Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths. Banzhilian (BZL) and Baihuasheshecao (BHSSC) are classical Chinese herbs used in tumor therapy. However, the underlying mechanisms of BZL-BHSSC in treating PDAC have not been identified. Combining network pharmacology with single-cell RNA sequencing (scRNA-seq), this study systematically explored the potential mechanisms of BZL-BHSSC in the treatment of PDAC.

Methods

The bioactive ingredients of BZL-BHSSC were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, while the PDAC-related datasets were obtained from the Gene Expression Omnibus (GEO) database. Based on the dataset GSE62452, we adopted differential expression analysis and weighted gene co-expression network analysis (WGCNA) to screen the signature genes of PDAC. To reveal the cell types of the pharmacological targets of BZL-BHSSC against PDAC, we performed scRNA-seq analysis and principal component analysis (PCA) on the dataset GSE111672. Molecular docking and immunohistochemical staining were used to validate our initial results.

Results

We obtained 29 bioactive ingredients from BZL-BHSSC and screened 210 signature genes of PDAC. Using network pharmacology, we identified 7 key therapeutic targets CDK1, MYC, CCNB1, TOP2A, CLDN4, NUF2, and MET, revealing that baicalein, quercetin, and luteolin are core components for the efficacy of BZL-BHSSC. The main signaling pathways involved in therapy were the PI3K-AKT signaling pathway and the p53 signaling pathway. The molecular docking results verified the strong binding activity (binding energy > -7 kJ/mol) between active ingredients and targets. The scRNA-seq results informed that cells from 3 PDAC samples could aggregate into 19 clusters and 3 cell types. The target genes were almost concentrated on the immune cells. Immuno-infiltration analysis suggested that the expression of Macrophages M0 and Dendritic cells activated was significantly upregulated in the PDAC group (<0.001), while the opposite was true for B cells naïve and T cells CD8 expression (<0.05).

Conclusion

We concluded that BZL-BHSSC can improve the overall survival prognosis of PDAC patients by interfering with the signature genes of PDAC through direct and indirect pathways and improving immunity. Our study provides a basis for subsequent studies.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808258777230926092527
2023-10-06
2025-06-20
The full text of this item is not currently available.

References

  1. Cancer Stat Facts: Pancreatic Cancer.Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
  2. Key Statistics for Pancreatic Cancer.Available from: https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html (Accessed on: January 30, 2023).
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  5. SoT.H. ChanS.K. LeeV.H.F. ChenB.Z. KongF.M. LaoL.X. Chinese Medicine in cancer treatment – how is it practised in the east and the west?Clin. Oncol.201931857858810.1016/j.clon.2019.05.016 31178347
    [Google Scholar]
  6. LiuX. LiM. WangX. DangZ. YuL. WangX. JiangY. YangZ. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma.Phytomedicine20196215293010.1016/j.phymed.2019.152930 31128485
    [Google Scholar]
  7. WongW. ChenB.Z. LeeA.K.Y. ChanA.H.C. WuJ.C.Y. LinZ. Chinese herbal medicine effectively prolongs the overall survival of pancreatic cancer patients: A case series.Integr. Cancer Ther.20191810.1177/1534735419828836 30791742
    [Google Scholar]
  8. PengZ. ChenH. BanS. MaoD. WeiA. LongF. Long, data mining-based analysis of the patent pattern of compound prescriptions for the treatment of liver cancer in Chinese medicine.Chin. J. Integr. Med.2022321132113510.3969/j.issn.1005‑0264.2022.012.020
    [Google Scholar]
  9. XuY. LiuL. ChenH. HuaY-Q. Academic ideas and experience of professor liu lu-ming for treatment of pancreatic cancer.Zhonghua Zhongyiyao Xuekan2012302628263010.13193/j.archtcm.2012.12.38.xuyl.015
    [Google Scholar]
  10. LiuL. [On pathological mechanism and disease-based treatment of pancreatic cancer in traditional Chinese medicine].Zhong Xi Yi Jie He Xue Bao20086121297129910.3736/jcim20081218
    [Google Scholar]
  11. WuX. QiQ. LiuL. Evaluation of pain efficacy of modified qingyi huaji decoction in patients with pancreatic cancer.Chin. Med.2018108515310.3969/j.issn.1674‑7860.2018.08.023
    [Google Scholar]
  12. TsaiF.J. LiuX. ChenC.J. LiT.M. ChiouJ.S. ChuangP.H. KoC.H. LinT.H. LiaoC.C. HuangS.M. LiangW.M. LinY.J. Chinese herbal medicine therapy and the risk of overall mortality for patients with liver cancer who underwent surgical resection in Taiwan.Complement. Ther. Med.20194710221310.1016/j.ctim.2019.102213 31780007
    [Google Scholar]
  13. ShenJ. HeS. LiuL. Luming’s experience with pancreatic cancer by large dose of Herba Scutellariae Barbatae.Shanghai J. Tradit. Chin. Med.201448141510.16305/j.1007‑1334.2014.11.004
    [Google Scholar]
  14. YueH. YuanD. LiL. Effects of sculellaria barbata on 5-FU-treated advanced colorectal cancer and serum miRNA-34a levels.J. Nanjing Norm. Univ.2019596871
    [Google Scholar]
  15. LiQ. GuoX. DingT. QuC. Effect of Scutellaria barbata on proliferation, apoptosis and migration of triple-negative breast cancer cell line MDA⁃MB⁃231.Anatomy Research.201840477480
    [Google Scholar]
  16. WangT. LiangY. HouB. WuK. WuD. PeiG. WangZ. Study on chemical components from Hedyotis diffusa Willd and their anti-tumour activity.Nat. Prod. Res. Dev.202234812811288+130010.16333/j.1001‑6880.2022.8.002
    [Google Scholar]
  17. CheH. The effect and mechanism of hedyotic diffusa willd injection on the apoptosis of A549 cells.Chin. J. Integr. Med.201462022
    [Google Scholar]
  18. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  19. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  20. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets—update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks1193 23193258
    [Google Scholar]
  21. YangS. HeP. WangJ. SchetterA. TangW. FunamizuN. YanagaK. UwagawaT. SatoskarA.R. GaedckeJ. BernhardtM. GhadimiB.M. GaidaM.M. BergmannF. WernerJ. RiedT. HannaN. AlexanderH.R. HussainS.P. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2.Cancer Res.201676133838385010.1158/0008‑5472.CAN‑15‑2841 27197190
    [Google Scholar]
  22. SunD. WangJ. HanY. DongX. GeJ. ZhengR. ShiX. WangB. LiZ. RenP. SunL. YanY. ZhangP. ZhangF. LiT. WangC. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment.Nucleic Acids Res.202149D1D1420D143010.1093/nar/gkaa1020 33179754
    [Google Scholar]
  23. UhlénM. FagerbergL. HallströmB.M. LindskogC. OksvoldP. MardinogluA. SivertssonÅ. KampfC. SjöstedtE. AsplundA. OlssonI. EdlundK. LundbergE. NavaniS. SzigyartoC.A.K. OdebergJ. DjureinovicD. TakanenJ.O. HoberS. AlmT. EdqvistP.H. BerlingH. TegelH. MulderJ. RockbergJ. NilssonP. SchwenkJ.M. HamstenM. von FeilitzenK. ForsbergM. PerssonL. JohanssonF. ZwahlenM. von HeijneG. NielsenJ. PonténF. Tissue-based map of the human proteome.Science20153476220126041910.1126/science.1260419 25613900
    [Google Scholar]
  24. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  25. CaiY. GaoS. LiuL. SongL. HuaY-Q. WangP. ChenZ. Inhibitive effect of Scutellariabarbata D. Don extract on proliferation, invasion, metastasis and tumorigenesis of pancreatic cancer PANC-1 cells via Hippo/YAP signaling pathway.CJTCMP20173229472951[in Chinese].
    [Google Scholar]
  26. WangZ.C. ZhangJ. ChenX.Y. Research progress of TCM therapy for pancreatic cancer.Chin J Integr Tradit West Med Dig202030430330710.3969/j.issn.1000‑484X.2020.16.008
    [Google Scholar]
  27. MalvezziM. CarioliG. BertuccioP. RossoT. BoffettaP. LeviF. La VecchiaC. NegriE. European cancer mortality predictions for the year 2016 with focus on leukaemias.Ann. Oncol.201627472573110.1093/annonc/mdw022 26812903
    [Google Scholar]
  28. WangL. YangG-H. LuX-H. HuangZ-J. LiH. Pancreatic cancer mortality in China (1991-2000).World J. Gastroenterol.2003981819182310.3748/wjg.v9.i8.1819 12918128
    [Google Scholar]
  29. Stolzenberg-SolomonR.Z. PietinenP. BarrettM.J. TaylorP.R. VirtamoJ. AlbanesD. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers.Am. J. Epidemiol.2001153768068710.1093/aje/153.7.680 11282796
    [Google Scholar]
  30. BaghurstP.A. McMichaelA.J. SlavotinekA.H. BaghurstK.I. BoyleP. WalkerA.M. A case-control study of diet and cancer of the pancreas.Am. J. Epidemiol.1991134216717910.1093/oxfordjournals.aje.a116069 1862800
    [Google Scholar]
  31. GoralV. Pancreatic cancer: Pathogenesis and diagnosis.Asian Pac. J. Cancer Prev.201516145619562410.7314/APJCP.2015.16.14.5619 26320426
    [Google Scholar]
  32. ZhangY. LuoX. GuoZ. Clinical study of oldenlandia diffusa-scutellaria barbata for the maintenance treatment of malignant tumors.GMUAJ202242583586
    [Google Scholar]
  33. WuY. ZhangK. KangZ. ZhaoX. WangJ. XuH. Anti-tumor activity and mechanism of combination of ethanol extract from Hedyotic diffusa and ethanol extract from Scutellariae barbata on pancreatic cancer.Drug Eval. Res.20204312331238
    [Google Scholar]
  34. NaL.I. WangP. Tie-FengS. HanL. Ya-NanH.U. Hai-TaoD.U. LiuH. Research progress on chemical constituents, pharmacological action and quality control of Scutellaria barbata.Zhongguo Zhong Yao Za Zhi202045215117512810.19540/j.cnki.cjcmm.20200806.601
    [Google Scholar]
  35. MaD. ChenS. WangH. WeiJ. WuH. GaoH. ChengX. LiuT. LuoS.H. ZhaoY. SongG. Baicalein induces apoptosis of pancreatic cancer cells by regulating the expression of miR-139-3p and miR-196b-5p.Front. Oncol.20211165306110.3389/fonc.2021.653061 33996574
    [Google Scholar]
  36. ZhouR.T. HeM. YuZ. LiangY. NieY. TaiS. TengC.B. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways.Oncotarget2017834563515636310.18632/oncotarget.16912 28915595
    [Google Scholar]
  37. LiuP. FengJ. SunM. YuanW. XiaoR. XiongJ. HuangX. XiongM. ChenW. YuX. SunQ. ZhaoX. ZhangQ. ShaoL. Synergistic effects of baicalein with gemcitabine or docetaxel on the proliferation, migration and apoptosis of pancreatic cancer cells.Int. J. Oncol.20175161878188610.3892/ijo.2017.4153 29039524
    [Google Scholar]
  38. AngstE. ParkJ.L. MoroA. LuQ.Y. LuX. LiG. KingJ. ChenM. ReberH.A. GoV.L.W. EiblG. HinesO.J. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo.Pancreas201342222322910.1097/MPA.0b013e318264ccae 23000892
    [Google Scholar]
  39. LanC.Y. ChenS.Y. KuoC.W. LuC.C. YenG.C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells.J. Food Drug Anal.201927488789610.1016/j.jfda.2019.07.001 31590760
    [Google Scholar]
  40. HuY. LiR. JinJ. WangY. MaR. Quercetin improves pancreatic cancer chemo‐sensitivity by regulating oxidative‐inflammatory networks.J. Food Biochem.20224612e1445310.1111/jfbc.14453 36181395
    [Google Scholar]
  41. JohnsonJ.L. DiaV.P. WalligM. Gonzalez de MejiaE. Luteolin and gemcitabine protect against pancreatic cancer in an orthotopic mouse model.Pancreas201544114415110.1097/MPA.0000000000000215 25237909
    [Google Scholar]
  42. ZhangH. PanY. CheungM. CaoM. YuC. ChenL. ZhanL. HeZ. SunC. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway.Cell Death Dis.201910323010.1038/s41419‑019‑1320‑z 30850586
    [Google Scholar]
  43. LiN. YangF. LiuD.Y. GuoJ.T. GeN. SunS.Y. Scoparone inhibits pancreatic cancer through PI3K/Akt signaling pathway.World J. Gastrointest. Oncol.20211391164118310.4251/wjgo.v13.i9.1164 34616521
    [Google Scholar]
  44. ZhuJ.H. De MelloR.A. YanQ.L. WangJ.W. ChenY. YeQ.H. WangZ.J. TangH.J. HuangT. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.20201866616574710.1016/j.bbadis.2020.165747
    [Google Scholar]
  45. GuJ. HuangW. WangX. ZhangJ. TaoT. ZhengY. LiuS. YangJ. ChenZ.S. CaiC.Y. LiJ. WangH. FanY. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemcitabine resistance in pancreatic cancer.Mol. Cancer202221111210.1186/s12943‑022‑01587‑9 35538494
    [Google Scholar]
  46. BuH.Q. LuoJ. ChenH. ZhangJ.H. LiH.H. GuoH.C. WangZ.H. LinS.Z. Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway.Int. J. Oncol.201241394995810.3892/ijo.2012.1519 22710877
    [Google Scholar]
  47. ZhangH. ZhangX. LiX. MengW.B. BaiZ.T. RuiS.Z. WangZ.F. ZhouW.C. JinX.D. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer.J. Cell. Physiol.2019234161963110.1002/jcp.26816 30069972
    [Google Scholar]
  48. FengW. CaiD. ZhangB. LouG. ZouX. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.Biomed. Pharmacother.20157425726410.1016/j.biopha.2015.08.017 26349994
    [Google Scholar]
  49. WeiD. ParselsL.A. KarnakD. DavisM.A. ParselsJ.D. MarshA.C. ZhaoL. MaybaumJ. LawrenceT.S. SunY. MorganM.A. Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair.Clin. Cancer Res.201319164422443210.1158/1078‑0432.CCR‑13‑0788 23780887
    [Google Scholar]
  50. ChenZ. LiZ. LiW. ZongY. ZhuY. MiaoY. XuZ. SATB1 promotes pancreatic cancer growth and invasion depending on MYC activation.Dig. Dis. Sci.201560113304331710.1007/s10620‑015‑3759‑9 26108419
    [Google Scholar]
  51. ZengY. FanR. Identification and verification of CCNB1 as a potential prognostic biomarker by comprehensive analysis.Sci. Rep.20221211615310.1038/s41598‑022‑20615‑8 36167975
    [Google Scholar]
  52. HeestandG.M. SchwaederleM. GatalicaZ. ArguelloD. KurzrockR. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients.Eur. J. Cancer201783808710.1016/j.ejca.2017.06.019 28728050
    [Google Scholar]
  53. PeiY. YinX. LiuX. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.20181864119720710.1016/j.bbadis.2017.10.019 29045811
    [Google Scholar]
  54. MichlP. BarthC. BuchholzM. LerchM.M. RolkeM. HolzmannK-H. MenkeA. FenstererH. GiehlK. LöhrM. LederG. IwamuraT. AdlerG. GressT.M. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer.Cancer Res.2003631962656271 14559813
    [Google Scholar]
  55. KojimaT. KyunoD. SawadaN. Targeting claudin-4 in human pancreatic cancer.Expert Opin. Ther. Targets201216988188710.1517/14728222.2012.708340 22800288
    [Google Scholar]
  56. HuP. ShangguanJ. ZhangL. Downregulation of NUF2 inhibits tumor growth and induces apoptosis by regulating lncRNA AF339813.Int. J. Clin. Exp. Pathol.20158326382648 26045769
    [Google Scholar]
  57. LiE. HuangX. ZhangG. LiangT. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy.J. Exp. Clin. Cancer Res.202140127910.1186/s13046‑021‑02055‑w 34479614
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808258777230926092527
Loading
/content/journals/lddd/10.2174/0115701808258777230926092527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test