Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Fruits like berries are known not only for their taste and nutritional value but also for the potential health benefits of their bioactive components. Stilbenes, a group of phenolic metabolites found in berries, demonstrate significant pharmacological activities. Its derivatives also have been investigated for their biological functions, including as anticancer agents. Bcl-2 antiapoptotic proteins are highly involved in regulating cancer progression by promoting apoptosis evasion. Hence, Bcl-2 is a promising therapeutic target in drug development.

Objective

This study aimed to determine the stilbene derivatives with the best potential as Bcl-2 inhibitors.

Methods

The method used was molecular docking of several stilbene derivatives to Bcl-2 receptors using AutoDock 4.2, followed by an ADMET study.

Results

Based on the docking score and ligand-receptor interactions, oxyresveratol and pterostilbene had the best docking findings for the Bcl-2 antiapoptotic proteins. Among these eleven substances, pterostilbene significantly inhibited Bcl-w and Mcl-1, whereas oxresveratrol could inhibit Bcl-2. Although the findings from the two ADMET profiles were varied, further and studies are required to explore the potential of the compounds.

Conclusion

In conclusion, the study identified the potential chemopreventive agents, such as pterostilbene and oxyresveratrol might serve as potential lead compounds for developing new Bcl-2 inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230911130135
2023-09-13
2025-06-19
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. BennettJ.E. StevensG.A. MathersC.D. BonitaR. RehmJ. KrukM.E. RileyL.M. DainK. KengneA.P. ChalkidouK. BeagleyJ. KishoreS.P. ChenW. SaxenaS. BettcherD.W. GroveJ.T. BeagleholeR. EzzatiM. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4.Lancet2018392101521072108810.1016/S0140‑6736(18)31992‑5 30264707
    [Google Scholar]
  3. KalkavanH. GreenD.R. MOMP, cell suicide as a BCL-2 family business.Cell Death Differ.2018251465510.1038/cdd.2017.179 29053143
    [Google Scholar]
  4. SkrovankovaS. SumczynskiD. MlcekJ. JurikovaT. SochorJ. Bioactive compounds and antioxidant activity in different types of berries.Int. J. Mol. Sci.20151610246732470610.3390/ijms161024673 26501271
    [Google Scholar]
  5. World Health Organization. Fruit and vegetable promotion initiative/a meeting report.2003Available from: https://apps.who.int/iris/handle/10665/68395
  6. AfrinS. GiampieriF. GasparriniM. Forbes-HernandezT. Varela-LópezA. QuilesJ. MezzettiB. BattinoM. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment.Molecules201621216910.3390/molecules21020169 26840292
    [Google Scholar]
  7. FolmerF. BasavarajuU. JasparsM. HoldG. El-OmarE. DicatoM. DiederichM. Anticancer effects of bioactive berry compounds.Phytochem. Rev.201413129532210.1007/s11101‑013‑9319‑z
    [Google Scholar]
  8. BabyB. AntonyP. VijayanR. Antioxidant and anticancer properties of berries.Crit. Rev. Food Sci. Nutr.201858152491250710.1080/10408398.2017.1329198 28609132
    [Google Scholar]
  9. GolovinskaiaO. WangC.K. Review of functional and pharmacological activities of berries.Molecules20212613390410.3390/molecules26133904 34202412
    [Google Scholar]
  10. CastroD. TeodoroA. Anticancer properties of bioactive compounds of berry fruits - A review.Br. J. Med. Med. Res.20156877179410.9734/BJMMR/2015/15289
    [Google Scholar]
  11. SosaV. MolinéT. SomozaR. PaciucciR. KondohH. LLeonart, M.E. Oxidative stress and cancer: An overview.Ageing Res. Rev.201312137639010.1016/j.arr.2012.10.004 23123177
    [Google Scholar]
  12. JuranićZ. ŽižakŽ. Biological activities of berries: From antioxidant capacity to anti-cancer effects.Biofactors200523420721110.1002/biof.5520230405
    [Google Scholar]
  13. MaL. LiW. WangR. NanY. WangQ. LiuW. JinF. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis.Int. J. Oncol.20154741460146810.3892/ijo.2015.3124 26314326
    [Google Scholar]
  14. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.1263597 28001084
    [Google Scholar]
  15. LiuY. GrimmM. DaiW. HouM. XiaoZ.X. CaoY. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking.Acta Pharmacol. Sin.202041113814410.1038/s41401‑019‑0228‑6 31263275
    [Google Scholar]
  16. DanialN.N. KorsmeyerS. J. Cell Death.Cell2004116220521910.1016/S0092‑8674(04)00046‑7 14744432
    [Google Scholar]
  17. StrasserA. HarrisA.W. BathM.L. CoryS. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2.Nature1990348629933133310.1038/348331a0 2250704
    [Google Scholar]
  18. GreenD.R. ReedJ.C. Mitochondria and apoptosis.Science1998281538113091312
    [Google Scholar]
  19. AdamsJ. CoryS. Bcl-2-regulated apoptosis: Mechanism and therapeutic potential.Curr. Opin. Immunol.200719548849610.1016/j.coi.2007.05.004 17629468
    [Google Scholar]
  20. BanjaraS. SuraweeraC.D. HindsM.G. KvansakulM. The Bcl-2 family: Ancient origins, conserved structures, and divergent mechanisms.Biomolecules202010112810.3390/biom10010128 31940915
    [Google Scholar]
  21. KaleJ. OsterlundE.J. AndrewsD.W. BCL-2 family proteins: Changing partners in the dance towards death.Cell Death Differ.2018251658010.1038/cdd.2017.186 29149100
    [Google Scholar]
  22. CampbellK.J. TaitS.W.G. Targeting BCL-2 regulated apoptosis in cancer.Open Biol.20188518000210.1098/rsob.180002 29769323
    [Google Scholar]
  23. FrenzelA. GrespiF. ChmelewskijW. VillungerA. Bcl2 family proteins in carcinogenesis and the treatment of cancer.Apoptosis200914458459610.1007/s10495‑008‑0300‑z 19156528
    [Google Scholar]
  24. KaiserU. SchilliM. HaagU. NeumannK. KreipeH. KoganE. HavemannK. Expression of bcl-2 - protein in small cell lung cancer.Lung Cancer1996151314010.1016/0169‑5002(96)00568‑5 8865121
    [Google Scholar]
  25. ZhouX.L. WangM. Expression levels of survivin, Bcl-2, and KAI1 proteins in cervical cancer and their correlation with metastasis.Genet. Mol. Res.2015144170591706710.4238/2015.December.16.6 26681053
    [Google Scholar]
  26. ChauhanD. VelankarM. BrahmandamM. HideshimaT. PodarK. RichardsonP. SchlossmanR. GhobrialI. RajeN. MunshiN. AndersonK.C. A novel Bcl-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma.Oncogene200726162374238010.1038/sj.onc.1210028 17016430
    [Google Scholar]
  27. TrudelS. StewartA. K. LiZ. ShuY. LiangS. Ben, ; Trieu, Y.; Reece, D.; Paterson, J.; Wang, D.; Wen, X. Y. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan.Clin. Cancer Res.2007132 I10.1158/1078‑0432.CCR‑06‑1526
    [Google Scholar]
  28. KlineM.P. RajkumarS.V. TimmM.M. KimlingerT.K. HaugJ.L. LustJ.A. GreippP.R. KumarS. ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells.Leukemia20072171549156010.1038/sj.leu.2404719 17460700
    [Google Scholar]
  29. PunnooseE.A. LeversonJ.D. PealeF. BoghaertE.R. BelmontL.D. TanN. YoungA. MittenM. IngallaE. DarbonneW.C. OleksijewA. TapangP. YueP. OehJ. LeeL. MaigaS. FairbrotherW.J. AmiotM. SouersA.J. SampathD. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models.Mol. Cancer Ther.20161551132114410.1158/1535‑7163.MCT‑15‑0730 26939706
    [Google Scholar]
  30. YeciesD. CarlsonN.E. DengJ. LetaiA. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1.Blood2010115163304331310.1182/blood‑2009‑07‑233304 20197552
    [Google Scholar]
  31. MazumderS. ChoudharyG.S. Al-harbiS. AlmasanA. Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells.Cancer Res.201272123069307910.1158/0008‑5472.CAN‑11‑4106 22525702
    [Google Scholar]
  32. MoralesA.A. KurtogluM. MatulisS.M. LiuJ. SiefkerD. GutmanD.M. KaufmanJ.L. LeeK.P. LonialS. BoiseL.H. Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1–expressing myeloma cells.Blood201111851329133910.1182/blood‑2011‑01‑327197 21659544
    [Google Scholar]
  33. KonoplevaM. ContractorR. TsaoT. SamudioI. RuvoloP.P. KitadaS. DengX. ZhaiD. ShiY.X. SneedT. VerhaegenM. SoengasM. RuvoloV.R. McQueenT. SchoberW.D. WattJ.C. JiffarT. LingX. MariniF.C. HarrisD. DietrichM. EstrovZ. McCubreyJ. MayW.S. ReedJ.C. AndreeffM. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia.Cancer Cell200610537538810.1016/j.ccr.2006.10.006 17097560
    [Google Scholar]
  34. TrompJ.M. GeestC.R. BreijE.C.W. EliasJ.A. van LaarJ. LuijksD.M. KaterA.P. BeaumontT. van OersM.H.J. ElderingE. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia.Clin. Cancer Res.201218248749810.1158/1078‑0432.CCR‑11‑1440 22128299
    [Google Scholar]
  35. TahirS.K. WassJ. JosephM.K. DevanarayanV. HesslerP. ZhangH. ElmoreS.W. KroegerP.E. TseC. RosenbergS.H. AndersonM.G. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines.Mol. Cancer Ther.20109354555710.1158/1535‑7163.MCT‑09‑0651 20179162
    [Google Scholar]
  36. ZhaoF. QinJ. LiangY. ZhouR. Exploring anti-liver cancer targets and mechanisms of oxyresveratrol: In silico and verified findings.Bioengineered20211229939994810.1080/21655979.2021.1985328 34592904
    [Google Scholar]
  37. PezzutoJ.M. Resveratrol as an inhibitor of carcinogenesis.Pharm. Biol.2008467-844357310.1080/13880200802116610
    [Google Scholar]
  38. VaroniE.M. Lo FaroA.F. Sharifi-RadJ. IritiM. Anticancer molecular mechanisms of resveratrol.Front. Nutr.20163810.3389/fnut.2016.00008 27148534
    [Google Scholar]
  39. LiL. QiuR.L. LinY. CaiY. BianY. FanY. GaoX.J. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways.Oncol. Lett.20181569845985110.3892/ol.2018.8571 29928358
    [Google Scholar]
  40. XuB. TaoZ.Z. Piceatannol enhances the antitumor efficacy of gemcitabine in human A549 non-small cell lung cancer cells.Oncol. Res.201522421321710.3727/096504015X14386062091398 26351210
    [Google Scholar]
  41. WangD. ZhangY. ZhangC. GaoL. LiJ. Piceatannol pretreatment alleviates acute cardiac injury via regulating PI3K-Akt-eNOS signaling in H9c2 cells.Biomed. Pharmacother.201910988689110.1016/j.biopha.2018.10.120 30551542
    [Google Scholar]
  42. KimY. ParkC. LeeJ. KimG. LeeW. ChoiY. RyuC. Induction of apoptosis by piceatannol in human leukemic U937 cells through down-regulation of Bcl-2 and activation of caspases.Oncol. Rep.200819496196710.3892/or.19.4.961 18357382
    [Google Scholar]
  43. KimJ.S. KangC.G. KimS.H. LeeE.O. Rhapontigenin suppresses cell migration and invasion by inhibiting the PI3K-dependent Rac1 signaling pathway in MDA-MB-231 human breast cancer cells.J. Nat. Prod.20147751135113910.1021/np401078g 24828286
    [Google Scholar]
  44. RicheD.M. McEwenC.L. RicheK.D. ShermanJ.J. WoffordM.R. DeschampD. GriswoldM. Analysis of safety from a human clinical trial with pterostilbene.J. Toxicol.201320131510.1155/2013/463595 23431291
    [Google Scholar]
  45. ChatterjeeK. AlSharifD. MazzaC. SyarP. Al SharifM. FataJ. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells.Nutrients201810224310.3390/nu10020243 29485619
    [Google Scholar]
  46. KongY. ChenG. XuZ. YangG. LiB. WuX. XiaoW. XieB. HuL. SunX. ChangG. GaoM. GaoL. DaiB. TaoY. ZhuW. ShiJ. Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells.Sci. Rep.2016613741710.1038/srep37417 27869173
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230911130135
Loading
/content/journals/lddd/10.2174/1570180820666230911130135
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADMET; antiapoptotic; anticancer; apoptotis; AutoDock 4.2; Bcl-2; molecular docking; stilbene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test