Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Nanotechnology has made great strides in developing targeted drug delivery systems over the past few decades. These systems have garnered attention for their unique biological properties and ability to deliver drugs in a stable and sustainable manner. Despite these advances, there are still concerns about quality, efficacy, and safety. Many fabrication techniques still need to be refined to address the complex structures and non-standard manufacturing processes that can impact the quality of drug delivery systems. Recently, optimization techniques such as Quality by Design (QbD) have gained popularity in the pharmaceutical industry. QbD is a structured approach that addresses many technological and trait-related issues by providing a deep understanding of the product and its operations. This review examines the current state of QbD in the design of various nano-drug delivery systems, including lipid nanoparticles, lipid carriers, nano micelles, beaded drug delivery systems, nanospheres, cubosomes, and novel cosmeceuticals. Various mathematical models and statistical tests have been used to identify the parameters that influence the physical characteristics of these nanosystems. Critical process attributes such as particle size, yield, and drug entrapment have been studied to assess risk factors during development. However, critical process parameters are often identified through trial and error. This review highlights common material attributes and process parameters that affect the quality of nano-drug delivery systems. Hence, this survey has disclosed the various material attributes and process parameters, quality variables of different nano-drug systems. QbD designs such as Central drug composite, Design of experiment, D-optimal Design, Box-Benkhen Design, and Face center Design in optimizing the nanosystems have also been added. Conclusively, QbD optimization in nano drug delivery systems is expected to be a time-honored strategy in the forthcoming years.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808256947231004110357
2023-10-10
2025-06-26
Loading full text...

Full text loading...

References

  1. FukudaI.M. PintoC.F.F. MoreiraC.S. SavianoA.M. LourençoF.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD).Braz. J. Pharm. Sci.201854spe5410.1590/s2175‑97902018000001006
    [Google Scholar]
  2. YangY.J. SongD.M. JiangW.M. XiangB.R. Rapid resolution RP-HPLC-DAD method for simultaneous determination of sildenafil, vardenafil, and tadalafil in pharmaceutical preparations and counterfeit drugs.Anal. Lett.201043337338010.1080/00032710903402283
    [Google Scholar]
  3. PallagiE. AmbrusR. Szabó-RévészP. CsókaI. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation.Int. J. Pharm.20154911-238439210.1016/j.ijpharm.2015.06.018 26134895
    [Google Scholar]
  4. LionbergerR.A. LeeS.L. LeeL. RawA. YuL.X. Quality by design: Concepts for ANDAs.AAPS J.200810226827610.1208/s12248‑008‑9026‑7 18465252
    [Google Scholar]
  5. ZhangL. MaoS. Application of quality by design in the current drug development.Asian J. Pharm. Sci.20171211810.1016/j.ajps.2016.07.006
    [Google Scholar]
  6. RaoD.V.S. RadhakrishnanandP. HimabinduV. RadhaK.P. HimabinduV. Stress degradation studies on tadalafil and development of a validated stability-indicating LC assay for bulk drug and pharmaceutical dosage form.Chromatographia2008671-218318810.1365/s10337‑007‑0478‑1
    [Google Scholar]
  7. LeeA.R. KwonS.Y. ChoiD.H. ParkE.S. Quality by Design (QbD) approach to optimize the formulation of a bilayer combination tablet (Telmiduo®) manufactured via high shear wet granulation.Int. J. Pharm.20175341-214415810.1016/j.ijpharm.2017.10.004 29031980
    [Google Scholar]
  8. GovaniP. BahekarK. MovaliyaV. VaghelaK. KankiN. DeshpandeS. ZaveriM. FDA’s new pharmaceutical quality initiative: Knowledge-aided assessment & structured applications.Int. J. Drug Regul. Aff.20221041710.22270/ijdra.v10i4.523
    [Google Scholar]
  9. PallagiE. IsmailR. PaálT.L. CsókaI. Initial risk assessment as part of the quality by design in peptide drug containing formulation development.Eur. J. Pharm. Sci.201812216016910.1016/j.ejps.2018.07.003 30008428
    [Google Scholar]
  10. IsmaelO.A. AhmedM.I. Using quality risk management in pharmaceutical industries: A case study.Calitatea.202021178106113
    [Google Scholar]
  11. DjurisJ. DjuricZ. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment.Int. J. Pharm.2017533234635610.1016/j.ijpharm.2017.05.070 28579542
    [Google Scholar]
  12. NadparaN.P. ThumarR.V. KalolaV.N. PatelP.B. Quality by design (QBD): A complete review.Int. J. Pharm. Sci. Rev. Res.20121722028
    [Google Scholar]
  13. WinkleH.N. NasrM.M. FDA ON QBD-Understanding challenges to quality by design-center for drug evaluation and research directors summarize an FDA-commissioned report on QbD.Pharm. Technol.201135960
    [Google Scholar]
  14. ThanY.M. TitapiwatanakunV. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach.Int. J. Pharm.202159912040210.1016/j.ijpharm.2021.120402 33640426
    [Google Scholar]
  15. SangshettiJ.N. DeshpandeM. ZaheerZ. ShindeD.B. AroteR. Quality by design approach: Regulatory need.Arab. J. Chem.201710S3412S342510.1016/j.arabjc.2014.01.025
    [Google Scholar]
  16. AhnS. LeeI.H. LeeE. KimH. KimY.C. JonS. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan.J. Control. Release2013170222623210.1016/j.jconrel.2013.05.031 23747732
    [Google Scholar]
  17. JainS. Quality by design (QBD): A comprehensive understanding of implementation and challenges in pharmaceuticals development.Int. J. Pharm. Pharm. Sci.201462935
    [Google Scholar]
  18. PatilA.S. Pethe, AM Quality by design (QbD): A new concept for development of quality pharmaceuticals.Int. J. Pharm. Qual.2013421319
    [Google Scholar]
  19. ZhangL MaoS. Application of Quality by design in the current drug development.Asia. j. pharma. sci.20171211810.1016/j.ajps.2016.07.006
    [Google Scholar]
  20. BakA. LeungD. BarrettS.E. ForsterS. MinnihanE.C. LeitheadA.W. CunninghamJ. ToussaintN. CrockerL.S. Physicochemical and formulation developability assessment for therapeutic peptide delivery--a primer.AAPS J.201517114415510.1208/s12248‑014‑9688‑2 25398427
    [Google Scholar]
  21. de SousaJ HoltD ButterworthPA Analytical method design, development, and lifecycle management.Pharmaceutical Quality by Design: A Practical Approach20181125710.1002/9781118895238.ch10
    [Google Scholar]
  22. MishraV. ThakurS. PatilA. ShuklaA. Quality by design (QbD) approaches in current pharmaceutical set-up.Expert Opin. Drug Deliv.201815873775810.1080/17425247.2018.1504768 30044646
    [Google Scholar]
  23. GrymonpréW. VanhoorneV. Van SnickB. Blahova PrudilovaB. DetobelF. RemonJ.P. De BeerT. VervaetC. Optimizing feed frame design and tableting process parameters to increase die-filling uniformity on a high-speed rotary tablet press.Int. J. Pharm.20185481546110.1016/j.ijpharm.2018.06.047 29940299
    [Google Scholar]
  24. CharooN.A. ShamsherA.A.A. ZidanA.S. RahmanZ. Quality by design approach for formulation development: A case study of dispersible tablets.Int. J. Pharm.2012423216717810.1016/j.ijpharm.2011.12.024 22209997
    [Google Scholar]
  25. RahmanZ. SiddiquiA. KhanM.A. Assessing the impact of nimodipine devitrification in the ternary cosolvent system through quality by design approach.Int. J. Pharm.20134551-211312310.1016/j.ijpharm.2013.07.049 23911342
    [Google Scholar]
  26. MazivilaS.J. SantosJ.L.M. A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT).Trends Analyt. Chem.202215711669810.1016/j.trac.2022.116698
    [Google Scholar]
  27. KhanolkarA. ThoratV. RautP. SamantaG. Application of Quality by design: Development to manufacturing of diclofenac sodium topical gel.AAPS PharmSciTech20171872754276310.1208/s12249‑017‑0755‑8 28353174
    [Google Scholar]
  28. WilleckeN. SzepesA. WunderlichM. RemonJ.P. VervaetC. De BeerT. A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes.Int. J. Pharm.20185451-212814310.1016/j.ijpharm.2018.04.017 29684559
    [Google Scholar]
  29. SraiJ.S. BadmanC. KrummeM. FutranM. JohnstonC. Future supply chains enabled by continuous processing—Opportunities and challenges. May 20–21, 2014 Continuous Manufacturing Symposium.J. Pharm. Sci.2015104384084910.1002/jps.24343
    [Google Scholar]
  30. Awotwe-OtooD. AgarabiC. WuG.K. CaseyE. ReadE. LuteS. BrorsonK.A. KhanM.A. ShahR.B. Quality by design: Impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody.Int. J. Pharm.20124381-216717510.1016/j.ijpharm.2012.08.033 22944306
    [Google Scholar]
  31. TrivediB. Quality by design (QbD) in pharmaceuticals.Int. J. Pharm. Pharm. Sci.2012411729
    [Google Scholar]
  32. RawA.S. LionbergerR. YuL.X. Pharmaceutical equivalence by design for generic drugs: Modified-release products.Pharm. Res.20112871445145310.1007/s11095‑011‑0397‑6 21387150
    [Google Scholar]
  33. KristanK. HorvatM. Rapid exploration of curing process design space for production of controlled-release pellets.J. Pharm. Sci.2012101103924393510.1002/jps.23277 22833184
    [Google Scholar]
  34. SaripellaK.K. LokaN.C. MallipeddiR. RaneA.M. NeauS.H. A quality by experimental design approach to assess the effect of formulation and process variables on the extrusion and spheronization of drug-loaded pellets containing polyplasdone® XL-10.AAPS PharmSciTech201617236837910.1208/s12249‑015‑0345‑6 26169900
    [Google Scholar]
  35. PrpichA.A. EndeM.T. KatzschnerT. LubczykV. WeyhersH. BernhardG. Drug product modeling predictions for scale-up of tablet film coating—a quality by design approach.Comput. Chem. Eng.20103471092109710.1016/j.compchemeng.2010.03.006
    [Google Scholar]
  36. RahmanZ. XuX. KatragaddaU. KrishnaiahY.S.R. YuL. KhanM.A. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion.Mol. Pharm.201411378779910.1021/mp400484g 24423028
    [Google Scholar]
  37. KothariB.H. FahmyR. ClaycampH.G. MooreC.M.V. ChatterjeeS. HoagS.W. A systematic approach of employing QualityQuality by design principles: Risk assessment and design of experiments to demonstrate process understanding and identify the critical process parameters for coating of the ethylcellulose pseudolatex dispersion using non-conventional fluid bed process.AAPS PharmSciTech20171841135115710.1208/s12249‑016‑0569‑0 27417225
    [Google Scholar]
  38. MartoJ. GouveiaL.F. GonçalvesL.M. GasparD.P. PintoP. CarvalhoF.A. OliveiraE. RibeiroH.M. AlmeidaA.J. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery.Colloids Surf. B Biointerfaces201614317718510.1016/j.colsurfb.2016.03.039 27003468
    [Google Scholar]
  39. GijoE.V. Application of tools and techniques of quality by design in pharmaceutical process.Int. J. Prod. Perform. Manag.20227172932295010.1108/IJPPM‑09‑2020‑0472
    [Google Scholar]
  40. YacoubF. LautensJ. LucisanoL. BanhW. Application of Quality by design principles to legacy drug products.J. Pharm. Innov.201162616810.1007/s12247‑011‑9101‑y
    [Google Scholar]
  41. VermaS. LanY. GokhaleR. BurgessD.J. Quality by design approach to understand the process of nanosuspension preparation.Int. J. Pharm.20093771-218519810.1016/j.ijpharm.2009.05.006 19446617
    [Google Scholar]
  42. MazumderS. PavuralaN. MandaP. XuX. CruzC.N. KrishnaiahY.S.R. Quality by design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films.Int. J. Pharm.20175271-215116010.1016/j.ijpharm.2017.05.048 28549972
    [Google Scholar]
  43. XuX. KhanM.A. BurgessD.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment.Int. J. Pharm.20114191-2525910.1016/j.ijpharm.2011.07.012 21787854
    [Google Scholar]
  44. BadawyS.I.F. NarangA.S. LaMarcheK.R. SubramanianG.A. VariaS.A. LinJ. StevensT. ShahP.A. Integrated application of quality-by-design principles to drug product development: A case study of Brivanib alaninate film-coated tablets.J. Pharm. Sci.2016105116818110.1016/j.xphs.2015.11.023 26852852
    [Google Scholar]
  45. HuB. LvZ. ChenG. LuJ. Identification, synthesis, characterization, and a quality control strategy for high-risk chiral impurities in the antifungal drug substance posaconazole.Tetrahedron202212713309810.1016/j.tet.2022.133098
    [Google Scholar]
  46. KimJ.Y. ChoiD.H. Control strategy for excipient variability in the quality by design approach using statistical analysis and predictive model: Effect of microcrystalline cellulose variability on design space.Pharmaceutics20221411241610.3390/pharmaceutics14112416 36365234
    [Google Scholar]
  47. ChavezP.F. StaufferF. EeckmanF. BostijnN. DidionD. SchaeferC. YangH. El AalamatY. LoriesX. WarmanM. MathieuB. MantanusJ. Control strategy definition for a drug product continuous wet granulation process: Industrial case study.Int. J. Pharm.202262412197010.1016/j.ijpharm.2022.121970 35781027
    [Google Scholar]
  48. van den BanS. GoodwinD.J. The impact of granule density on tableting and pharmaceutical product performance.Pharm. Res.20173451002101110.1007/s11095‑017‑2115‑5 28188541
    [Google Scholar]
  49. DumareyM. GoodwinD.J. DavisonC. Multivariate modelling to study the effect of the manufacturing process on the complete tablet dissolution profile.Int. J. Pharm.20154861-211212010.1016/j.ijpharm.2015.03.040 25797055
    [Google Scholar]
  50. KumarS. GokhaleR. BurgessD.J. Quality by Design approach to spray drying processing of crystalline nanosuspensions.Int. J. Pharm.20144641-223424210.1016/j.ijpharm.2013.12.039 24412337
    [Google Scholar]
  51. PatilH. FengX. YeX. MajumdarS. RepkaM.A. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: A systematic study based on a quality by design approach.AAPS J.201517119420510.1208/s12248‑014‑9674‑8 25344439
    [Google Scholar]
  52. SoniG. KaleK. ShettyS. GuptaM.K. YadavK.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer.Heliyon202064e0384610.1016/j.heliyon.2020.e03846 32373744
    [Google Scholar]
  53. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  54. NandiU. DeyT. DouroumisD. Continuous Twin-Screw Granulation Processing.Optimization of Pharmaceutical Processes.ChamSpringer International Publishing202213516910.1007/978‑3‑030‑90924‑6_6
    [Google Scholar]
  55. BasaliousE.B. El-SebaieW. El-GazayerlyO. Application of pharmaceutical QbD for enhancement of the solubility and dissolution of a class II BCS drug using polymeric surfactants and crystallization inhibitors: development of controlled-release tablets.AAPS PharmSciTech201112379981010.1208/s12249‑011‑9646‑6 21701960
    [Google Scholar]
  56. VisserJ.C. DohmenW.M.C. HinrichsW.L.J. BreitkreutzJ. FrijlinkH.W. WoerdenbagH.J. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films.Int. J. Pharm.20154851-2707610.1016/j.ijpharm.2015.03.005 25746737
    [Google Scholar]
  57. GavanA. IurianS. CasianT. PorfireA. PoravS. VoinaI. OpreaA. TomutaI. Fluidised bed granulation of two APIs: QbD approach and development of a NIR in-line monitoring method.Asian J. Pharma. Sci.202015450651710.1016/j.ajps.2019.03.003 32952673
    [Google Scholar]
  58. MansuriN. PatelK. MehtaM. VyasG. ReddyJ.P. ShahT. SteinbachD. DesaiD. Quality by design (QbD) approach to match tablet glossiness.Pharm. Dev. Technol.20202581010101710.1080/10837450.2020.1772291 32432492
    [Google Scholar]
  59. ButreddyA. DudhipalaN. JangaK.Y. GaddamR.P. Lyophilization of small-molecule injectables: An industry perspective on formulation development, process optimization, scale-up challenges, and drug product quality attributes.AAPS PharmSciTech202021725210.1208/s12249‑020‑01787‑w 32885357
    [Google Scholar]
  60. JoseH. Dinesh KumarB. KrishnakumarK. NairS.K. Quality by Design Approaches in Pharmaceutical Developments2023
    [Google Scholar]
  61. Castillo-HenríquezL. Murillo-CastilloB. Chaves-SilesL. Mora-RománJ.J. Ramírez-ArguedasN. Hernández-MoraÉ. Vega-BaudritJ. Quality by design: A suitable methodology in industrial pharmacy for costa rican universities.Sci. Pharm.20229023410.3390/scipharm90020034
    [Google Scholar]
  62. KastenG. DuarteÍ. PaisanaM. LöbmannK. RadesT. GrohganzH. Process optimization and upscaling of spray-dried drug-amino acid co-amorphous formulations.Pharmaceutics20191112410.3390/pharmaceutics11010024 30634423
    [Google Scholar]
  63. MdS. Kuldeep SinghJ.K.A.P. WaqasM. PandeyM. ChoudhuryH. HabibH. HussainF. HussainZ. Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting.Drug Dev. Ind. Pharm.201945232333210.1080/03639045.2018.1542704 30404554
    [Google Scholar]
  64. MenonA PóczosB FeinbergAW Washburn, NR Optimization of silicone 3D printing with hierarchical machine learning.3D printing and additive manufacturing.201964181189
    [Google Scholar]
  65. ButreddyA. BandariS. RepkaM.A. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development.Eur. J. Pharm. Sci.202115810565510.1016/j.ejps.2020.105655 33253883
    [Google Scholar]
  66. Raghavendra NaveenN. KurakulaM. GowthamiB. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles.Mater. Today Proc.2020332716272410.1016/j.matpr.2020.01.491
    [Google Scholar]
  67. GhoshI. SchenckD. BoseS. LiuF. MottoM. Identification of critical process parameters and its interplay with nanosuspension formulation prepared by top down media milling technology – A QbD perspective.Pharm. Dev. Technol.201318371972910.3109/10837450.2012.723720 23061898
    [Google Scholar]
  68. NigusseB. Gebre-MariamT. BeleteA. Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride.PLoS One2021166e025339110.1371/journal.pone.0253391 34170952
    [Google Scholar]
  69. IrshadA. YousufR.I. ShoaibM.H. QaziF. SaleemM.T. SiddiquiF. AhmedF.R. RehmanR. JabeenS. FarooqiS. KhanM.Z. MasoodR. Effect of starch, cellulose and povidone based superdisintegrants in a QbD-based approach for the development and optimization of Nitazoxanide orodispersible tablets: Physicochemical characterization, compaction behavior and in-silico PBPK modeling of its active metabolite Tizoxanide.J. Drug Deliv. Sci. Technol.20237910407910.1016/j.jddst.2022.104079
    [Google Scholar]
  70. ThalluriC. AminR. MandhadiJ.R. GacemA. EmranT.B. DeyB.K. RoyA. AlqahtaniM.S. RefatM.S. SafiS.Z. AlsuhaibaniA.M. Central composite designed fast dissolving tablets for improved solubility of the loaded drug ondansetron hydrochloride.BioMed Res. Int.2022202211310.1155/2022/2467574 36046453
    [Google Scholar]
  71. LiuT. YuX. YinH. Study of top-down and bottom-up approaches by using design of experiment (DoE) to produce meloxicam nanocrystal capsules.AAPS PharmSciTech20202137910.1208/s12249‑020‑1621‑7 31974817
    [Google Scholar]
  72. Renu PuriR. Material optimization for the development of delayed release formulation using computational tools.Mater. Today Proc.20226872272710.1016/j.matpr.2022.06.003
    [Google Scholar]
  73. KumariP.K. VastavM.S. RaoY.S. Development and optimization of orodispersible tablets of fexofenadine hydrochloride (FFH) by box-behnken statistical design (BBD).Technology202212313571366
    [Google Scholar]
  74. ElsayedM.M.A. AboelezM.O. ElsadekB.E.M. SarhanH.A. KhaledK.A. BelalA. KhamesA. HassanY.A. Abdel-RheemA.A. ElkaeedE.B. RaafatM. ElsadekM.E.M. Tolmetin sodium fast dissolving tablets for rheumatoid arthritis treatment: Preparation and optimization using Box-Behnken design and response surface methodology.Pharmaceutics202214488010.3390/pharmaceutics14040880 35456714
    [Google Scholar]
  75. WonD.H. ParkH. HaE.S. KimH.H. JangS.W. KimM.S. Optimization of bilayer tablet manufacturing process for fixed dose combination of sustained release high-dose drug and immediate release low-dose drug based on quality by design (QbD).Int. J. Pharm.202160512083810.1016/j.ijpharm.2021.120838 34197909
    [Google Scholar]
  76. LiyanapathiranaC. ShahidiF. Optimization of extraction of phenolic compounds from wheat using response surface methodology.Food Chem.2005931475610.1016/j.foodchem.2004.08.050
    [Google Scholar]
  77. VishwakarmaP. ChoudharyR. Micro sponges: A novel strategy to control the delivery rate of active agents with reduced skin irritancy.J. Drug Deliv. Ther.201996-s23824710.22270/jddt.v9i6‑s.3757
    [Google Scholar]
  78. NemrA.A. El-MahroukG.M. BadieH.A. Hyaluronic acid-enriched bilosomes: An approach to enhance ocular delivery of agomelatine via D-optimal design: Formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits.Drug Deliv.20222912343235610.1080/10717544.2022.2100513 35869684
    [Google Scholar]
  79. ChenY. KotamarthyL. DanA. SampatC. BhalodeP. SinghR. GlasserB.J. RamachandranR. IerapetritouM. Optimization of key energy and performance metrics for drug product manufacturing.Int. J. Pharm.202363112248710.1016/j.ijpharm.2022.122487 36521636
    [Google Scholar]
  80. AldawsariH.M. NaveenN.R. AlhakamyN.A. GoudanavarP.S. RaoG.S.N.K. BudhaR.R. NairA.B. Badr-EldinS.M. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization.Drug Deliv.20222912258226810.1080/10717544.2022.2094500 35838522
    [Google Scholar]
  81. SinghB. KapilR. NandiM. AhujaN. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects.Expert Opin. Drug Deliv.20118101341136010.1517/17425247.2011.605120 21790511
    [Google Scholar]
  82. BandyopadhyayS. BegS. KatareO. SharmaG. SinghB. QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with improved biopharmaceutical performance.Curr. Drug Deliv.201512554456310.2174/1567201812666150227125639 25731868
    [Google Scholar]
  83. BegS. SandhuP.S. BatraR.S. KhuranaR.K. SinghB. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance.Drug Deliv.201522676578410.3109/10717544.2014.900154 24673611
    [Google Scholar]
  84. BegS. KaurR. KhuranaR.K. RanaV. SharmaT. SinghB. QbD-based development of cationic self-nanoemulsifying drug delivery systems of paclitaxel with improved biopharmaceutical attributes.AAPS PharmSciTech201920311810.1208/s12249‑019‑1319‑x 30790136
    [Google Scholar]
  85. SharmaT. JainA. KaurR. SainiS. KatareO.P. SinghB. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation.Drug Deliv. Transl. Res.202010483986110.1007/s13346‑020‑00772‑x 32415654
    [Google Scholar]
  86. JainA. SharmaT. KumarR. KatareO.P. SinghB. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC.Drug Deliv. Transl. Res.20221251136116010.1007/s13346‑021‑00990‑x 33966178
    [Google Scholar]
  87. SinghB. SharmaT. KaurR. SainiS. KaurR. BegS. QbD-Steered systematic development of drug delivery nanoconstructs: Vital precepts, retrospect and prospects.Biomedical Translational Research: Drug Design and Discovery.SingaporeSpringer Nature Singapore202231535010.1007/978‑981‑16‑9232‑1_18
    [Google Scholar]
  88. PatelG.M. ShelatP.K. LalwaniA.N. QbD based development of proliposome of lopinavir for improved oral bioavailability.Eur. J. Pharm. Sci.2017108506110.1016/j.ejps.2016.08.057 27586019
    [Google Scholar]
  89. KomatiS. SwainS. RaoM.E.B. JenaB.R. UnnamS. DasiV. QbD-based design and characterization of mucoadhesive microspheres of quetiapine fumarate with improved oral bioavailability and brain biodistribution potential.Bull. Fac. Pharm. Cairo Univ.201856212914510.1016/j.bfopcu.2018.09.002
    [Google Scholar]
  90. BansalS. BegS. GargB. AsthanaA. AsthanaG.S. SinghB. QbD-oriented development, and characterization of effervescent floating-bioadhesive tablets of cefuroxime axetil.AAPS PharmSciTech20161751086109910.1208/s12249‑015‑0431‑9 26527606
    [Google Scholar]
  91. WaghuleT. RapalliV.K. SinghviG. ManchandaP. HansN. DubeyS.K. HasnainM.S. NayakA.K. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation.J. Drug Deliv. Sci. Technol.20195230331510.1016/j.jddst.2019.04.026
    [Google Scholar]
  92. PrasadP.S. ImamS.S. AqilM. SultanaY. AliA. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes.Drug Deliv.20162331047105610.3109/10717544.2014.936536 25033041
    [Google Scholar]
  93. ChoiD.H. KimY.S. KimD.D. JeongS.H. QbD based development and evaluation of topical microemulsion-based hydrogel against superficial fungal infections.J. Pharm. Investig.20194918710310.1007/s40005‑018‑0386‑4 31186979
    [Google Scholar]
  94. JainP. TaleuzzamanM. KalaC. Kumar GuptaD. AliA. AslamM. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery.J. Liposome Res.202131438138810.1080/08982104.2020.1849279 33183121
    [Google Scholar]
  95. SahaM. SikderP. SahaA. ShahS. SultanaS. EmranT. BanikA. IslamZ. IslamM.S. SharkerS.M. RezaH.M. QbD approach towards robust design space for flutamide/piperineself-emulsifying drug delivery system with reduced liver injury.AAPS PharmSciTech20222316210.1208/s12249‑022‑02213‑z 35080685
    [Google Scholar]
  96. TiwariG. TiwariR. BannerjeeS.K. BhatiL. PandeyS. PandeyP. SriwastawaB. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.96920 23071954
    [Google Scholar]
  97. SharmaV. SinghL. VermaN. QbD enabled process variable study to develop sustained release chitosan-alginate embedded delivery system for improved patient compliance.Braz. J. Pharm. Sci.202258e1980310.1590/s2175‑97902021000319803
    [Google Scholar]
  98. VohraA.M. PatelC.V. KumarP. ThakkarH.P. Development of dual drug loaded solid self microemulsifying drug delivery system: Exploring interfacial interactions using QbD coupled risk based approach.J. Mol. Liq.20172421156116810.1016/j.molliq.2017.08.002
    [Google Scholar]
  99. SharmaV. SinghL. VermaN. Establishment and escalation of amino acid stacked repressible release embedded system using QbD.Turk. J. Pharm. Sci.20191612026
    [Google Scholar]
  100. HalesD. VlaseL. PoravS.A. BodokiA. Barbu-TudoranL. AchimM. TomuțăI. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery.Eur. J. Pharm. Sci.201710024926110.1016/j.ejps.2017.01.006 28088371
    [Google Scholar]
  101. BadhwarR. SinghR. PopliH. Implementation of quality by design (qbd) approach in development of qct-smedds with combination of agnps for diabetic foot ulcer management.Indian J. Pharm. Educ. Res.20215512071223
    [Google Scholar]
  102. KesharwaniP. MdS. AlhakamyN.A. HosnyK.M. HaqueA. QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation.Polymers202113225010.3390/polym13020250 33451016
    [Google Scholar]
  103. DobóD.G. NémethZ. SiposB. CsehM. PallagiE. BerkesiD. KozmaG. KónyaZ. CsókaI. Pharmaceutical development and design of thermosensitive liposomes based on the QbD approach.Molecules2022275153610.3390/molecules27051536 35268637
    [Google Scholar]
  104. SylvesterB. PorfireA. MunteanD.M. VlaseL. LupuţL. LicareteE. SesarmanA. AlupeiM.C. BanciuM. AchimM. TomuţăI. Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach.J. Liposome Res.2018281496110.1080/08982104.2016.1254242 27788618
    [Google Scholar]
  105. NémethZ. PallagiE. DobóD.G. KozmaG. KónyaZ. CsókaI. An updated risk assessment as part of the QbD-based liposome design and development.Pharmaceutics2021137107110.3390/pharmaceutics13071071 34371762
    [Google Scholar]
  106. TomaI. TefasL.R. BogdanC.Ă. TomutaI.O. Development and characterization of loratadine liposomal gel using qbd approach.Farmacia202270220421310.31925/farmacia.2022.2.4
    [Google Scholar]
  107. GurumukhiV.C. BariS.B. Quality by design (QbD)–based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: Bioavailability enhancement using chylomicron flow block model and toxicity studies.Drug Deliv. Transl. Res.20221251230125210.1007/s13346‑021‑01014‑4 34110597
    [Google Scholar]
  108. PermanaA.D. TekkoI.A. McCruddenM.T.C. AnjaniQ.K. RamadonD. McCarthyH.O. DonnellyR.F. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis.J. Control. Release2019316345210.1016/j.jconrel.2019.10.004 31655132
    [Google Scholar]
  109. PanigrahiK.C. JenaJ. JenaG.K. PatraC.N. RaoM.E.B. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment.J. Drug Deliv. Sci. Technol.201847314210.1016/j.jddst.2018.06.021
    [Google Scholar]
  110. LiuD. YangF. XiongF. GuN. The smart drug delivery system and its clinical potential.Theranostics2016691306132310.7150/thno.14858 27375781
    [Google Scholar]
  111. ShahV.H. JobanputraA. Enhanced ungual permeation of terbinafine HCl delivered through liposome-loaded nail lacquer formulation optimized by QbD approach.AAPS PharmSciTech201819121322410.1208/s12249‑017‑0831‑0 28681334
    [Google Scholar]
  112. CavalcantiS.M.T. NunesC. LimaS.A.C. Soares-SobrinhoJ.L. ReisS. Multiple lipid nanoparticles (MLN), a new generation of lipid nanoparticles for drug delivery systems: Lamivudine-MLN experimental design.Pharm. Res.20173461204121610.1007/s11095‑017‑2136‑0 28315084
    [Google Scholar]
  113. MaZ. LiuJ. LiX. XuY. LiuD. HeH. WangY. TangX. Hydroxycamptothecin (HCPT)-loaded PEGlated lipid–polymer hybrid nanoparticles for effective delivery of HCPT: QbD-based development and evaluation.Drug Deliv. Transl. Res.202212130632410.1007/s13346‑021‑00939‑0 33712991
    [Google Scholar]
  114. DurgunM.E. MesutB. HacıoğluM. GüngörS. ÖzsoyY. Optimization of the micellar-based in situ gelling systems posaconazole with quality by design (QBD) approach and characterization by in vitro studies.Pharmaceutics202214352610.3390/pharmaceutics14030526 35335902
    [Google Scholar]
  115. MahmoodA. RapalliV.K. WaghuleT. GorantlaS. SinghviG. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in-vitro characterization and dermatokinetic assessment.Chem. Phys. Lipids202123410502810.1016/j.chemphyslip.2020.105028 33309940
    [Google Scholar]
  116. WaghuleT. PatilS. RapalliV.K. GirdharV. GorantlaS. Kumar DubeyS. SahaR.N. SinghviG. Improved skin-permeated diclofenac-loaded lyotropic liquid crystal nanoparticles: QbD-driven industrial feasible process and assessment of skin deposition.Liq. Cryst.2021487991100910.1080/02678292.2020.1836276
    [Google Scholar]
  117. GhoseD. PatraC.N. Ravi KumarB.V.V. SwainS. JenaB.R. ChoudhuryP. ShreeD. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes.Turkish Journal of Pharmaceutical Sciences202118445246410.4274/tjps.galenos.2020.08522 34496552
    [Google Scholar]
  118. CaoL. RussoD. FeltonK. SalleyD. SharmaA. KeenanG. MauerW. GaoH. CroninL. LapkinA.A. Optimization of formulations using robotic experiments driven by machine learning DoE.Cell Rep. Phy. Sci.20212110029510.1016/j.xcrp.2020.100295
    [Google Scholar]
  119. AmasyaG. OzturkC. AksuB. TarimciN. QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals.J. Drug Deliv. Sci. Technol.20216610273710.1016/j.jddst.2021.102737
    [Google Scholar]
  120. RizgW.Y. NaveenN.R. KurakulaM. BukharyH.A. SafhiA.Y. AlfayezE. SindiA.M. AliS. MurshidS.S. HosnyK.M. QbD supported optimization of the alginate-chitosan nanoparticles of simvastatin in enhancing the anti-proliferative activity against tongue carcinoma.Gels20228210310.3390/gels8020103 35200484
    [Google Scholar]
  121. YasirM. SaraU.V.S. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design.J. Pharm. Res.20137655155810.1016/j.jopr.2013.05.022
    [Google Scholar]
  122. KostevšekN. A review on the optimal design of magnetic nanoparticle-based T 2 MRI contrast agents.Magnetochemistry2020611110.3390/magnetochemistry6010011
    [Google Scholar]
  123. WangM. WangY. QiaoC. WangS. Study on central composite design method to optimize the preparation process of chrysophanol-pluronic F127 nanomicelles and pharmacokinetics.J. Nanomater.2022202211310.1155/2022/7428740
    [Google Scholar]
  124. TarawnehS.F. DahmashE.Z. AlyamiH. Abu-DolehS.M. Al-AliS. IyireA. AbuthawabehR. Mechanistic modelling of targeted pulmonary delivery of dactinomycin iron oxide loaded nanoparticles for lung cancer therapy.Pharma. Develop. and Techno.2022135
    [Google Scholar]
  125. EbrahimnejadP. MahjoubM.A. ShahlaeeF. EbrahimiP. Sadeghi-GhadiZ. Preparation and optimization of controlled release nanoparticles containing cefixime using central composite design: An attempt to enrich its antimicrobial activity.Curr. Drug Deliv.202219336937810.2174/1567201818666210726160956 34315365
    [Google Scholar]
  126. GuptaT. KenjaleP. PokharkarV. QbD-based optimization of raloxifene-loaded cubosomal formulation for transdemal delivery: Ex vivo permeability and in vivo pharmacokinetic studies.Drug Deliv. Transl. Res.202212122979299210.1007/s13346‑022‑01162‑1 35462597
    [Google Scholar]
  127. JiangJ. WuH. ZouZ. In vitro and in vivo evaluation of a novel lidocaine-loaded cubosomal gel for prolonged local anesthesia.J. Biomater. Appl.202237231532310.1177/08853282221087346 35373629
    [Google Scholar]
  128. WaghuleT. Laxmi SwethaK. RoyA. Narayan SahaR. SinghviG. Quality by design assisted optimization of temozolomide loaded PEGylated lyotropic liquid crystals: Investigating various formulation and process variables along with in-vitro characterization.J. Mol. Liq.202235211872410.1016/j.molliq.2022.118724
    [Google Scholar]
  129. GorantlaS. SahaR.N. SinghviG. Exploring the affluent potential of glyceryl mono oleate – myristol liquid crystal nanoparticles mediated localized topical delivery of Tofacitinib: Study of systematic QbD, skin deposition and dermal pharmacokinetics assessment.J. Mol. Liq.202234611705310.1016/j.molliq.2021.117053
    [Google Scholar]
  130. PuriV. FroelichA. ShahP. PringleS. ChenK. Michniak-KohnB. Quality by design guided development of polymeric nanospheres of terbinafine hydrochloride for topical treatment of onychomycosis using a nano-gel formulation.Pharmaceutics20221410217010.3390/pharmaceutics14102170 36297605
    [Google Scholar]
  131. Aguilar-JiménezZ. González-BallesterosM. Dávila-ManzanillaS.G. Espinoza-GuillénA. Ruiz-AzuaraL. Development and in vitro and in vivo evaluation of an antineoplastic copper(II) compound (Casiopeina III-ia) loaded in nonionic vesicles using quality by design.Int. J. Mol. Sci.202223211275610.3390/ijms232112756 36361549
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808256947231004110357
Loading
/content/journals/lddd/10.2174/0115701808256947231004110357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test