010.1136/bjo.72.12.926 3147696
    [Google Scholar]
  15. SrinivasanM. GonzalesC.A. GeorgeC. CevallosV. MascarenhasJ.M. AsokanB. WilkinsJ. SmolinG. WhitcherJ.P. Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India.Br. J. Ophthalmol.1997811196597110.1136/bjo.81.11.965 9505820
    [Google Scholar]
  16. HammersmithK.M. NagraP.K. Trends in Fungal Keratitis in the United States, 2001 to 2007.Yearbook of Ophthalmology2011201112112210.1016/j.yoph.2011.02.020
    [Google Scholar]
  17. LeckA.K. ThomasP.A. HaganM. KaliamurthyJ. AckuakuE. JohnM. NewmanM.J. CodjoeF.S. OpintanJ.A. KalavathyC.M. EssumanV. JesudasanC A N. JohnsonG.J. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis.Br. J. Ophthalmol.200286111211121510.1136/bjo.86.11.1211 12386069
    [Google Scholar]
  18. BrownL. LeckA.K. GichangiM. BurtonM.J. DenningD.W. The global incidence and diagnosis of fungal keratitis.Lancet Infect. Dis.2021213e49e5710.1016/S1473‑3099(20)30448‑5 33645500
    [Google Scholar]
  19. XieL. ZhongW. ShiW. SunS. Spectrum of fungal keratitis in north China.Ophthalmology2006113111943194810.1016/j.ophtha.2006.05.035 16935335
    [Google Scholar]
  20. O’DayD.M. HeadW.S. Advances in the management of keratomycosis and Acanthamoeba keratitis.Cornea200019568168710.1097/00003226‑200009000‑00013 11009320
    [Google Scholar]
  21. BharathiM.J. RamakrishnanR. MeenakshiR. PadmavathyS. ShivakumarC. SrinivasanM. Microbial keratitis in South India: influence of risk factors, climate, and geographical variation.Ophthalmic Epidemiol.2007142616910.1080/09286580601001347 17464852
    [Google Scholar]
  22. WilliamsonJ. GordonA.M. WoodR. DyerA.M. YahyaO.A. Fungal flora of the conjunctival sac in health and disease. Influence of topical and systemic steroids.Br. J. Ophthalmol.196852212713710.1136/bjo.52.2.127 5642661
    [Google Scholar]
  23. AndoN. TakatoriK. Fungal flora of the conjunctival sac.Am. J. Ophthalmol.1982941677410.1016/0002‑9394(82)90193‑3 7091285
    [Google Scholar]
  24. AnsariZ. MillerD. GalorA. Current thoughts in fungal keratitis: Diagnosis and treatment.Curr. Fungal Infect. Rep.20137320921810.1007/s12281‑013‑0150‑1 24040467
    [Google Scholar]
  25. SharmaN. ChackoJ. VelpandianT. TitiyalJ.S. SinhaR. SatpathyG. TandonR. VajpayeeR.B. Comparative evaluation of topical versus intrastromal voriconazole as an adjunct to natamycin in recalcitrant fungal keratitis.Ophthalmology2013120467768110.1016/j.ophtha.2012.09.023 23246119
    [Google Scholar]
  26. SharmaS. Diagnosis of fungal keratitis: Current options.Expert Opin. Med. Diagn.20126544945510.1517/17530059.2012.679656 23480809
    [Google Scholar]
  27. NiederkornJ.Y. KaplanH.J. Eds.; Immune response and the eye.Karger Medical and Scientific Publishers200710.1159/isbn.978‑3‑318‑01404‑4
    [Google Scholar]
  28. Peggy ChangH-Y. ChodoshJ. Diagnostic and therapeutic considerations in fungal keratitis.Int. Ophthalmol. Clin.2011514334210.1097/IIO.0b013e31822d64dc 21897138
    [Google Scholar]
  29. KogantiR. YadavalliT. NaqviR.A. ShuklaD. NaqviA.R. Pathobiology and treatment of viral keratitis.Exp. Eye Res.202120510848310.1016/j.exer.2021.108483 33556334
    [Google Scholar]
  30. FarooqA.V. ShuklaD. Herpes simplex epithelial and stromal keratitis: An epidemiologic update.Surv. Ophthalmol.201257544846210.1016/j.survophthal.2012.01.005 22542912
    [Google Scholar]
  31. AkhtarJ. TiwariV. OhM.J. KovacsM. JaniA. KovacsS.K. Valyi-NagyT. ShuklaD. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium.Invest. Ophthalmol. Vis. Sci.20084994026403510.1167/iovs.08‑1807 18502984
    [Google Scholar]
  32. PengY. ZhouY.H. Is novel coronavirus disease (COVID-19) transmitted through conjunctiva?J. Med. Virol.20209291408140910.1002/jmv.25753 32176356
    [Google Scholar]
  33. AlkwikbiH. AlenaziM. AlanaziW. AlruwailiS. Herpetic keratitis and corneal endothelitis following COVID-19 vaccination: A case series.Cureus2022141e2096710.7759/cureus.20967 35154946
    [Google Scholar]
  34. Güemes-VillahozN. Burgos-BlascoB. Arribi-VilelaA. Arriola-VillalobosP. Rico-LunaC.M. Cuiña-SardiñaR. Delgado-IribarrenA. García-FeijoóJ. Detecting SARS-CoV-2 RNA in conjunctival secretions: Is it a valuable diagnostic method of COVID-19?J. Med. Virol.202193138338810.1002/jmv.26219 32579256
    [Google Scholar]
  35. WuP. DuanF. LuoC. LiuQ. QuX. LiangL. WuK. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China.JAMA Ophthalmol.2020138557557810.1001/jamaophthalmol.2020.1291 32232433
    [Google Scholar]
  36. ThomasP.A. KaliamurthyJ. Mycotic keratitis: Epidemiology, diagnosis and management.Clin. Microbiol. Infect.201319321022010.1111/1469‑0691.12126 23398543
    [Google Scholar]
  37. FlorCruzN.V. EvansJ.R. Medical interventions for fungal keratitis.Cochrane Database Syst. Rev.2015152CD004241
    [Google Scholar]
  38. ThomasP.A. LeckA.K. MyattM. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi.Br. J. Ophthalmol.200589121554155810.1136/bjo.2005.076315 16299128
    [Google Scholar]
  39. KumarA. KhuranaA. SharmaM. ChauhanL. Causative fungi and treatment outcome of dematiaceous fungal keratitis in North India.Indian J. Ophthalmol.20196771048105310.4103/ijo.IJO_1612_18 31238406
    [Google Scholar]
  40. LeeM.H. AbellR.G. MitraB. FerdinandsM. VajpayeeR.B. Risk factors, demographics and clinical profile of Acanthamoeba keratitis in Melbourne: An 18-year retrospective study.Br. J. Ophthalmol.2018102568769110.1136/bjophthalmol‑2017‑310428 28844988
    [Google Scholar]
  41. MaycockN.J.R. JayaswalR. Update on Acanthamoeba keratitis: Diagnosis, treatment, and outcomes.Cornea201635571372010.1097/ICO.0000000000000804 26989955
    [Google Scholar]
  42. KhuranaS. AgrawalS.K. MeghaK. DwivediS. JainN. GuptaA. Demographic and clinical profile of microspodial keratitis in North India: An underreported entity.J. Parasit. Dis.201943460160610.1007/s12639‑019‑01134‑2 31749531
    [Google Scholar]
  43. MittalR. JenaS.K. DesaiA. AgarwalS. Pythium insidiosum keratitis: Histopathology and rapid novel diagnostic staining technique.Cornea20173691124113210.1097/ICO.0000000000001244 28582375
    [Google Scholar]
  44. VaddavalliP.K. GargP. SharmaS. SangwanV.S. RaoG.N. ThomasR. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis.Ophthalmology20111181293510.1016/j.ophtha.2010.05.018 20801515
    [Google Scholar]
  45. LabbéA. KhammariC. DupasB. GabisonE. BrasnuE. LabetoulleM. BaudouinC. Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis.Ocul. Surf.200971415210.1016/S1542‑0124(12)70291‑4 19214351
    [Google Scholar]
  46. ChidambaramJ.D. PrajnaN.V. LarkeN.L. PalepuS. LanjewarS. ShahM. ElakkiyaS. LalithaP. CarntN. VesaluomaM.H. MasonM. HauS. BurtonM.J. Prospective study of the diagnostic accuracy of the in vivo laser scanning confocal microscope for severe microbial keratitis.Ophthalmology2016123112285229310.1016/j.ophtha.2016.07.009 27538797
    [Google Scholar]
  47. KanaviM.R. JavadiM. YazdaniS. MirdehghanmS. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis.Cornea.
    [Google Scholar]
  48. ChidambaramJ.D. PrajnaN.V. LarkeN. MacleodD. SrikanthiP. LanjewarS. ShahM. LalithaP. ElakkiyaS. BurtonM.J. In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis.Br. J. Ophthalmol.201710181119112310.1136/bjophthalmol‑2016‑309656 28043985
    [Google Scholar]
  49. TabatabaeiS.A. SoleimaniM. TabatabaeiS.M. BeheshtnejadA.H. ValipourN. MahmoudiS. The use of in vivo confocal microscopy to track treatment success in fungal keratitis and to differentiate between Fusarium and Aspergillus keratitis.Int. Ophthalmol.202040248349110.1007/s10792‑019‑01209‑2 31701361
    [Google Scholar]
  50. RobaeiD. ChanU.T. KhooP. CherepanoffS. LiY.C. HanrahanJ. WatsonS. Corneal biopsy for diagnosis of recalcitrant microbial keratitis.Graefes Arch. Clin. Exp. Ophthalmol.201825681527153310.1007/s00417‑018‑3981‑1 29663139
    [Google Scholar]
  51. GohJ.W.Y. HarrisonR. HauS. AlexanderC.L. ToleD.M. AvadhanamV.S. Comparison of in vivo confocal microscopy, PCR and culture of corneal scrapes in the diagnosis of Acanthamoeba keratitis.Cornea201837448048510.1097/ICO.0000000000001497 29256983
    [Google Scholar]
  52. WatsonS.L. GatusB.J. Cabrera-AguasM. ArmstrongB.H. GeorgeC.R. KhooP. LahraM.M. Bacterial ocular surveillance system (BOSS) Sydney, Australia 2017-2018.Commun. Dis. Intell.20204410.33321/cdi.2020.44.86
    [Google Scholar]
  53. AzherT. YinX.T. TajfirouzD. HuangA. StuartP. Herpes simplex keratitis: Challenges in diagnosis and clinical management.Clin. Ophthalmol.20171118519110.2147/OPTH.S80475 28176902
    [Google Scholar]
  54. Cabrera-AguasM. KhooP. WatsonS.L. Infectious keratitis: A review.Clin. Exp. Ophthalmol.202250554356210.1111/ceo.14113 35610943
    [Google Scholar]
  55. FerrerC. AlióJ.L. Evaluation of molecular diagnosis in fungal keratitis. Ten years of experience.J. Ophthalmic Inflamm. Infect.201111152210.1007/s12348‑011‑0019‑9 21475656
    [Google Scholar]
  56. LakhaniP. PatilA. MajumdarS. Challenges in the polyene-and azole-based pharmacotherapy of ocular fungal infections.J. Ocul. Pharmacol. Ther.201935162210.1089/jop.2018.0089 30481082
    [Google Scholar]
  57. Haro-ReyesT. Díaz-PeraltaL. Galván-HernándezA. Rodríguez-LópezA. Rodríguez-FragosoL. Ortega-BlakeI. Polyene antibiotics physical chemistry and their effect on lipid membranes; impacting biological processes and medical applications.Membranes202212768110.3390/membranes12070681 35877884
    [Google Scholar]
  58. MüllerG.G. Kara-JoséN. CastroR.S. Antifungals in eye infections: Drugs and routes of administration.Rev. Bras. Oftalmol.201372132141
    [Google Scholar]
  59. LalithaP. ShapiroB.L. SrinivasanM. PrajnaN.V. AcharyaN.R. FothergillA.W. RuizJ. ChidambaramJ.D. MaxeyK.J. HongK.C. McLeodS.D. LietmanT.M. Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis.Arch. Ophthalmol.2007125678979310.1001/archopht.125.6.789 17562990
    [Google Scholar]
  60. DahlgrenM.A. LingappanA. WilhelmusK.R. The clinical diagnosis of microbial keratitis.Am. J. Ophthalmol.20071436940944.e110.1016/j.ajo.2007.02.030 17408586
    [Google Scholar]
  61. PatilA. LakhaniP. MajumdarS. Current perspectives on natamycin in ocular fungal infections.J. Drug Deliv. Sci. Technol.20174120621210.1016/j.jddst.2017.07.015
    [Google Scholar]
  62. RosaR.H.Jr MillerD. AlfonsoE.C. The changing spectrum of fungal keratitis in south Florida.Ophthalmology199410161005101310.1016/S0161‑6420(94)31225‑5 8008340
    [Google Scholar]
  63. TuliS. Fungal keratitis.Clin. Ophthalmol.2011527527910.2147/OPTH.S10819 21468333
    [Google Scholar]
  64. KaurI.P. RanaC. SinghH. Development of effective ocular preparations of antifungal agents.J. Ocul. Pharmacol. Ther.200824548149410.1089/jop.2008.0031 18788998
    [Google Scholar]
  65. PrajnaN.V. MascarenhasJ. KrishnanT. ReddyP.R. PrajnaL. SrinivasanM. VaitilingamC.M. HongK.C. LeeS.M. McLeodS.D. ZegansM.E. PorcoT.C. LietmanT.M. AcharyaN.R. Comparison of natamycin and voriconazole for the treatment of fungal keratitis.Arch. Ophthalmol.2010128667267810.1001/archophthalmol.2010.102 20547942
    [Google Scholar]
  66. GopinathanU. GargP. FernandesM. SharmaS. AthmanathanS. RaoG.N. The epidemiological features and laboratory results of fungal keratitis: A 10-year review at a referral eye care center in South India.Cornea200221655555910.1097/00003226‑200208000‑00004 12131029
    [Google Scholar]
  67. SahaR. DasS. Mycological profile of infectious Keratitis from Delhi.Indian J. Med. Res.20061232159164 16575115
    [Google Scholar]
  68. PrajnaN.V. RadhakrishnanN. Intrastromal natamycin: A well-aimed arrow in a difficult battle.Indian J. Ophthalmol.20216910256510.4103/ijo.IJO_775_21 34571592
    [Google Scholar]
  69. MartinezR. An update on the use of antifungal agents.J. Bras. Pneumol.200632544946010.1590/S1806‑37132006000500013 17268750
    [Google Scholar]
  70. KermaniN.K. AggarwalS.P. Isolated post-operative Aspergillus niger endophthalmitis.Eye200014111411610.1038/eye.2000.32 10755121
    [Google Scholar]
  71. FitzsimonsR. PetersA.L. Miconazole and ketoconazole as a satisfactory first-line treatment for keratomycosis.Am. J. Ophthalmol.1986101560560810.1016/0002‑9394(86)90953‑0 3706466
    [Google Scholar]
  72. TorresM.A. MohamedJ. Cavazos-AdameH. MartinezL.A. Topical ketoconazole for fungal keratitis.Am. J. Ophthalmol.1985100229329810.1016/0002‑9394(85)90795‑0 4025470
    [Google Scholar]
  73. PrajnaN.V. JohnR.K. NirmalanP.K. LalithaP. SrinivasanM. A randomised clinical trial comparing 2% econazole and 5% natamycin for the treatment of fungal keratitis.Br. J. Ophthalmol.200387101235123710.1136/bjo.87.10.1235 14507756
    [Google Scholar]
  74. PrajnaN.V. NirmalanP.K. MahalakshmiR. LalithaP. SrinivasanM. Concurrent use of 5% natamycin and 2% econazole for the management of fungal keratitis.Cornea200423879379610.1097/01.ico.0000134193.64357.82 15502480
    [Google Scholar]
  75. IshibashiY. MatsumotoY. TakeiK. The effects of intravenous miconazole on fungal keratitis.Am. J. Ophthalmol.198498443343710.1016/0002‑9394(84)90126‑0 6541434
    [Google Scholar]
  76. Behrens-BaumannW. KlingeB. RüchelR. Topical fluconazole for experimental candida keratitis in rabbits.Br. J. Ophthalmol.1990741404210.1136/bjo.74.1.40 2306443
    [Google Scholar]
  77. MatsumotoY. MuratD. KojimaT. ShimazakiJ. TsubotaK. The comparison of solitary topical micafungin or fluconazole application in the treatment of Candida fungal keratitis.Br. J. Ophthalmol.201195101406140910.1136/bjo.2010.191734 21097785
    [Google Scholar]
  78. AmaralV.C.S. Nunes JuniorG.P. Ketoconazole- and fluconazole-induced embryotoxicity and skeletal anomalies in wistar rats: A comparative study.Braz. Arch. Biol. Technol.20085161153116110.1590/S1516‑89132008000600010
    [Google Scholar]
  79. YavasG.F. ÖztürkF. KüsbeciT. ÇetınkayaZ. ErmisS.S. KirazN. InanÜ.Ü. Antifungal efficacy of voriconazole, itraconazole and amphotericin b in experimental fusarium solani keratitis.Graefes Arch. Clin. Exp. Ophthalmol.2008246227527910.1007/s00417‑007‑0687‑1 17912543
    [Google Scholar]
  80. TuE.Y. McCartneyD.L. BeattyR.F. SpringerK.L. LevyJ. EdwardD. Successful treatment of resistant ocular fusariosis with posaconazole (SCH-56592).Am. J. Ophthalmol.20071432222227.e110.1016/j.ajo.2006.10.048 17258521
    [Google Scholar]
  81. AltunA. KurnaS.A. SengorT. AltunG. OlcaysuO.O. AkiS.F. SimsekM.H. Effectiveness of posaconazole in recalcitrant fungal keratitis resistant to conventional antifungal drugs.Case Rep. Ophthalmol. Med.201420141410.1155/2014/701653 25184064
    [Google Scholar]
  82. MarangonF.B. MillerD. GiaconiJ.A. AlfonsoE.C. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens.Am. J. Ophthalmol.2004137582082510.1016/j.ajo.2003.11.078 15126145
    [Google Scholar]
  83. ColemanV.R. TsuE. JawetzE. “Treatment-resistance” to idoxuridine in herpetic keratitis.Exp. Biol. Med.1968129376176510.3181/00379727‑129‑33419 4302153
    [Google Scholar]
  84. CosterD.J. WilhelmusK.R. MichaudR. JonesB.R. A comparison of acyclovir and idoxuridine as treatment for ulcerative herpetic keratitis.Br. J. Ophthalmol.1980641076376510.1136/bjo.64.10.763 7000170
    [Google Scholar]
  85. McGillJ. ScottG.M. Viral keratitis.Br. Med. Bull.198541435135610.1093/oxfordjournals.bmb.a072075 2413949
    [Google Scholar]
  86. HeidelbergerC. KingD.H. Trifluorothymidine.Pharmacol. Ther.19796342744210.1016/0163‑7258(79)90062‑7
    [Google Scholar]
  87. HyndiukR.A. HullD.S. SchultzR.O. ChinG.N. LaibsonP.R. KrachmerJ.H. Adenine arabinoside in idoxuridine unresponsive and intolerant herpetic keratitis.Am. J. Ophthalmol.197579465565810.1016/0002‑9394(75)90806‑5 123413
    [Google Scholar]
  88. GadeS.K. ShivshettyN. SharmaN. BhatnagarS. GargP. VenugantiV.V.K. Effect of mucoadhesive polymeric formulation on corneal permeation of fluoroquinolones.J. Ocul. Pharmacol. Ther.201834857057810.1089/jop.2018.0059 30136888
    [Google Scholar]
  89. WongR.L.M. GangwaniR.A. YuL.W.H. LaiJ.S.M. New treatments for bacterial keratitis.J. Ophthalmol.201220121710.1155/2012/831502 22991650
    [Google Scholar]
  90. KirtlandM.E. TsitouraD.C. DurhamS.R. ShamjiM.H. Toll-like receptor agonists as adjuvants for allergen immunotherapy.Front. Immunol.20201159908310.3389/fimmu.2020.599083 33281825
    [Google Scholar]
  91. HindmanH.B. PatelS.B. JunA.S. Rationale for adjunctive topical corticosteroids in bacterial keratitis.Arch. Ophthalmol.200912719710210.1001/archophthalmol.2008.504 19139348
    [Google Scholar]
  92. CohenE.J. The case against the use of steroids in the treatment of bacterial keratitis.Arch. Ophthalmol.2009127110310410.1001/archophthalmol.2008.503 19139349
    [Google Scholar]
  93. MillerD. Pharmacological treatment for infectious corneal ulcers.Expert Opin. Pharmacother.201314554356010.1517/14656566.2013.775248 23441746
    [Google Scholar]
  94. LoftssonT. BrewsterM.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization.J. Pharm. Sci.199685101017102510.1021/js950534b 8897265
    [Google Scholar]
  95. LoftssonT. DuchêneD. Cyclodextrins and their pharmaceutical applications.Int. J. Pharm.20073291-211110.1016/j.ijpharm.2006.10.044 17137734
    [Google Scholar]
  96. JansookP. OgawaN. LoftssonT. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications.Int. J. Pharm.20185351-227228410.1016/j.ijpharm.2017.11.018 29138045
    [Google Scholar]
  97. MuankaewC. LoftssonT. Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery.Basic Clin. Pharmacol. Toxicol.20181221465510.1111/bcpt.12917 29024354
    [Google Scholar]
  98. AnandS. BragaV.M. Cyclodextrins in ocular drug delivery.Nano-Biomaterials For Ophthalmic Drug Delivery2016243252
    [Google Scholar]
  99. MajeedA. KhanN.A. Ocular in situ gel: An overview.J. Drug Deliv. Ther.20199133734710.22270/jddt.v9i1.2231
    [Google Scholar]
  100. ShepherdJ. SarkerP. RimmerS. SwansonL. MacNeilS. DouglasI. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin.Biomaterials201132125826710.1016/j.biomaterials.2010.08.084 20933276
    [Google Scholar]
  101. DestruelP.L. ZengN. MauryM. MignetN. BoudyV. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond.Drug Discov. Today201722463865110.1016/j.drudis.2016.12.008 28017837
    [Google Scholar]
  102. MakwanaS.B. PatelV.A. ParmarS.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.Results Pharma Sci.201661610.1016/j.rinphs.2015.06.001 26949596
    [Google Scholar]
  103. KanoujiaJ. SonkerK. PandeyM. KymonilK.M. SarafS.A. Formulation and characterization of a novel pH-triggered <i>in-situ</i> gelling ocular system containing Gatifloxacin.Int. Curr. Pharm. J.197013434910.3329/icpj.v1i3.9661
    [Google Scholar]
  104. UpadhayayP. KumarM. PathakK. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity.Iran. J. Pharm. Res.2016151322 27610144
    [Google Scholar]
  105. DolH. GandhiS. PardhiD. VyawahareN. Formulation and evaluation of in situ ophthalmic gel of moxifloxacin hydrochloride.Pharma Innov.201435, Part A60
    [Google Scholar]
  106. BaranowskiP. KarolewiczB. GajdaM. PlutaJ. Ophthalmic drug dosage forms: Characterisation and research methods.ScientificWorldJournal2014201411410.1155/2014/861904 24772038
    [Google Scholar]
  107. PahujaP. AroraS. PawarP. Ocular drug delivery system: A reference to natural polymers.Expert Opin. Drug Deliv.20129783786110.1517/17425247.2012.690733 22703523
    [Google Scholar]
  108. LiP. WangS. ChenH. ZhangS. YuS. LiY. CuiM. PanW. YangX. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir.Drug Dev. Ind. Pharm.201844582983610.1080/03639045.2017.1414232 29212376
    [Google Scholar]
  109. BonferoniM.C. ChetoniP. GiunchediP. RossiS. FerrariF. BurgalassiS. CaramellaC. Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies.Eur. J. Pharm. Biopharm.200457346547210.1016/j.ejpb.2003.12.002 15093594
    [Google Scholar]
  110. MainardesR. UrbanM. CintoP. KhalilN. ChaudM. EvangelistaR. Daflon GremiaoM. Colloidal carriers for ophthalmic drug delivery.Curr. Drug Targets20056336337110.2174/1389450053765914 15857294
    [Google Scholar]
  111. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20004518912110.1016/S0169‑409X(00)00103‑4 11104900
    [Google Scholar]
  112. BhartiS.K. KesavanK. Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis.Ocul. Immunol. Inflamm.201725446347410.3109/09273948.2016.1139136 26943481
    [Google Scholar]
  113. LiX. MüllerR.H. KeckC.M. Bou-ChacraN.A. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.Pharmazie2016716327333 27455551
    [Google Scholar]
  114. KalamM.A. AlshamsanA. AljuffaliI.A. MishraA.K. SultanaY. Delivery of gatifloxacin using microemulsion as vehicle: Formulation, evaluation, transcorneal permeation and aqueous humor drug determination.Drug Deliv.201623388689710.3109/10717544.2014.920432 24865289
    [Google Scholar]
  115. TrivediR. KompellaU.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles.Nanomedicine20105348550510.2217/nnm.10.10 20394539
    [Google Scholar]
  116. CivialeC. LicciardiM. CavallaroG. GiammonaG. MazzoneM.G. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery.Int. J. Pharm.20093781-217718610.1016/j.ijpharm.2009.05.028 19465101
    [Google Scholar]
  117. GuoC. ZhangY. YangZ. LiM. LiF. CuiF. LiuT. ShiW. WuX. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation.Sci. Rep.2015511296810.1038/srep12968
    [Google Scholar]
  118. MandalA. GoteV. PalD. OgundeleA. MitraA.K. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease.Pharm. Res.20193623610.1007/s11095‑018‑2556‑5 30617777
    [Google Scholar]
  119. ShakiH. GanjiF. KempenP.J. Dolatshahi-PirouzA. Vasheghani-FarahaniE. Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin.J. Drug Deliv. Sci. Technol.20184433334110.1016/j.jddst.2018.01.010
    [Google Scholar]
  120. CholkarK. GilgerB.C. MitraA.K. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery.Transl. Vis. Sci. Technol.201543110.1167/tvst.4.3.1 25964868
    [Google Scholar]
  121. CholkarK. GundaS. EarlaR. PalD. MitraA.K. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery.AAPS PharmSciTech201516361062210.1208/s12249‑014‑0244‑2 25425389
    [Google Scholar]
  122. HonaryS. ZahirF. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2).Trop. J. Pharm. Res.2013122265273
    [Google Scholar]
  123. Üstündağ-OkurN. GökçeE.H. BozbıyıkD.İ. EğrilmezS. ÖzerÖ. ErtanG. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.Eur. J. Pharm. Sci.20146320421510.1016/j.ejps.2014.07.013 25111119
    [Google Scholar]
  124. GuptaH. AqilM. KharR.K. AliA. BhatnagarA. MittalG. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery.Nanomedicine20106232433310.1016/j.nano.2009.10.004 19857606
    [Google Scholar]
  125. JainD. BanerjeeR. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery.J. Biomed. Mater. Res. B Appl. Biomater.200886B110511210.1002/jbm.b.30994 18098198
    [Google Scholar]
  126. GorantlaS. RapalliV.K. WaghuleT. SinghP.P. DubeyS.K. SahaR.N. SinghviG. Nanocarriers for ocular drug delivery: Current status and translational opportunity.RSC Advances20201046278352785510.1039/D0RA04971A 35516960
    [Google Scholar]
  127. YounesN.F. Abdel-HalimS.A. ElassasyA.I. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies.Int. J. Pharm.20185531-238639710.1016/j.ijpharm.2018.10.057 30393167
    [Google Scholar]
  128. KaurI.P. GargA. SinglaA.K. AggarwalD. Vesicular systems in ocular drug delivery: An overview.Int. J. Pharm.2004269111410.1016/j.ijpharm.2003.09.016 14698571
    [Google Scholar]
  129. HuW. MetselaarJ. BenL.H. CravensP.D. SinghM.P. FrohmanE.M. EagarT.N. RackeM.K. KieseierB.C. StüveO. PEG minocycline-liposomes ameliorate CNS autoimmune disease.PLoS One200941e415110.1371/journal.pone.0004151 19127301
    [Google Scholar]
  130. WadhwaS. SinghB. SharmaG. RazaK. KatareO.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis.Drug Deliv.20162341204121310.3109/10717544.2015.1110845 26592918
    [Google Scholar]
  131. ZhangR. HeR. QianJ. GuoJ. XueK. YuanY. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes.Invest. Ophthalmol. Vis. Sci.20105173575358210.1167/iovs.09‑4373 20164461
    [Google Scholar]
  132. El-NabarawiM.A. Abd El RehemR.T. TeaimaM. AbaryM. El-MoftyH.M. KhafagyM.M. LotfyN.M. SalahM. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies.Drug Dev. Ind. Pharm.201945692293610.1080/03639045.2019.1579827 30744431
    [Google Scholar]
  133. WangX. WangS. ZhangY. Advance of the application of nano-controlled release system in ophthalmic drug delivery.Drug Deliv.20162382897290110.3109/10717544.2015.1116025 26635087
    [Google Scholar]
  134. ChengY. QuH. MaM. XuZ. XuP. FangY. XuT. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study.Eur. J. Med. Chem.20074271032103810.1016/j.ejmech.2006.12.035 17336426
    [Google Scholar]
  135. DuxfieldL. SultanaR. WangR. EnglebretsenV. DeoS. SwiftS. RupenthalI. Al-KassasR. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery.Pharm. Dev. Technol.201621217217910.3109/10837450.2015.1091839 26794936
    [Google Scholar]
  136. DillenK. VandervoortJ. Van den MooterG. LudwigA. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles.Int. J. Pharm.20063141728210.1016/j.ijpharm.2006.01.041 16600538
    [Google Scholar]
  137. ChetoniP. BurgalassiS. MontiD. TampucciS. TullioV. CuffiniA.M. MuntoniE. SpagnoloR. ZaraG.P. CavalliR. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits.Eur. J. Pharm. Biopharm.201610921422310.1016/j.ejpb.2016.10.006 27789355
    [Google Scholar]
  138. LiuD. LianY. FangQ. LiuL. ZhangJ. LiJ. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride.Int. J. Biol. Macromol.20181161026103610.1016/j.ijbiomac.2018.05.113 29778883
    [Google Scholar]
  139. DillenK. VandervoortJ. Van den MooterG. VerheydenL. LudwigA. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles.Int. J. Pharm.20042751-217118710.1016/j.ijpharm.2004.01.033 15081148
    [Google Scholar]
  140. GuptaH. AqilM. KharR.K. AliA. BhatnagarA. MittalG. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery.J. Drug Target.201119640941710.3109/1061186X.2010.504268 20678034
    [Google Scholar]
  141. MohammadiG. NokhodchiA. Barzegar-JalaliM. LotfipourF. AdibkiaK. EhyaeiN. ValizadehH. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system.Colloids Surf. B Biointerfaces2011881394410.1016/j.colsurfb.2011.05.050 21752610
    [Google Scholar]
  142. CiolinoJ.B. HudsonS.P. MobbsA.N. HoareT.R. IwataN.G. FinkG.R. KohaneD.S. A prototype antifungal contact lens.Invest. Ophthalmol. Vis. Sci.20115296286629110.1167/iovs.10‑6935 21527380
    [Google Scholar]
  143. HuangJ.F. ZhongJ. ChenG.P. LinZ.T. DengY. LiuY.L. CaoP.Y. WangB. WeiY. WuT. YuanJ. JiangG.B. A hydrogel-based hybrid theranostic contact lens for fungal keratitis.ACS Nano20161076464647310.1021/acsnano.6b00601 27244244
    [Google Scholar]
  144. JiangJ. GillH.S. GhateD. McCareyB.E. PatelS.R. EdelhauserH.F. PrausnitzM.R. Coated microneedles for drug delivery to the eye.Invest. Ophthalmol. Vis. Sci.20074894038404310.1167/iovs.07‑0066 17724185
    [Google Scholar]
  145. DugamS. TadeR. DholeR. NangareS. Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives.Future J. Pharmaceut. Sci.2021711910.1186/s43094‑020‑00176‑1
    [Google Scholar]
  146. Üstündağ-OkurN. GökçeE.H. BozbıyıkD.İ. EğrilmezS. ErtanG. ÖzerÖ. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: Evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis.Expert Opin. Drug Deliv.201512111791180710.1517/17425247.2015.1059419 26159181
    [Google Scholar]
  147. WeyenbergW. VermeireA. DhondtM.M.M. AdriaensE. KestelynP. RemonJ.P. LudwigA. Ocular bioerodible minitablets as strategy for the management of microbial keratitis.Invest. Ophthalmol. Vis. Sci.20044593229323310.1167/iovs.04‑0206 15326145
    [Google Scholar]
  148. MishraD.N. GilhotraR.M. Design and characterization of bioadhesive in-situ gelling ocular inserts of gatifloxacin sesquihydrate.Daru200816118
    [Google Scholar]
  149. MintzK.J. ZhouY. LeblancR.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure.Nanoscale201911114634465210.1039/C8NR10059D 30834912
    [Google Scholar]
  150. BaptistaF.R. BelhoutS.A. GiordaniS. QuinnS.J. Recent developments in carbon nanomaterial sensors.Chem. Soc. Rev.201544134433445310.1039/C4CS00379A 25980819
    [Google Scholar]
  151. JianH.J. YuJ. LiY.J. UnnikrishnanB. HuangY.F. LuoL.J. Hui-Kang MaD. HarrounS.G. ChangH.T. LinH.J. LaiJ.Y. HuangC-C. Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation.Chem. Eng. J.202038612391310.1016/j.cej.2019.123913
    [Google Scholar]
  152. PleskovaS. MikheevaE. GornostaevaE. Using of Quantum Dots in Biology and Medicine. In Cellular and Molecular Toxicology of Nanoparticles.ChamSpringer2018Vol. 104840943010.1007/978‑3‑319‑72041‑8_19
    [Google Scholar]
  153. KhamesA. KhaleelM.A. El-BadawyM.F. El-NezhawyA.O.H. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.Int. J. Nanomedic.2019142515253110.2147/IJN.S190502 31040672
    [Google Scholar]
  154. TavakoliN. TaymouriS. SaeidiA. AkbariV. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis.Pharm. Dev. Technol.201924789190110.1080/10837450.2019.1616755 31062987
    [Google Scholar]
  155. RoyG. GaligamaR.D. ThoratV.S. MallelaL.S. RoyS. GargP. VenugantiV.V.K. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis.Int. J. Pharm.201957211880810.1016/j.ijpharm.2019.118808 31678387
    [Google Scholar]
  156. SuriyaampornP. OpanasopitP. RangsimawongW. NgawhirunpatT. Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection.Pharmaceutics202214347210.3390/pharmaceutics14030472 35335855
    [Google Scholar]
  157. LealA.F.G. LeiteM.C. MedeirosC.S.Q. CavalcantiI.M.F. WanderleyA.G. Santos MagalhãesN.S. NevesR.P. Antifungal activity of a liposomal itraconazole formulation in experimental Aspergillus flavus keratitis with endophthalmitis.Mycopathologia20151793-422522910.1007/s11046‑014‑9837‑2 25431088
    [Google Scholar]
  158. MorandK. BartolettiA.C. BochotA. BarrattG. BrandelyM.L. ChastF. Liposomal amphotericin B eye drops to treat fungal keratitis: Physico-chemical and formulation stability.Int. J. Pharm.20073441-215015310.1016/j.ijpharm.2007.04.028 17669608
    [Google Scholar]
  159. PermanaA.D. UtamiR.N. LayadiP. HimawanA. JuniartiN. AnjaniQ.K. UtomoE. MardikasariS.A. ArjunaA. DonnellyR.F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis.Int. J. Pharm.202160212062310.1016/j.ijpharm.2021.120623 33892058
    [Google Scholar]
  160. Üstündağ OkurN. YozgatlıV. OkurM.E. YoltaşA. SiafakaP.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers.J. Drug Deliv. Sci. Technol.20194932333310.1016/j.jddst.2018.12.005
    [Google Scholar]
  161. DavaranS. LotfipourF. SedghipourN. SedghipourM.R. AlimohammadiS. SalehiR. Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery.J. Microencapsul.2015325511519 26190215
    [Google Scholar]
  162. NagargojeS. PhatakA. BhingareC. ChaudhariS. Formulation and evaluation of ophthalmic delivery of fluconazole from ion activated in situ gelling system.Pharm. Lett.20124412281235
    [Google Scholar]
  163. KesavanK. KantS. PanditJ.K. Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel.Ocul. Immunol. Inflamm.2016245489492 26133969
    [Google Scholar]
  164. Ubani-UkomaU. GibsonD. SchultzG. SilvaB.O. ChauhanA. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model.Int. J. Pharm.201956549950810.1016/j.ijpharm.2019.05.031 31085257
    [Google Scholar]
  165. KangM.S. MoonK.J. LeeJ.E. JeongY.I.L. Antibacterial Activity of Antibiotic-Releasing Polydopamine-Coated Nephrite Composites for Application in Drug-Eluting Contact Lens.Materials20221514482310.3390/ma15144823 35888290
    [Google Scholar]
  166. SunX. ShengY. LiK. SaiS. FengJ. LiY. ZhangJ. HanJ. TianB. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism.Acta Biomater.202213819320710.1016/j.actbio.2021.10.047 34757228
    [Google Scholar]
  167. SongK. YanM. LiM. GengY. WuX. Preparation and in vitro-in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin.Colloids Surf. B Biointerfaces202019411115710.1016/j.colsurfb.2020.111157 32505061
    [Google Scholar]
  168. PolatH.K. Bozdağ PehlivanS. ÖzkulC. ÇalamakS. ÖztürkN. AytekinE. FıratA. UlubayramK. KocabeyoğluS. İrkeçM. ÇalışS. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation.Int. J. Pharm.202058511955210.1016/j.ijpharm.2020.119552 32569814
    [Google Scholar]
  169. SunX. YuZ. CaiZ. YuL. LvY. Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery.PLoS One20161112e016796110.1371/journal.pone.0167961 27974859
    [Google Scholar]
  170. GebreelR.M. EdrisN.A. ElmoftyH.M. TadrosM.I. El-NabarawiM.A. HassanD.H. Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of pseudomonas keratitis: An experimental study.Drug Des. Devel. Ther.20211539941810.2147/DDDT.S293127 33584095
    [Google Scholar]
  171. ShaX. ChanL. FanX. GuoP. ChenT. LiuL. ZhongJ. Thermosensitive Tri-block polymer nanoparticle-hydrogel composites as Payloads of natamycin for antifungal therapy against fusarium solani.Int. J. Nanomedic.2022171463147810.2147/IJN.S332127 35378880
    [Google Scholar]
  172. JansookP. MawP.D. SoeH.M.S.H. ChuangchunsongR. SaiborisuthK. PayonitikarnN. AutthateinchaiR. PruksakornP. Development of amphotericin B nanosuspensions for fungal keratitis therapy: Effect of self-assembled γ-cyclodextrin.J. Pharm. Investig.202050551352510.1007/s40005‑020‑00474‑z
    [Google Scholar]
  173. JosyulaA. OmiadzeR. ParikhK. KanvindeP. AppellM.B. PatelP. SaeedH. SutarY. AndersN. HeP. McDonnellP.J. HanesJ. DateA.A. EnsignL.M. An ion-paired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection.Bioeng. Transl. Med.202163e1023810.1002/btm2.10238 34589607
    [Google Scholar]
  174. RathoreK.S. In situ gelling ophthalmic drug delivery system: An overview.Int. J. Pharma Sci.2010243034
    [Google Scholar]
  175. PatelH.A. PatelJ.K. PatelK.N. PatelR.R. Ophthalmic drug delivery system-a review.Pharm. Lett.201024100115
    [Google Scholar]
  176. MadhavS. GuptaD. A review on microemulsion based system.Int. J. Pharm. Sci. Res.2011281888
    [Google Scholar]
  177. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  178. GadzińskiP. FroelichA. WojtyłkoM. BiałekA. KrysztofiakJ. OsmałekT. Microneedle-based ocular drug delivery systems - recent advances and challenges.Beilstein J. Nanotechnol.20221311167118410.3762/bjnano.13.98 36348935
    [Google Scholar]
  179. WadhwaS. PaliwalR. PaliwalS. VyasS. Nanocarriers in ocular drug delivery: An update review.Curr. Pharm. Des.200915232724275010.2174/138161209788923886 19689343
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230509095446
Loading
/content/journals/lddd/10.2174/1570180820666230509095446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test